Способ определения ударного объема сердца

Изобретение относится к медицине, а именно к кардиологии, кардиохирургии и функциональной диагностике. Осуществляют наложение двух токовых и двух измерительных электродов на определенные участки тела. Производят регистрацию реограммы и дифференциальной реограммы. Определяют площади между изолинией и кривой реограммы слева и справа от точки реограммы, соответствующей окончанию систолы и началу диастолы левого желудочка сердца. Измеряют гемоглобин крови. При этом ударный объем сердца определяют по калибровочной характеристике отношения площадей между изолинией и кривой реограммы с функцией нормированного объема от гемоглобина крови. Способ позволяет повысить точность более чем в 3 раза на адаптивном диапазоне, априори регламентируемом нормируемыми значениями гемоглобина двух пациентов с известными значениями ударного объема сердца. 1 з.п. ф-лы, 1 табл., 2 ил.

 

Изобретение относится к медицине и может быть использовано в различных ее отраслях, таких, например, как кардиология, кардиохирургия, функциональная диагностика.

Известен способ определения ударного объема сердца [Stringer W.W., Hansen J.E., Wasserman К. Cardiac output estimated noninvasivelly from oxygen uptake during exercise // J. Appl. Physiol. 1997. - V.82. - №3. - PP.908-912], заключающийся в измерении потребления кислорода организмом в течение одной минуты, измерении содержания связанного кислорода в литре артериальной и литре смешанной венозной крови, вычислении артериовенозной разности по кислороду, делении величины потребленного кислорода за одну минуту на артериовенозную разность по кислороду, а полученную величину минутного объема кровообращения делят на частоту сердечных сокращений и получают усредненную величину ударного объема сердца при условии, что были посчитаны все сердечные сокращения в течение минуты, когда измерялось потребления кислорода организмом.

Это классический принцип измерения A. Fick, известный с 1870 г. Он безупречен по замыслу, но имеет существенный недостаток, не преодоленный до нашего времени, - это необходимость отбирать образцы артериальной и смешанной венозной крови для определения в них количества связанного газообразного кислорода или углекислого газа.

Известен способ определения ударного объема сердца [Kubicek W.G. Impedance pletysmography. United States Patent Office. Patent N 3340867, September 12, 1976], заключающийся в регистрации реограммы четырехэлектродным способом и графической экстраполяции для получения электрического эквивалента ударного объема сердца. Для этого один из двух токовых электродов размещают на лбу, а другой - на голени пациента, один из двух измерительных электродов - на шее, а второй - на грудной клетке на уровне мечевидного отростка. Измеряют расстояние (L) между измерительными электродами, регистрируют реограмму (РГ), дифференциальную РГ (ДРГ), фонокардиограмму (ФКГ) с одновременным определением базового сопротивления (Z). По кривой РГ измеряют максимальную скорость нарастания реографического сигнала () по ФКГ - интервал времени между первым и вторым тонами сердца (Т). Расчет ударного объема сердца (Q) осуществляют по градуировочной характеристике

,

где р - удельное электрическое сопротивление тканей.

Однако способ имеет малую точность определения ударного объема сердца, так как коэффициент корреляции этого способа с эталонным способом Фика составляет всего 0,31 у женщин и 0,32 у мужчин.

За прототип принят способ определения ударного объема сердца [см. Патент №2134059 (РФ), А61В 5/04, 1996], заключающийся в том, что два токовых и два измерительных электрода накладывают на определенные участки тела. Так, один из токовых электродов - на правое предплечье, а второй - в области левого плечевого сустава, один из измерительных электродов - на правый плечевой сустав, а второй - в области шестого межреберья слева по передней подмышечной линии. Регистрируют РГ, ДРГ с одновременным определением базового сопротивления (Z в Ом), затем определяют амплитуду РГ комплекса (ΔZ в Ом), местоположение точки РГ, соответствующей окончанию систолы и началу диастолы левого желудочка, а также размеры площадей между изолинией и кривой РГ слева (Sd в Ом·мс) и справа (S1 в Ом·мс) от найденной точки, массу тела (m в кг) и гемоглобин крови (Нb в г/л), после чего производят вычисление ударного объема сердца (Q в мл) по градуировочной характеристике

Недостатком прототипа является низкая точность из-за статистического и линейного характера градуировочной характеристики, а также большого количества измеряемых величин, которые вносят дополнительную инструментальную погрешность.

Технической задачей является повышение точности определения ударного объема сердца на адаптивном диапазоне, априори регламентируемым нормируемыми значениями гемоглобина двух пациентов с известными значениями ударного объема сердца.

Техническая задача достигается тем, что в способе определения ударного объема сердца накладывают два токовых и два измерительных электрода на определенные участки тела, регистрируют реограмму (РГ) и дифференциальную РГ (ДРГ), определяют площади между изолинией и кривой РГ слева (Sl) и справа (Sd) от точки РГ, соответствующей окончанию систолы и началу диастолы левого желудочка сердца, измеряют гемоглобин крови (Нb), в отличие от прототипа, ударный объем сердца определяют по калибровочной характеристике (Q) отношения площадей между изолинией и кривой реограммы с функцией V(Hb) нормированного объема от гемоглобина крови

2. В способе по п.1, в отличие от прототипа, функцию нормированного объема калибруют априори на нижней и верхней границах адаптивного диапазона, с различной калибровкой для мужчин и для женщин, по двум измеренным значениям гемоглобина у двух пациентов с известным значением ударного объема сердца, по ним регистрируют предельный гемоглобин Нb0 и предельный ударный объем сердца V0, которые служат для определения ударного объема сердца по калибровочной характеристике.

За эталон принимается метод Фика.

Предлагаемый способ включает 2 этапа.

1) Определение ударного объема сердца по отношению площадей между изолинией и кривой РГ.

2) Калибровка по эталонным значениям гемоглобина для определения действительных значений ударного объема сердца.

1. Для определения ударного объема сердца регистрируют РГ и ДРГ следующим образом: два токовых и два измерительных электрода накладывают на определенные участки тела, причем один из токовых электродов - на правое предплечье, а второй - в области левого плечевого сустава, один из измерительных электродов - на правый плечевой сустав, а второй - в области шестого межреберья слева по передней подмышечной линии. ДРГ регистрируют для облегчения поиска точки РГ, соответствующей окончанию систолы и началу диастолы левого желудочка: на РГ проецируют ДРГ в точке начала ее отрицательной фазы. Ударный объем сердца определяют по калибровочной характеристике

по отношению площадей между изолинией и кривой реограммы и функции нормированного объема от гемоглобина крови V(Hb).

2. Функция нормированного объема имеет следующий вид

где V0 - предельное значение ударного объема сердца;

Нb0 - предельное значение гемоглобина.

Параметры V0 и Нb0 однозначно эксперименту определяют калибровочную характеристику, поэтому их принимают за информативные параметры.

При калибровке измеряют значения гемоглобина в нижней Нb1 и в верхней Нb2 границах нормируемого диапазона измерений ударного объема сердца у пациентов с известными значениями нормированного ударного объема сердца V1 и V2 (см. фиг.1). Информативные параметры находят по функции (1) из системы двух уравнений для первого и второго измерения:

Делят первое уравнение системы на второе

и приводят его к виду, удобному для логарифмирования:

Логарифмируют обе части полученного уравнения и выражают информативный параметр Нb0:

Составляют систему уравнений из инверсной функции (1) для расчета параметра V0:

Делят второе уравнение системы на первое

Учитывая, что

,

где - коэффициент кратности ударного объема сердца конечной и начальной точки диапазона,

находят алгоритм регистрации предельного значения ударного объема сердца

В результате вычислений получаем следующие значения информативных параметров для мужчин (см. фиг.1а)

V0=153,489, Hb0=-176,65,

и для женщин (см. фиг.1б)

V0=8,514, Hb0=170,96.

Полученные параметры V0 и Нb0 однозначно определяют характеристику эксперимента по зависимости (1), поэтому их принимают за информативные параметры и строят графики функции нормированного объема от гемоглобина крови V(Hb), различные для мужчин и для женщин (фиг.1).

Анализируя графики, представленные на фиг.1 легко заметить, что построенные калибровочные кривые для мужчин и для женщин имеют разный угол наклона и кривизну. Этим объясняется необходимость разделения пациентов по половому признаку.

Покажем адекватность функции нормированного объема от гемоглобина крови V (фиг.1, 2) экспериментальным зависимостям Vэ (фиг.1,1), отражающим физику процесса.

Относительное отклонение от эксперимента вычисляется по формуле

для которых относительное отклонение в среднем не превышает 2%, что доказывает адекватность предлагаемого способа калибровки относительно эксперимента.

Для оценки эффективности калибровки определяют относительное отклонение рассчитанных величин ударного объема крови от эталонных величин, определенных по методу Фика. Результаты оценки сведены в таблицу 1.

Таблица 1
№ п/п Пол Величина ударного объема крови Погрешность способа-прототипа Погрешность предлагаемого
способа
Метод Фика (эталон) Способ-прототип Предлагаемый способ
1 м 85,96 93,778 80,001 9,158 6,878
2 м 90,96 74,559 90,96 18,031 2,863·10-4
3 м 72,6 68,538 73,536 5,595 1,289
4 м 76,2 70,716 76,2 7,197 6,292·10-4
5 м 79,01 87,507 74,716 10,754 5,435
6 ж 60,4 63,167 60,588 4,581 0,311
7 ж 60,98 62,53 61,445 2,542 0,763
8 ж 64,94 65,702 64,94 1,173 7,22·10-4
9 ж 102,48 98,978 102,481 3,417 8,135·10-4
10 ж 69,3 80,56 65,081 16,248 6,089

На фиг.2 представлены графики зависимости рассчитанных значений ударного объема сердца по предлагаемому способу (фиг.2, 1), по способу-прототипу (фиг.2, 2) и по методу Фика (фиг.2, 3) для i-го пациента.

Из таблицы 1 видно, что предлагаемый способ повышает точность определения ударного объема сердца более чем в 3 раза по сравнению с прототипом, что следует из относительной оценки η средних погрешностей прототипа ε1 и предлагаемого способа ε2

Таким образом, определение действительного значения ударного объема сердца по калибровочной характеристике отношения площадей реограммы с функцией нормированного объема дифференцированного для мужчин и женщин по информативным параметрам, в отличие от известных решений, повышает точность более чем в 3 раза на адаптивном диапазоне, априори регламентируемом нормируемыми значениями гемоглобина двух пациентов с известными значениями ударного объема сердца.

1. Способ определения ударного объема сердца, включающий наложение двух токовых и двух измерительных электродов на определенные участки тела, регистрацию реограммы (РГ) и дифференциальной РГ (ДРГ), определение площади между изолинией и кривой РГ слева (Sl) и справа (Sd) от точки РГ, соответствующей окончанию систолы и началу диастолы левого желудочка сердца, измерение гемоглобина крови (Нb), отличающийся тем, что ударный объем сердца определяют по калибровочной характеристике (Q) отношения площадей между изолинией и кривой реограммы с функцией V(Hb) нормированного объема от гемоглобина крови

2. Способ по п.1, отличающийся тем, что функцию нормированного объема калибруют априори на нижней и верхней границах адаптивного диапазона, с различной калибровкой для мужчин и для женщин, по двум измеренным значениям гемоглобина у двух пациентов с известными значениями ударного объема сердца, по ним регистрируют предельный гемоглобин Нb0 и предельный ударный объем сердца V0, которые служат для определения ударного объема сердца по калибровочной характеристике.



 

Похожие патенты:

Изобретение относится к области медицины, а именно к неврологии и профессиональной патологии. Проводят реоэнцефалографию (РЭГ) с определением индекса реактивности церебральных сосудов при гиперкапнической пробе, регистрируют слуховые и когнитивные вызванные потенциалы, измеряют амплитуду пика N2 слуховых вызванных потенциалов, длительность латентности Р300, определяют уровень норадреналина в плазме крови.

Изобретение относится к медицине, а именно к физиологии и реабилитологии. Выполняют исследование вариабельности сердечного ритма (ВСР) до и после пробы, моделирующей нагрузку при пожаре, с выявлением дезадаптивных показателей, и определяют скорость распространения пульсовой волны (СРПВ) по сосудам мышечного типа.

Изобретение относится к области экспериментальной физиологии и фармакологии. .

Изобретение относится к медицинской технике, а именно к устройствам для определения показателя эластичности артериальных сосудов. .

Изобретение относится к области медицины, в частности к гепатологии. .

Изобретение относится к медицине, экспресс-диагностике состояния сердечно-сосудистой системы пациента на основе анализа вариабельности сердечного ритма. .

Изобретение относится к технике обеспечения безопасности оператора транспортных средств и может быть использовано в системах автоматического контроля состояния водителей мобильных средств и управления механизмами двигателя для предотвращения аварийного состояния.

Изобретение относится к спортивной медицине. .

Изобретение относится к области медицины, а именно кардиологии. .

Изобретение относится к области медицины, а именно кардиологии. .

Изобретение относится к медицинской технике. Устройство (1) для регистрации сигналов пульсовой волны и дыхательного цикла человека содержит два токопроводящих электрода (2, 3) для размещения на теле человека, первый (4) и второй (6) операционные усилители, амплитудный детектор (5), переключаемый частотно-зависимый делитель напряжения (8) и микроконтроллер (7). Электроды (2, 3) включены в цепь отрицательной обратной связи первого операционного усилителя (4). Микроконтроллер (7) выполнен с возможностью генерирования на выходе первого порта (L) ввода-вывода высокочастотного несущего сигнала. Верхнее (10) и нижнее (11) плечи делителя напряжения (8) образованы двумя цепями, имеющими общий конец в средней точке делителя напряжения и два раздельных конца. Второй операционный усилитель (6) и делитель напряжения (8) образуют активный полосовой фильтр с верхней и нижней частотой среза, определяемой параметрами верхнего (10) и нижнего (11) плеча делителя напряжения (8) соответственно. Частотные характеристики такого фильтра при подключении второго порта (M) ввода-вывода микроконтроллера (7) к нулевому потенциалу обеспечивают регистрацию сигнала в полосе частот, соответствующей полосе частот сигнала пульсовой волны, а при подключении третьего порта (N) ввода-вывода микроконтроллера (7) к нулевому потенциалу - регистрацию сигнала в полосе частот, соответствующей полосе частот сигнала дыхательного цикла. Применение изобретения позволит регистрировать сигналы пульсовой волны и дыхательного цикла человека на основе измерения импеданса участка тела при помощи простой неперестраиваемой электрической схемы. 13 з.п. ф-лы, 12 ил.
Изобретение относится к медицине, а именно пульмонологии, аллергологии, кардиологии, функциональной диагностике. Оценивают эластические и функциональные свойства аорты при анализе характеристик пульсовой волны, регистрируемые неинвазивной артериографией. На основании полученных данных рассчитываются основные характеристики артериальной ригидности: скорость пульсовой волны в аорте - СПВА и индекс аугментации - ИА. При выявлении значений показателей СПВА 7 м/с и более, ИА - -30% и более прогнозируют развитие диастолической дисфункции обоих желудочков. Способ позволяет своевременно выявить и начать корректирующую терапию у больных бронхиальной астмой на основании оценки показателей скорости распространения пульсовой волны в аорте и индекса аугментации. 1 табл., 3 пр.

Изобретение относится к медицинской технике. Устройство для регистрации артериальной пульсации крови содержит генератор импульсов, источник света, фотоприемник, преобразователь ток/напряжение, усилитель переменного напряжения, синхронный демодулятор, полосовой фильтр. Дополнительно в устройство введены акселерометр, аналого-цифровой преобразователь, микроконтроллер, адаптивный фильтр, блок вычитания. Выход полосового фильтра подключен к первому входу аналого-цифрового преобразователя, выход акселерометра подключен ко второму входу аналого-цифрового преобразователя, выход аналого-цифрового преобразователя подключен к входу микроконтроллера, первый выход микроконтроллера подключен к первому входу блока вычитания, второй выход микроконтроллера подключен к первому входу адаптивного фильтра, выход блока вычитания подключен ко второму входу адаптивного фильтра, выход адаптивного фильтра подключен ко второму входу блока вычитания. Применение изобретения позволит увеличить помехоустойчивость регистрации сигнала артериальной пульсации крови человека в условиях присутствия двигательных артефактов, обусловленных случайными движениями обследуемого. 1 ил.

Изобретение относится к медицине, а именно к неинвазивным способам качественно-количественного анализа функционального состояния сердечно-сосудистой системы. Осуществляют запись пульсового сигнала и электрокардиосигнала в течение 2-3 мин. Выделяют медленные волны из двух кардиосигналов, определяют спектры медленных волн в двух каналах. Посредством оконного преобразования Фурье вычисляют мощности спектральных коэффициентов медленных волн кардиосигналов в области медленной составляющей 2-го порядка - от 0,01 до 0,05 Гц, в области медленной составляющей 1-го порядка - от 0,05 до 0,15 Гц, в области дыхательной составляющей - от 0,15 до 0,5 Гц. После чего на основании полученных результатов формируют шесть информативных признаков X1…X6. По записи кардиосигнала в одном из каналов вычисляют частоту сердечных сокращений, которую используют в качестве седьмого информативного признака X7. Затем подают сформированный семиэлементный вектор информативных признаков на вход обучаемой нейронной сети, выходы которой соответствуют разделяемым классам сердечно-сосудистых заболеваний. Способ позволяет провести раннюю профилактику, направленную на предупреждение развития заболевания, тем самым способствуя снижению случаев первичной заболеваемости АГ за счет анализа двух кардиосигналов. 2 з.п. ф-лы, 9 ил., 2 пр.
Изобретение относится к медицине, реаниматологии и может быть использовано при оживлении пациентов, находящихся в состоянии клинической смерти. Способ реанимации включает компрессию грудной клетки, искусственную вентиляцию легких, введение лекарственных средств и проведение пульсоксиметрического мониторинга. При этом пульсоксиметрический мониторинг проводят одновременно с началом реанимационных мероприятий. Для этого на неповрежденное крыло носа реанимируемого пациента устанавливают пульсоксиметрический датчик для мониторинга. При достижении сатурации во время компрессии грудной клетки выше 90% компрессию проводят еще 3-4 секунды, после чего осуществляют искусственное дыхание. Способ обеспечивает повышение эффективности реанимационных мероприятий за счет исключения развития необратимых гипоксических повреждений тканей головного мозга. 1 пр.
Изобретение относится к области медицины, а именно к кардиологии. Регистрируют биполярную продольную реограмму в положении испытуемого лежа на спине в экранированной комнате при температуре воздуха 22-24°С. Накладывают однослойные фланелевые прокладки, смоченные гипертоническим раствором, сверху которых накладывают циркулярные свинцовые электроды. При этом для получения продольной реограммы верхней конечности активный электрод накладывают в области верхней трети плеча, индифферентный - в области запястья. Для регистрации продольной реограммы нижней конечности активный электрод устанавливают в верхней трети бедра, индифферентный - непосредственно над лодыжками. Проводят регистрацию сопротивления всей конечности. Электроды на верхней и нижней конечностях накладывают на одном и том же расстоянии друг от друга, равным на верхней конечности 40 см, на нижней - 60 см. Способ позволяет повысить качество регистрации реовазограмм, что выражается в снижения артефактов и искажений полезного сигнала. 1 пр.

Изобретение относится к медицинской технике. Фотоплетизмограф с адаптивной коррекцией постоянной составляющей содержит генератор импульсов, источник света, фотоприемник, преобразователь ток/напряжение, усилитель переменного напряжения и синхронный демодулятор. В устройство дополнительно введены цифро-аналоговый преобразователь, дифференциальный усилитель, аналого-цифровой преобразователь и микроконтроллер. Выход синхронного демодулятора подключен к неинвертирующему входу дифференциального усилителя и ко второму входу аналого-цифрового преобразователя. Выход цифро-аналогового преобразователя подключен к инвертирующему входу дифференциального усилителя. Выход дифференциального усилителя подключен к первому входу аналого-цифрового преобразователя. Выход аналого-цифрового преобразователя подключен к входу микроконтроллера. Выход микроконтроллера подключен к входу цифро-аналогового преобразователя. Применение изобретения позволит увеличить быстродействие коррекции постоянной составляющей в фотоплетизмографе, регистрирующем сигнал артериальной пульсации крови. 1 ил.

Изобретение относится к медицинской технике и может быть использовано в функциональной диагностике для оценки состояния сердечно-сосудистой системы человека. Фотоплетизмограф содержит оптоэлектронный детектор пульсовой волны потока крови в пальце пациента с двумя светодиодами и фотодиодом, а также оснащенный компьютером пульт управления и источник питания. Светодиоды работают в красной и инфракрасной областях спектра и подключены к электронному блоку управления работой светодиодов. Фотодиод соединен с операционным усилителем, аналого-цифровым преобразователем АЦП и электронным блоком обработки электрического сигнала. Корпус оптоэлектронного детектора выполнен из диэлектрика в форме кольца с ячейками для светодиодов и фотодиода с возможностью крепления на фаланге пальца пациента. Пульт управления дополнен радиопередатчиком, работающим на частоте fp. В корпусе оптоэлектронного детектора размещен миниатюрный радиоприемник, настроенный на частоту fр и соединенный с электронным блоком управления работой светодиодов. В корпусе оптоэлектронного детектора размещен миниатюрный радиопередатчик, работающий на частоте fd, сигнал на который поступает с выхода АЦП. В пульте управления установлен радиоприемник, настроенный на частоту fd и соединенный с электронным блоком обработки электрического сигнала. Достигается расширение арсенала технических средств для фотоплетизмографических исследований за счет радиочастотной связи между пультом управления и оптоэлектронным детектором, что исключает необходимость использования соединительных электрических проводов, облегчает работу обслуживающего персонала и повышает оперативность обследования. 3 з.п. ф-лы, 4 ил.

Группа изобретений относится к области медицины, а именно к методам исследования состояния сердечно-сосудистой системы человека. Выполняют разложение реосигнала на низкочастотную (НЧ) и высокочастотную (ВЧ) составляющие. При этом тонус крупных артерий оценивают по отношению амплитуды НЧ составляющей к амплитуде ВЧ составляющей. Тонус средних и мелких сосудов оценивают отношению средней крутизны ВЧ составляющей на участке от начала пульсовой волны до ее вершины к средней крутизне ВЧ на участке от вершины реоволны до инцензуры. Тонус прекапиллярных артериол или их периферическое сопротивление оценивают по фазовому сдвигу ВЧ составляющей относительно НЧ составляющей. Изобретения позволяют повысить достоверность оценки тонуса артериальных сосудов различного калибра за счет разложения реосигнала на ВЧ и НЧ составляющие и оценки физических параметров артериальных сосудов различных калибров. 3 н.п. ф-лы, 16 ил.

Изобретение относится к области медицины и может быть использовано для диагностики частоты пульса пациента. Микроконтроллерный измерительный преобразователь для фотоплетизмографического датчика пульса содержит микроконтроллер, светодиод, фотоприемник, RC-фильтр, первый и второй резисторы. Первый вывод первого резистора подключен к аноду светодиода. Первый вывод второго резистора подключен к первому выводу фотоприемника. Катод светодиода и второй вывод фотоприемника подключены к минусу источника питания микроконтроллера. Второй вывод второго резистора подключен к плюсу источника питания микроконтроллера. Выход RC-фильтра подключен к первому входу аналогового компаратора микроконтроллера. Микроконтроллерный измерительный преобразователь также содержит третий и четвертый резисторы. Ко второму выводу первого резистора подключен выход широтно-импульсного модулятора микроконтроллера. Первый вывод фотоприемника подключен к входу RC-фильтра. Первые выводы третьего и четвертого резисторов подключены ко второму входу аналогового компаратора микроконтроллера. Второй вывод третьего резистора подключен к плюсу источника питания микроконтроллера. Второй вывод четвертого резистора подключен к минусу источника питания микроконтроллера. Достигается повышение точности измерения. 1 ил.
Наверх