Интерференционный переключатель резонансного свч компрессора

Изобретение относится к области радиотехники и может быть использовано в резонансных СВЧ компрессорах в качестве устройства вывода энергии для формирования мощных СВЧ импульсов наносекундной длительности. Технический результат - увеличение рабочей мощности переключателя при неизменной стабильности срабатывания и повышение стабильности срабатывания при неизменной рабочей мощности за счет увеличения количества каналов, через которые осуществляется вывод накопленной энергии из большего числа резонаторов. Переключатель содержит четыре волноводных Н-тройника, лежащих попарно в ортогональных плоскостях, с входными и выходными прямыми плечами и боковыми плечами полуволновой длины, объединеными через окна связи в полное сечение волновода в цилиндрической стенке проходного резонатора. В проходном резонаторе расположен СВЧ коммутатор с газоразрядной трубкой, установленной на полувысоте проходного резонатора по его диаметру под углом 45° к направлению боковых плеч, и с разрядником подсветки в центре одного из торцов газоразрядной трубки. Рабочая частота проходного резонатора выбрана равной частоте, на которой боковые плечи Н-тройников имеют полуволновую электрическую длину. Внешний диаметр d1 газоразрядной трубки составляет d1≈λ/6, а ее внутренний диаметр d2 составляет d2≈λ/10. 2 з.п. ф-лы, 2 ил.

 

Изобретение относится к области радиотехники и может быть использовано в резонансных СВЧ компрессорах в качестве устройства вывода энергии для формирования мощных СВЧ импульсов наносекундной длительности.

Известен ряд интерференционных переключателей резонансных СВЧ компрессоров на основе Т-образного волноводного Н-тройника. Наиболее распространенный вариант такого переключателя представляет собой Н-тройник из прямоугольного волновода с прямым входным плечом и короткозамкнутым боковым либо вторым прямым плечом с СВЧ коммутатором тригатронного типа, расположенным на расстоянии 0,25 длины волны в волноводе от короткозамыкателя [А.Н.Диденко, Ю.Г.Юшков. Мощные СВЧ-импульсы наносекундной длительности. М.: Энергоатомиздат, 1984, с.112]. При этом разрядник подсветки разрядного промежутка СВЧ коммутатора, как правило, расположен на широкой стенке волновода в максимуме электрической составляющей поля рабочей моды переключателя. Из-за ограниченной площади сечения и ограниченной электрической прочности изолирующей среды волновода переключатель имеет естественный предел рабочей мощности. Так, например, в 10-см диапазоне длин волн этот предел не превышает 200 МВт. Кроме того, повышенная напряженность поля вблизи элементов конструкции разрядника подсветки провоцирует работу переключателя в режиме самопробоя и способствует «блужданию» искры разряда по поверхности волновода. Это приводит к флуктуациям амплитуды и фазы отраженной волны в короткозамкнутом плече и, как следствие, к нестабильности амплитуды и длительности выходных импульсов СВЧ компрессора.

Известен интерференционный СВЧ переключатель резонансного СВЧ компрессора [RU патент №2328062] на основе Н-тройника, в котором разрядник подсветки расположен не на широкой стенке волновода, а в короткозамыкателе коммутирующего плеча, где электрическое поле практически отсутствует. Кроме того, на узких стенках этого плеча на расстоянии 0,25 длины волны в волноводе от короткозамыкателя и в плоскости, параллельной короткозамыкателю, выполнены щелевидные отверстия. Через щели осуществляется продув разрядного промежутка СВЧ переключателя. При этом в одну из широких стенок волновода коммутирующего плеча, в плоскости симметрии плеча на расстоянии 0,25 длины волны в волноводе от короткозамыкателя, электрически плотно вмонтирована неоднородность из тугоплавкого металла. Неоднородность локализует место развития разряда. Такая конструкция обеспечивает повышение стабильности срабатывания переключателя, но не повышает рабочую мощность.

Известен также интерференционный СВЧ переключатель, выполненный на основе Т-образного Н-тройника из круглого одномодового волновода [В.А.Августинович, С.Н.Артеменко, В.Ф.Дьяченко, В.Л.Каминский, С.А.Новиков, Ю.Г.Юшков. Исследование переключателя СВЧ компрессора с коммутацией в круглом волноводе. ПТЭ, 2009, №4, с.106-109; RU патент №2387055]. В короткозамкнутом плече тройника переключатель также содержит СВЧ коммутатор тригатронного типа, который включает в себя разрядник подсветки, диэлектрическую трубку, расположенную по диаметру волновода в плоскости симметрии плеча на расстоянии 0,25 длины волны в волноводе от короткозамыкателя. Кроме того, он включает в себя патрубки для продува промежутка, вмонтированные в стенки плеча. Такое исполнение устройства повышает стабильность срабатывания, а также предельный уровень коммутируемой мощности и, следовательно, предельную мощность компрессора. Однако в силу ограниченной площади сечения одномодового круглого волновода и ограниченной электрической прочности заполняющей волновод изолирующей среды он также имеет ограниченный уровень рабочей мощности, не превышающий в 10-см диапазоне длин волн 500-600МВт.

В [Августинович В.А., Артеменко С.Н., Новиков С.А. Волноводный мост как элемент вывода энергии резонансного СВЧ компрессора. Изв. ВУЗов. Радиофизика. 2008, т.LI, №3, с.216-222] предложена иная конфигурация СВЧ переключателя, представляющая собой волноводный мост, выполненный из двух лежащих в одной плоскости Т-образных Н- тройников из прямоугольного волновода с общим полуволновым боковым плечом. Переключение устройства осуществляется СВЧ коммутатором, расположенным в центре общего плеча либо на расстоянии четверти длины волны в волноводе от центра, в зависимости от того, синфазны или противофазны волны на входах моста, к которым подсоединены выходы двух накопительных резонаторов. Вывод энергии одновременно из двух резонаторов обеспечивает двукратное повышение рабочей мощности при неизменном уровне коммутируемой мощности.

Известен переключатель [RU патент на полезную модель №108218], содержащий два Т-образных Н-тройника, лежащих в одной плоскости, выполненных из круглого волновода диаметром D с общим боковым плечом полуволновой длины, и СВЧ-коммутатор, расположенный в коммутирующей секции этого плеча. Коммутирующая секция общего бокового плеча выполнена с переменным сечением и включает полуволновой отрезок, торцы которого сопряжены с волноводами боковых плеч тройников через плавные волноводные переходы. Этот интерференционный переключатель в силу большей площади сечения волновода может обеспечить более высокую рабочую мощность. Вместе с тем, такие переключатели также имеют естественное ограничение площади сечения волноводов и прочности изолирующей среды и, соответственно, ограничение уровня рабочей мощности. Однако они допускают возможность увеличения рабочей мощности при практически неизменном уровне коммутируемой мощности либо повышение стабильности срабатывания при неизменной рабочей мощности путем увеличения количества каналов вывода энергии. По технической сущности переключатель на основе волноводного моста является наиболее близким к предлагаемому устройству, и он взят за прототип.

Задачей изобретения является повышение уровня рабочей мощности и (или) достижение более высокой стабильности срабатывания переключателя.

Технический результат заключается в увеличении рабочей мощности переключателя при неизменной стабильности срабатывания либо в повышении стабильности срабатывания при неизменной рабочей мощности за счет увеличения количества каналов, через которые осуществляется вывод накопленной энергии из большего числа резонаторов.

1. Указанный результат достигается тем, что интерференционный переключатель резонансного СВЧ компрессора, содержащий, как и прототип, два волноводных Н-тройника, лежащих в одной плоскости, с входными и выходными прямыми плечами и объединенными боковыми плечами полуволновой длины, и СВЧ коммутатор с газоразрядной трубкой и разрядником подсветки, в отличие от прототипа, дополнительно содержит два волноводных Н-тройника, лежащих в одной плоскости, при этом плоскости, в которых попарно расположены Н-тройники, ортогональны между собой, боковые плечи Н-тройников объединены через окна связи в полное сечение волновода в цилиндрической стенке проходного резонатора, длина L которого равна максимальному поперечному размеру волновода d боковых плеч, а радиус R удовлетворяет условию

R≈2dλ/3,413(4d22)0,5,

где d - максимальный поперечный размер волновода боковых плеч;

λ - длина рабочей волны и λ≈1,4d,

причем СВЧ коммутатор выполнен в проходном резонаторе и газоразрядная трубка расположена на полувысоте проходного резонатора по его диаметру под углом 45° к направлению боковых плеч, а разрядник подсветки расположен в центре одного из торцов газоразрядной трубки.

Целесообразно, чтобы рабочая частота проходного резонатора бала равной частоте, на которой боковые плечи Н-тройников имеют полуволновую электрическую длину.

Целесообразно, чтобы внешний диаметр газоразрядной трубки d1 составлял d1≈λ/6, а ее внутренний диаметр d2 составлял d2≈λ/10.

На Фиг.1,2 изображена схема предлагаемого переключателя. Интерференционный переключатель содержит волноводный мост в виде четырех Т-образных Н-тройников 1 с входными 2 и выходными 3 прямыми плечами и полуволновыми боковыми плечами 4. Боковые плечи 4 объединены через окна связи в полное сечение волновода в цилиндрической стенке проходного цилиндрического резонатора 5 радиусом R и длиной L, равной максимальному поперечному размеру d волновода. СВЧ коммутатор 6 расположен в проходном резонаторе и представляет собой газоразрядный СВЧ переключатель тригатронного типа. Он выполнен с газоразрядной трубкой 7, расположенной по диаметру проходного резонатора 5 на полувысоте этого резонатора и ориентированной под углом 45° к боковым плечам тройников. По центру одного из торцов трубки 7 смонтирован разрядник подсветки 8.

Переключатель работает следующим образом. На входы 2 подается, например, четыре синфазные волны, имеющие одинаковые амплитуды. Эти волны делятся тройниками 1 на волны, отраженные от тройников, волны, поступающие в боковые плечи 4, и волны, следующие к выходам переключателя 3. Синфазные волны, поступающие в боковые плечи 4, возбуждают проходной резонатор 5. Размеры проходного резонатора 5 выбраны таким образом, что в резонаторе 5 возбуждается Н111 вид колебаний. В резонаторе 5 в максимуме электрического поля расположена кварцевая трубка 7 СВЧ коммутатора 6. Поскольку окна связи этого резонатора 5 с боковыми плечами 4 выполнены в полное сечение волноводов плеч и высота и диаметр резонатора 5 сопоставимы с максимальным поперечным размером этих волноводов, то резонатор 5 сильно пересвязан и его коэффициент усиления практически приближается к единице. При этом площадь сечения резонатора 5 в несколько раз превышает площадь сечения каждого из четырех волноводов боковых плеч 4 Н-тройников 1, что обеспечивает сопоставимость напряженности поля в волноводах боковых плеч 4 и резонаторе 5 и, следовательно, сопоставимость электрической прочности. Кроме того, т.к. для рабочей частоты переключателя электрическая длина боковых плеч 4 выбрана полуволновой, то Н-тройники 1 закрыты и подводимые к входам 2 переключателя волны отражаются от тройников и в нагрузку практически не поступают. Включение СВЧ коммутатора 6 приводит к быстрому развитию СВЧ разряда в трубке 7 и скачкообразному изменению резонансной частоты проходного резонатора 5. Это обеспечивает изменение фазы отраженных от резонатора волн на 180°, так как характер нагрузки боковых плеч при включении СВЧ коммутатора 6 меняется от соответствующего режиму холостого хода до соответствующего режиму короткого замыкания. В результате Н-тройники 1 открываются и подводимые к переключателю волны через выходные плечи 3 моста поступают в нагрузку.

Более детальное описание работы переключателя сводится к следующему. Волна, поступающая на вход 2 каждого Н-тройника 1, делится им на три волны - отраженную обратно к генератору, ответвленную в боковое плечо 4 и прошедшую в выходные плечи 3. При этом согласно известному свойству тройника, согласованного со стороны бокового плеча, четверть мощности подводимой волны отражается, половина ответвляется и четверть проходит на выход. Если боковое плечо короткозамкнуто и имеет полуволновую длину, то волна, отраженная от короткозамыкателя и пришедшая к каждому из Н-тройников со стороны бокового плеча, делится Н-тройником на две волны, идущие к входу и выходу. В силу выбора длины бокового плеча 4 полуволновой и в силу известных свойств Т-образных H-тройников 1, волны, поступающие в выходные плечи 3 устройства из боковых плеч 4 и со стороны входа 2, имеют одинаковые амплитуды и противоположные фазы. Поэтому они компенсируют друг друга, и это исключает излучение СВЧ- энергии в нагрузку через переключатель в режиме «закрыто». Волна, излучаемая из бокового плеча 4 в сторону входа 2 переключателя, синфазно суммируется с волной, отраженной от Н-тройника 1. В результате волны, поступающие на вход 2 переключателя, в режиме «закрыто» полностью отражаются от Н-тройников 1. После срабатывания СВЧ коммутатора 6, которое приводит к инверсии фазы волн в боковых плечах 4, обеспечивается синфазное суммирование волн на выходе 3 переключателя, а также противофазное на входе 2. Таким образом, переключатель переходит в режим «открыто» и накопленная энергия синхронно поступает в выходные плечи Н-тройников, где она может быть просуммирована. После этого цикл накопления и вывода повторяется.

Повышение рабочей мощности переключателя достигается за счет распределения мощности волны между большим количеством каналов при практически неизменном уровне коммутируемой мощности. Поэтому при фиксированном уровне коммутируемой мощности входная и выходная мощность предлагаемого переключателя может в два раза превышать рабочую мощность прототипа. Наоборот, при фиксированной мощности входной волны распределение мощности по большему числу каналов понижает уровень коммутируемой мощности, что способствует повышению стабильности срабатывания переключателя. Другими словами, при фиксированном уровне входной мощности более стабильная работа переключателя обеспечивается более низкой напряженностью поля в коммутирующей секции и соответствующим уменьшением количества сбросов на самопробой. В то же время, при заданной стабильности срабатывания понижение напряженности из-за увеличения количества каналов позволяет повысить уровень рабочей мощности.

Таким образом, предлагаемое изобретение обеспечивает повышение уровня рабочей мощности и (или) стабильности срабатывания переключателя.

Работоспособность предлагаемого изобретения была проверена экспериментально на низком уровне мощности, на макете переключателя 3-см диапазона длин волн.

Четыре Н-тройника переключателя были изготовлены из стандартного прямоугольного волновода сечением 23×10 мм2. В качестве входных и выходных плеч устройства служили прямые плечи тройников длиной около 80 мм. Н-тройники попарно и симметрично были расположены в двух ортогональных плоскостях и боковыми плечами объединены через проходной цилиндрический резонатор. Длина боковых плеч 4 до окна связи с проходным резонатором составляла 61 мм и на частоте 9280 МГц была полуволновой. Это было установлено в экспериментах, проведенных на каждом тройнике отдельно. При короткозамкнутом боковом плече тройники на этой частоте закрыты.

Проходной резонатор 5 с рабочей частотой Н111 вида колебаний 9280 МГц был изготовлен из цилиндра диаметром 26 мм и имел высоту 23 мм. Его окна связи с боковыми плечами тройников были выполнены в полное сечение стандартного прямоугольного волновода, т.е. размерами 23×10 мм2.

Для определения работоспособности переключателя было измерено его переходное ослабление в режимах «закрыто» и «открыто».

Мощность на входы переключателя подавалась попарно и симметрично через два идентичных согласованных со стороны бокового плеча волноводных Н-тройника из стандартных прямоугольных волноводов. К боковым плечам этих тройников мощность подводилась от прямых плеч третьего тройника, который также был согласован со стороны бокового плеча и использовался для деления входной мощности. Прямые плечи этого тройника, одно через волноводную скрутку, другое через фазовращатель, подсоединялись к боковым плечам тройников, питающих входы переключателя.

Перед подсоединением к входам переключателя контролировалась мощность и фаза на каждом выходе питающих тройников. Мощность определялась по показаниям калиброванного детектора. Выравнивание мощности по выходам тройников осуществлялось регулируемым ослаблением волны в плечах питающих тройников. Фаза контролировалась по амплитуде суммарного выходного сигнала с каждой из двух пар тройников. Суммирование осуществлялось поочередно в четвертом, выходном, Н-тройнике. Суммируемые волны подавались в его прямые плечи, суммарный сигнал фиксировался на выходе бокового плеча. Дисбаланс фаз устранялся фазовращателем.

После выравнивания мощности и устранения дисбаланса фаз по четырем выходам питающих Н-тройников к этим выходам подсоединялись входы переключателя, и методом сравнения измерялось переходное ослабление переключателя по каждому его выходу. Процедура сравнения заключалась в индикации и фиксировании на экране осциллографа амплитуды сигнала, снимаемого с СВЧ детектора по каждому выходу переключателя. Затем СВЧ детектор с каждого выхода переключателя поочередно через калиброванный регулируемый аттенюатор подсоединялся к каждому выходу питающего тракта переключателя. Далее, регулируя ослабление аттенюатора, обеспечивали равенство сигнала с детектора на каждом выходе питающего тракта сигналу на соответствующем выходе переключателя. На рабочей частоте переключателя 9280 МГц в режиме «закрыто» ослабление по всем выходам составило 43±2 дБ. Таким образом, различие ослабления по выходам не превышало 4 дБ при абсолютном его значении, сопоставимом с ослаблением обычного интерференционного переключателя.

Перевод переключателя в режим «открыто» осуществлялся имитатором плазмы разряда. В роли имитатора использовался отрезок медной проволоки диаметром 0,3 мм и длиной 10 мм. Отрезок вводился в проходной резонатор 5 на его полувысоте по диаметру, ориентированному под углом±45° к боковым плечам 4 Н-тройников 1 переключателя. Один из этих углов совпадал с направлением плоскости поляризации рабочей волны проходного резонатора 5. В этом месте в центре объема проходного резонатора 5 находится максимум электрической составляющей поля его рабочего вида колебаний. Взаимодействие проводника с полем приводило к переходу переключателя в режим «открыто». В этом режиме более 90% подводимой мощности передавалось в выходные плечи переключателя.

Таким образом, результаты экспериментального исследования четырехканального интерференционного переключателя подтвердили его работоспособность. Возможность повышения рабочей мощности переключателя, по сравнению с мощностью прототипа, обусловлена двукратным увеличением количества каналов, через которые может быть осуществлен синхронный вывод энергии. При фиксированном уровне мощности коммутируемой волны двукратное увеличение числа каналов позволяет двукратно увеличить запас энергии в резонаторе и сохраняет время вывода. Увеличение запаса энергии, при сохранении времени вывода, означает возможность пропорционального увеличения мощности выходных импульсов компрессора, что эквивалентно повышению рабочей мощности переключателя. Увеличение числа каналов при неизменной рабочей мощности ведет к понижению напряженности поля в переключателе и, как следствие, к повышению стабильности его работы.

1. Интерференционный переключатель резонансного СВЧ компрессора, включающий два волноводных Н-тройника, лежащих в одной плоскости, с входными и выходными прямыми плечами и объединенными боковыми плечами полуволновой длины, и СВЧ коммутатор с газоразрядной трубкой и разрядником подсветки, отличающийся тем, что дополнительно содержит два волноводных Н-тройника, лежащих в одной плоскости, при этом плоскости, в которых попарно расположены Н-тройники, ортогональны между собой, боковые плечи Н-тройников объединены через окна связи в полное сечение волновода в цилиндрической стенке проходного резонатора, длина L которого равна максимальному поперечному размеру волновода d боковых плеч, а радиус R удовлетворяет условию
R≈2dλ/3,413(4d2 - λ2)0,5,
где d - максимальный поперечный размер волновода боковых плеч;
λ - длина рабочей волны и λ≈1,4d,
причем СВЧ коммутатор выполнен в проходном резонаторе, и газоразрядная трубка расположена на полувысоте проходного резонатора по его диаметру под углом 45° к направлению боковых плеч, а разрядник подсветки расположен в центре одного из торцов газоразрядной трубки.

2. Интерференционный переключатель резонансного СВЧ компрессора по п. 1, отличающийся тем, что рабочая частота проходного резонатора выбрана равной частоте, на которой боковые плечи Н-тройников имеют полуволновую электрическую длину.

3. Интерференционный переключатель резонансного СВЧ компрессора по п. 1, отличающийся тем, что внешний диаметр d1 газоразрядной трубки составляет d1≈λ/6, а ее внутренний диаметр d2 составляет d2≈λ/10.



 

Похожие патенты:

Управляемый фазовращатель относится к технике высоких и сверхвысоких частот и может использоваться для управления фазой сигналов в антенных решетках и системах передачи информации.

Изобретение относится к технике сверхвысоких частот. Технический результат - увеличение протяженности полосы заграждения фильтра и уровня затухания в ней.

Настоящее изобретение относится к электронной технике. Технический результат изобретения заключается в увеличении ширины рабочей полосы частот, уменьшении величины коэффициента стоячей волны напряжения и уменьшении величины изменения фазы сигнала СВЧ при изменении постоянного управляющего напряжения при сохранении малой величины прямых потерь СВЧ.

Изобретение относится к устройству создания круговой поляризации в антенне. Технический результат - снижение омических потерь и упрощение конструкции устройства.

Изобретение относится к электронной технике, а именно к фазовращателям СВЧ на полупроводниковых приборах. Технический результат - повышение надежности устройства.

Изобретение относится к технике сверхвысоких частот (СВЧ), в частности к устройствам сложения (деления) СВЧ сигналов, и может быть использовано для сложения (деления) СВЧ сигналов в фидерных трактах техники связи, радиолокационных устройств, в телевидении, в измерительной технике.

Изобретение относится к области нанотехнологии и может быть использовано в интегральной СВЧ-электронике для радиотехнической аппаратуры наземного, воздушного, космического базирования.

Изобретение относится к области радиотехники и может быть использовано в антеннах с электронным сканированием луча. Создан новый тип отражательного СВЧ фазовращателя на основе многощелевой линии с развязкой СВЧ поля от управляющего напряжения.

Изобретение относится к способам уменьшения интенсивности фонового излучения инфракрасного диапазона. Способ фильтрации фонового излучения инфракрасного диапазона, падающего на сверхпроводниковый однофотонный детектор, включает передачу излучения инфракрасного диапазона с длиной волны 0,4-1,8 микрометров на сверхпроводниковый однофотонный детектор при помощи одномодового волокна, частично находящегося при температуре 4,0-4,4 К.

Изобретение относится к технике сверхвысоких частот (СВЧ) и может быть использовано для коммутации СВЧ сигналов в фидерных трактах различного назначения, в частности при создании переключателя фидерных трактов.

Изобретение относится к радиотехнике, а именно к управляемым ступенчатым аттенюаторам. Технический результат - управление аттенюатором одним сигналом управления, приходящим одновременно на все диоды, при сохранении низких потерь пропускания и одинаковой ФЧХ в «прямом» и «обходном» пути. Управляемый ступенчатый аттенюатор, вход и выход которого образованы параллельным соединением двух отрезков линии передачи, один из которых выполнен в виде трех последовательно соединенных четвертьволновых отрезков линии, шунтированных в точках соединения диодами, включенными по постоянному току в одной полярности на расстоянии четверти длины волны по отношению к входу и выходу, к свободным электродам, которых подключены четвертьволновые отрезки линии, второй отрезок линии передачи содержит блок ослабления сигнала, включенный на одинаковом расстоянии от входа и выхода, при этом второй отрезок линии передачи шунтирован диодами, включенными в одной полярности, на расстоянии четверти длины волны от входа и выхода через четвертьволновые отрезки линии, причем свободные электроды диодов, шунтирующих второй отрезок, заземлены, при этом все диоды аттенюатора включены по постоянному току в одной полярности. 1 ил.

Изобретение относится к СВЧ-технике и может быть использовано в волноводных трактах высокой мощности в дециметровом, сантиметровом и миллиметровом диапазонах длин волн. Технический результат - обеспечение грубого измерения частоты мощного микроволнового излучения СВЧ-приборов и подавления внеполосных и паразитных колебаний. Фильтр представляет из себя отрезок прямоугольного волновода с фланцами и со встроенными в обе узкие стенки волновода и в одну из широких стенок волновода диафрагмами заданной высоты; в прорезанную неизлучающую щель на противоположной широкой стенке волновода встроена механически перестраиваемая по глубине погружения диафрагма, предназначенная для изменения частоты среза фильтра. 3 ил.

Широкополосный аттенюатор для быстродействующих аналоговых и аналого-цифровых интерфейсов относится к области измерительной техники, электротехники, радиотехники и связи и может использоваться в структуре различных интерфейсов, в измерительных приборах, быстродействующих аналого-цифровых (АЦП) и цифроаналоговых (ЦАП) преобразователях. Технический результат: расширение диапазона рабочих частот устройства и повышение его быстродействия при работе с импульсными сигналами большой амплитуды. Широкополосный аттенюатор для быстродействующих аналоговых и аналого-цифровых интерфейсов содержит первый резистор (3), источник входного напряжения (4), включенный по переменному току между общей шиной (5) и входом устройства (1), второй резистор (6), включенный по переменному току между выходом устройства (2) и общей шиной (5), эквивалентную емкость нагрузки (7), включенную по переменному току между выходом устройства (2) и общей шиной (5), неинвертирующий повторитель напряжения (8) неинвертирующий повторитель тока (10), а между выходом неинвертирующего повторителя напряжения (8) и входом неинвертирующего повторителя тока (10) включен двухполюсник цепи коррекции (11). 1 з. п. ф-лы, 7 ил.

Изобретение относится к электронной технике, а именно к защитным устройствам СВЧ на полупроводниковых приборах. Технический результат - увеличение допустимой входной мощности, расширение рабочей полосы частот и снижение прямых потерь СВЧ. Для этого защитное устройство СВЧ содержит центральный проводник, первый и второй отрезки линии передачи, первый и второй полупроводниковые приборы, первый, второй и третий резисторы, две индуктивности, при этом оба отрезка линии передачи выполнены в виде отрезков одиночной линии передачи, каждый длиной, равной одной восьмой длины волны в отрезке линии передачи на центральной частоте рабочей полосы частот, и волновым сопротивлением, равным волновому сопротивлению центрального проводника, в качестве полупроводниковых приборов используют полевые транзисторы с барьером Шотки, одинаковые второй и третий резисторы выполнены с сопротивлением, на порядок большим волнового сопротивления центрального проводника. 4 ил.

Изобретение относится к системе гибкой стенки для СВЧ-фильтров с объемным резонатором, снабженным механическим устройством температурной компенсации, и может использоваться в области телекоммуникации. Достигаемый технический результат - снижение температурного градиента гибкого колпачка, снижение механических напряжений, поддержание эквивалентного теплового сопротивления. Система гибкой стенки для компонента фильтра или мультиплексора вывода с технологией термокомпенсации содержит по меньшей мере две расположенные друг над другом отдельные гибкие мембраны и каждая гибкая мембрана имеет центральную область(С), промежуточную область (I) и периферийную область (Р) торец к торцу, при этом гибкие мембраны термически и механически соединены в центральной области (С) и периферийной области (Р) и не соединены в промежуточной области (I). 3 н. и 14 з. п. ф-лы , 6 ил.

Изобретение относится к технике сверхвысоких частот и может быть использовано в частотно-селективных цепях приемопередающих устройств СВЧ. Техническим результатом предлагаемого технического решения является обеспечение возможности независимой плавной подстройки избирательности частотной характеристики выше и ниже полосы пропускания без искажения характеристик в рабочей полосе, что позволяет эффективно подавлять сигналы помех, расположенных как симметрично, так и несимметрично, по обе стороны полосы пропускания фильтра. Результат достигается тем, что узкополосный фильтр СВЧ содержит диэлектрическую подложку, на одной стороне которой размещен заземляющий экран, на другой стороне - микрополосковая структура, реализующая элементы фильтра с цепями связи. При этом микрополосковая структура включает шесть резонаторов, два конденсатора для подключения источника сигнала и нагрузки, пять конденсаторов для обеспечения электрической связи между соседними резонаторами, а также трансформатор на связанных линиях передачи, включенный двумя плечами между несоседними первым и третьим резонаторами, а два других его плеча замкнуты на заземляющий экран, а также подстроечный конденсатор, включенный между несоседними четвертым и шестым резонаторами. При этом связь между соседними первым, вторым, третьим, четвертым, пятым и шестым резонаторами - емкостного типа, связь между несоседними первым и третьим резонаторами - индуктивного типа и связь между несоседними четвертым и шестым резонаторами - емкостного типа. 4 з.п. ф-лы, 6 ил.

Изобретение относится к области радиосвязи. Технический результат заключается в автоматизации управления антенным переключателем, обеспечении дуплексного режима при работе на одну антенну в режиме псевдослучайной перестройки рабочих частот (ППРЧ), повышении маневренности при обмене информацией, синхронизации радиостанций и их помехоустойчивости при совместной работе нескольких корреспондентов, увеличении пропускной способности радиостанций. В радиостанцию дополнительно введены антенный переключатель, преобразователь каналов передачи, преобразователь каналов приема, усилитель, блок из десяти аналого-цифровых преобразователей, блок из десяти цифроаналоговых преобразователей, блок из десяти фильтров, преобразователь каналов передачи данных, выключатель, блок аппаратуры передачи данных и десять выносных постов радиста-оператора. 9 з.п. ф-лы, 16 ил.

Изобретение относится к технике сверхвысокой частоты (СВЧ) и предназначено для работы в качестве частотного делителя сигнала общего источника на два сигнала с различными диапазонами частот или частотного сумматора двух каналов мощного источника (или двух мощных источников), работающих в различных диапазонах частот. Технически результат - расширение функциональных возможностей, улучшение взаимной развязки источников, минимизация потерь полезного сигнала и повышение стабильности параметров при климатическом воздействии. Для этого частотно-развязывающее устройство для соединения нескольких источников или нагрузок, работающих на различных частотах, с общей нагрузкой или источником выполнено по микрополосковой технологии на печатной плате в виде микрополосковой структуры, включающей два разомкнутых кольца, каждое из которых имеет два плеча настройки и два согласованных входа, один из которых является общим для двух разомкнутых колец. Каждое плечо настройки заканчивается элементами настройки. При этом частотно-развязывающее устройство выполнено с возможностью одновременного использования в качестве частотного сумматора двух источников сигналов, работающих в различных частотных диапазонах, и общего источника, а также частотного делителя сигнала общего источника сигналов на два сигнала с различными диапазонами частот. 3 ил.

Изобретение относится к полупроводниковой СВЧ-электронике и может быть использовано в детекторных головках с высокими требованиями прочности и устойчивости к внешним воздействиям. Технический результат заключается в упрощении ее конструкции, снижении трудоемкости изготовления и повышении пригодности к серийному производству. Для этого детекторная головка состоит из корпуса, выполненного в виде двух половинок: основания 1 и крышки 2, между которыми устанавливается полосковая плата 3. С основанием 1 электрически соединен корпус коаксиального разъема 4. В основании 1 выполнен сквозной волноводный канал 5, а в крышке 2 - короткозамыкатель 6. На полосковой плате 3 выполнены фильтр 7, представляющий собой фильтр низкой частоты (ФНЧ), и контактная площадка 8. Резистор 9 электрически соединен с корпусом с помощью проводников полосковой платы 3. Детекторный диод 10 приклеивается к проводникам полосковой платы 3 с помощью токопроводящего клея. По контуру земляных проводников на полосковой плате 3 расположены металлизированные переходные отверстия 11. По периметру основания 1 выполнен бортик 12. Сборка детекторной головки осуществляется при помощи винтов 13. Волноводно-полосковый переход образован участком платы 14 в зоне сквозного волноводного канала 5 и короткозамыкателя 6. Детекторный диод 10 соединен с корпусом детекторной головки посредством шлейфа 15. 5 з.п. ф-лы, 3 ил.

Изобретение относится к области радиотехники, а именно к волноводной и антенной технике, и может быть использовано в волноводных линиях связи. Технический результат - уменьшение потерь за счет снижения относительного уровня мощности других типов волн, отличных от волны TE01, и конструктивное упрощение. Для этого возбудитель волны TE01 состоит из выходного круглого волновода со стенкой, закорачивающей выходной круглый волновод, образованный участком трубы с контактным фланцем и пристыкованной через плиту 2 плитой 3, в которой выполнено глухое отверстие 4. Вспомогательные волноводы, пристыкованные к боковой поверхности выходного круглого волновода, образованы плоскостью плиты 2 и пазами 5 прямоугольной формы, выполненными в плите 3. Модовый фильтр, установленный в выходном круглом волноводе, представляет собой плоскопараллельную структуру с отверстиями 6 связи, выполненными в плите 2 и расположенными концентрично к оси выходного круглого волновода. В выходной круглый волновод может быть установлен внутренный проводник 7, при этом внешняя поверхность внутреннего проводника 7 должна иметь электрический контакт с плитой 2 и плитой 3. 5 з.п. ф-лы, 3 ил.
Наверх