Способ сушки биообъектов в потоке плазмы

Изобретение относится к пищевой промышленности. Согласно предложенному способу биообъект помещают в газоразрядную трубку, в которой создают вакуум менее 1 мм. рт.ст., и подключают высоковольтный источник электрического тока напряжением в пределах 20-30 тыс. вольт, при этом температура внутри газоразрядной трубки составляет около 300 К. Испарившуюся в процессе сушки жидкость отводят. Способ обеспечивает эффективное консервирование объекта для длительного хранения. 2 ил.

 

Изобретение относится к способам сушки биообъектов, предназначенных для консервирования с целью их длительного хранения, и может быть использовано в различных областях пищевой, медицинской и фармацевтической промышленности.

В основе известных видов сушки лежит обязательный подвод тепловой энергии к влажному телу, но различными способами: конвективная (в потоке нагретого сушильного агента), контактная (при соприкосновении тела с нагретой поверхностью), диэлектрическая (токами высокой частоты), сублимационная, радиационная (ИК излучением), акустическая (с помощью ультразвука). [1]

В пищевой промышленности используют преимущественно конвективную и контактную сушки. Остальные виды применяют весьма редко и называют обычно специальными видами сушки.

Конвективная сушка проводится в потоке нагретого сушильного агента, выполняющего одновременно функции теплоносителя и влагоносителя - транспортирующей среды, в которую переходит удаляемая влага, и в ряде случаев способствующего созданию необходимой гидродинамической обстановки. [Там же]

При организации конвективной сушки определенные требования предъявляются к стерильности сушильного агента и обеспечению санитарно-гигиенических условий проведения процесса. Все это является ее недостатками.

При сублимационной сушке основную часть влаги (до 85%) удаляют в замороженном состоянии под глубоким вакуумом (остаточное давление 5-330 Па). Теплота, необходимая для сублимационной сушки, подводится к материалу от нагретых поверхностей или радиацией от нагретых экранов. Незначительный расход теплоты (2,1-2,3 кДж/кг) позволяет сохранить биологические свойства высушиваемых пищевых продуктов и медицинских препаратов (антибиотики, плазма крови и т.д.). [Там же]

Акустическую сушку характеризует наличие излучателей ультразвуковых колебаний, источником энергии которых служит кинетическая энергия газовой струи. Благодаря этим излучателям высушиваемый материал подвергается со стороны газовой струи воздействию акустического поля с уровнем интенсивности 145 дБ. Ультразвуковая сушка позволяет производить удаление влаги из материала без существенного повышения температуры, что особенно важно при обработке легко окисляющихся и термочувствительных продуктов. Однако из-за высокой стоимости акустической энергии, обусловленной, в частности, низким кпд излучателей (20-25%), ультразвуковую сушку применяют ограниченно, главным образом в производстве мелкодисперсных фармацевтических средств и биологически активных веществ (например, антибиотики, гормональные препараты). [Там же]

Для высушивания толстостенных материалов, когда требуется их быстрый прогрев во всем объеме, в ряде случаев эффективна сушка в поле токов высокой или сверхвысокой частоты. Такую сушку применяют для изделий из пластмасс и резины, фарфоровых изоляторов и иных материалов, обладающих диэлектрическими свойствами. Высокочастотные (диэлектрические) сушилки позволяют быстро и равномерно осуществлять сушку. [Там же]

При высокочастотной сушке подвод тепла осуществляется с помощью поля электрического тока высокой (10-25 мГц) и сверхвысокой (2000-2500 мГц) частоты. В состав влажных материалов растительного происхождения входят ионы электролитов, электроны, молекулы полярных и неполярных диэлектриков, обладающие дипольными моментами. В электромагнитном поле диполи располагаются осью вдоль поля. Попадая в переменное электромагнитное поле, они совершают колебательные движения, стремясь следовать за полями.

Однако их использование ограничено из-за дорогостоящего оборудования, большого расхода электроэнергии (до 5 кВт·ч на 1 кг испаряемой влаги) и необходимости соблюдать особые меры техники безопасности. [Там же]

В использующих ИК излучение (1=0,77-344 мкм) терморадиационных или просто радиационных сушилках достигается высокая скорость сушки благодаря подводу к влажному материалу большого количества теплоты. Ее генераторами служат устанавливаемые над поверхностью высушиваемого материала (обычно перемещаемого транспортером) специальные электрические лампы с зеркальными отражателями либо керамические и металлические экраны, обогреваемые горячими газами. Эти сушилки компактны и эффективны для обработки обладающих большим коэффициентом поглощения лучистого потока тонколистовых материалов и окрашенных поверхностей (напр., лакокрасочные покрытия, ткани, бумага и др.). [Там же]

Проведенный анализ известных способов сушки показывает, что общим и основным их недостатком является обязательный нагрев материала, от температуры которого зависит и длительность процесса и качество продукта. Предлагается новый, ранее не известный, способ сушки биообъектов в потоке плазмы без обязательного нагрева продукта. Применено впервые - использование низкотемпературной плазмы, как источник подвода энергии, стимулирующей возникновение электрокинетических процессов в высушиваемом продукте.

Задача изобретения направлена на разработку нового способа сушки биообъектов в потоке низкотемпературной плазмы, позволяющего проводить процесс без подвода тепловой энергии, более интенсивно, при обеспечении высоких санитарно-гигиенических условий.

Техническим результатом является высушенный биообъект.

Поставленная задача решается предлагаемым способом, в котором удаление жидкости путем ее испарения и отвода образовавшихся паров при подводе к высушиваемому материалу энергии, стимулирующей возникновение электрокинетических процессов, согласно изобретению в качестве энергии подводимой к высушиваемому биообъекту используют энергию низкотемпературной плазмы, получаемую при следующих режимах: вакуум менее 1 мм. рт. ст. (Торр), напряжение в пределах 20-30 тыс. вольт, при этом температура энергии низкотемпературной плазмы зависит от различия в массах электронов и ионов, из которых состоят молекулы или группы молекул частиц высушиваемого биообъекта.

Цель сушки, широко применяемой в пищевой промышленности, сельском хозяйстве, химико-лесном комплексе, производстве строительных материалов, кожевенной, легкой и других отраслях экономики страны, - сохранение качества сырья, подготовка его к переработке, использованию, транспортированию и хранению. Данный процесс часто является последней технологической операцией, предшествующей выпуску готового продукта. При этом часть жидкости предварительно удаляют более дешевыми механическими способами, окончательно - тепловыми.

Сутью любого способа сушки является удаление влаги из материала. Главным условием протекания любого способа сушки является внешний подвод энергии (механической, тепловой, электромагнитных колебаний и др.). Рассмотрение процесса сушки на молекулярно-кинетическом уровне позволяет лучше понять некоторые реально наблюдаемые явления.

Влажные материалы всегда имеют молекулы, энергии которых достаточно для преодоления связи с другими молекулами и которые способны оторваться от поверхности жидкости или твердого тела и перейти в окружающее их пространство. Этот процесс для жидкости называется испарением (или парообразованием), а для твердых тел - сублимацией (или возгонкой). Удаление влаги с поверхности материала создает разность концентраций влаги во внутренних слоях, что и заставляет влагу перемещаться из внутренних слоев к поверхности материала.

Испарение или парообразование жидкости происходит при любой температуре, но интенсивность этого процесса связана с увеличением внутренней энергии вещества, переданной внешним источником энергии.

Сушка в низкотемпературной плазме осуществляется за счет энергетического поля ионизированного газа. Энергия, передаваемая влажному материалу, стимулирует возникновение и протекание в нем электрокинетических процессов, за счет которых происходит удаление влаги из материала. Наличие вакуума значительно интенсифицирует процесс сушки.

Словом «плазма» (от греч. «плазма» - «оформленное») в середине XIX в. стали именовать бесцветную часть крови (без красных и белых телец) и жидкость, наполняющую живые клетки. В 1929 г. американские физики Ирвинг Ленгмюр (1881-1857) и Леви Тонко (1897-1971) назвали плазмой ионизированный газ в газоразрядной трубке [2]. Английский физик Уильям Крукс (1832-1919), изучавший электрический разряд в трубках с разреженным воздухом, писал: «Явления в откачанных трубках открывают для физической науки новый мир, в котором материя может существовать в четвертом состоянии». [3]

Плазма обычно разделяется на идеальную и неидеальную, низкотемпературную и высокотемпературную, равновесную и неравновесную, при этом довольно часто низкотемпературная плазма (иногда ее называют холодной плазмой) бывает неравновесной, а горячая - равновесной. В наших экспериментах применена неравновесная плазма, электронная температура которой существенно ниже температуры ионов. Это происходит из-за различия в массах иона и электрона, которое затрудняет процесс обмена энергией.

При проведении сушки температура энергии низкотемпературной плазмы зависит от различия в массах электронов и ионов, из которых состоят молекулы или группы молекул частиц высушиваемого биообъекта.

Температура сушки составляла 300° по Кельвину и выше. При применении температуры ниже 300°К процесс сушки является сублимационным (замораживание). Поэтому вещество может быть в замороженном или в незамороженном состоянии.

В зависимости от температуры любое вещество изменяет свое состояние. Так, вода при отрицательных (по Цельсию) температурах находится в твердом состоянии, в интервале от 0 до 100° С - в жидком, выше 100° С - в газообразном. Если температура продолжает расти, атомы и молекулы начинают терять свои электроны - ионизируются и газ превращается в плазму. При высоких температурах плазма абсолютно ионизирована - она состоит только из электронов и положительных ионов. Под плазмой в физике понимают газ, состоящий из электрически заряженных и нейтральных частиц, в котором суммарный электрический заряд равен нулю. Также плазма - частично или полностью ионизированный газ, в котором плотности положительных и отрицательных зарядов практически одинаковы. В лабораторных условиях плазма образуется в электрическом разряде под вакуумом. Различают высокотемпературную и низкотемпературную плазму. Наиболее широко находит применение низкотемпературная плазма, которая используется в светотехнике, газовых лазерах и т.д.

В лаборатории ТОПО (технологическое оборудование процессов отрасли) МГУПП (Московский государственный университет пищевых производств) были проведены эксперименты и исследования под руководством профессора, доктора технических наук Илюхина Вячеслава Васильевича, нового способа процесса сушки биообъекта в потоке низкотемпературной плазмы.

Поскольку само явление создание низкотемпературной плазмы известно давно, поэтому исследования должны быть при определенных режимах. Например, вакуум должен быть меньше 1 мм. рт.ст., напряжение в пределах 20-30 тыс. вольт и применение определенной среды. Допустим, пары воды дают определенный бело-розовый цвет, другие вещества формируют свечение газа в другом цвете.

В нашем экспериментальном варианте разреженный воздух (ионизация атомов кислорода) охарактеризовался ослепительно бело-синим светом, а пары воды в процессе высушивании вещества дали нежно-розовое свечение в виде колец (волн) Ленгмюра (фото). Другие вещества формируют свечение газа в другом цвете.

Для осуществления способа было создано экспериментальное устройство для сушки биообъектов в потоке плазмы, представленное на Рис.1.

Устройство включает газоразрядную трубку 1, установленную на штативе 2 резинового шланга 3 вакуум насоса 4, высоковольтный источник электрического тока 5. На рис.также показаны кольца (волны) Ленгмюра 6, создаваемые в газоразрядной трубке 1.

Способ осуществляют следующим образом.

Биообъект в виде порошка сухого молока в незамороженном состоянии или замороженном влажностью примерно 20-25% помещают в газоразрядную трубку 1, установленную на штативе 2, подсоединяют резиновый шланг 3 вакуум насоса 4 и включают высоковольтный источник электрического тока 5 (ГИВН) напряжением в пределах 20-30 тыс. вольт.

В газоразрядной трубке 1 создается вакуум меньше 1 мм. рт.ст., который охарактеризовался ослепительно бело-синим светом. Температура внутри газоразрядной трубки около 300°К. Начало процесса сушки показали пары воды, которые в процессе высушивания вещества дали нежно-розовое свечение в виде колец (волн) Ленгмюра, при этом частицы биообъекта пришли в движение и приняли вид спирали, вращающейся соосно по направлению светящихся колец (фото, рис.).

Окончание сушки определяли визуально по изменению окраски свечения: из нежно-розового цвета кольца (волны) Ленгмюра переходят к ярко бирюзовому цвету, что соответствует изменению влажности биологического объекта, при этом временной промежуток составлял от 10 до 30 секунд.

После окончания сушки выключают высоковольтный источник электрического тока 5, отсоединяют резиновый шланг 3 вакуум насоса 4 и удаляют сухой продукт из газоразрядной трубки 1.

Детального состояния высушенного биообъекта не проводилось на предмет химико-биологических параметров, но влажность уменьшилась и составила 1,5%.

Вывод однозначен - ранее неизвестный специалистам как в России, так и за рубежом способ процесса сушки имеет быть место и необходимы дальнейшие исследования.

Данное изобретение находится на стадии лабораторных исследований.

Литература

1. Интернет, сайт CHEMPORT.RU, сушка.

2. Langmuir Irving «Gas filled tungsten Filament lamps high vacuum electron devices» USA, New York, 1913 p.57.

3. Crookes William «Notes of an Enquiry into the Phenomena called Spiritual during the Years 1870-1873» Quarterly Journal of Science, 1874, p.3.

Способ сушки биообъекта в потоке плазмы, характеризующийся тем, что биообъект помещают в газоразрядную трубку в которой создают вакуум менее 1 мм. рт.ст. и подключают высоковольтный источник электрического тока напряжением в пределах 20-30 тыс. вольт, при этом температура внутри газоразрядной трубки составляет около 300 К, испарившуюся в процессе сушки жидкость отводят.



 

Похожие патенты:
Изобретение относится к пищевой промышленности. При производстве пищевого продукта подготавливают плодовое сырье, плоды нарезают, протирают, перемешивают.
Изобретение относится к использованию электромагнитного поля сверхвысокой частоты и солнечной энергии при производстве криопорошка из тыквы. Способ включает резку тыквы на куски, удаление семенного гнезда, обработку электромагнитным полем сверхвысокой частоты, с частотой 2400±50 МГц, мощностью 300-450 Вт в течение 1,5-2,5 минут, при котором температура по всему объему кусков тыквы достигает 78-83°C.

Изобретение относится к пищевой промышленности. .

Изобретение относится к пищевой промышленности. .
Изобретение относится к молочной промышленности, а именно к способам восстановления сухого, преимущественно обезжиренного молока для последующего получения из него сбалансированного молочного продукта путем, например, нормализации или использования его в качестве полуфабриката при производстве кисломолочных напитков, творога, сыра, а также сгущенного молока с сахаром и мороженого.

Изобретение относится к технологии обеззражаивания сыпучих продуктов и может быть использовано в пищевой промышленности, фармакологии и других отраслях. .

Изобретение относится к области переработки продуктов, в частности к установкам для сушки плодов, ягод, а также винограда. .

Изобретение относится к области электрофизических методов обработки пищевых продуктов в сельском хозяйстве, пищевой и фармацевтической промышленности, а более конкретно к технике сушки, дезинсекции, стерилизации и предпосевной обработки сельскохозяйственных продуктов.

Изобретение относится к области обеззараживания сыпучих продуктов ультрафиолетовым (УФ) излучением и может быть использовано в пищевой, микробиологической и фармацевтической промышленности.

Изобретение относится к технологии сушки с помощью сушильной техники и продуктов растительного происхождения - овощей, фруктов, грибов, лекарственного сырья и других иных материалов и осуществляется с помощью ИК-излучения и конвективного обдува.

Изобретение относится к пищевой промышленности, в частности к способу получения порошков из сушеных выжимок ягод брусники и клюквы. Выжимки ягод выкладывают равномерным слоем толщиной 10 мм на сетчатые противни, сушат радиационно-конвективным способом при температуре 70°С в течение 4 часов до остаточной влажности 20-17%. Высушенные выжимки ягод измельчают до получения частиц размером 0,4-0,5 мм, просеивают и упаковывают в вакуумные пакеты, металлизированные фольгой. Способ позволяет максимально сохранить витаминный и минеральный состав полуфабрикатов. 1 ил., 1 табл., 1 пр.
Изобретение относится к пищевой промышленности, а именно к способу производства сушеных грибов. Проводят СВЧ-обработку свежих съедобных грибов под вакуумом при остаточном давлении 10,0-11,5 кПа, температуре 35-40°C, удельной СВЧ-мощности 170-180 Вт/кг в течение 100-110 мин до влажности 12%. Способ позволяет ускорить процесс сушки, улучшить качество и микробиологические показатели готового продукта, снизить энергозатраты. 3 табл., 4 пр.

Изобретение относится к пищевой промышленности, в частности к технологии переработки плодов, и может быть использовано для получения сушеных груш. Груши инспектируют, сортируют, моют, режут и подвергают комбинированной СВЧ-конвективной сушке. Сушку осуществляют СВЧ-полем при мощности 800 Вт и конвективным обдувом воздуха с начальной температурой 293 К в три временных этапа. На первом этапе порезанные кубиками груши размером 10×10×10 мм нагреваются СВЧ-полем в течение 3 минут, затем магнетрон выключают и продукт обдувается воздушным потоком со скоростью 0,7 м/с в течение 3 минут, затем снова происходит нагрев СВЧ-полем в течение 4 минут. На втором временном этапе предварительно подсушенные груши нагревают СВЧ-полем в течение 4 минут, затем магнетрон выключают и продукт обдувается воздушным потоком со скоростью 0,5 м/с в течение 4 мин, Цикл повторяется трижды, а продолжительность второго этапа составляет 24 минуты. На третьем временном этапе предварительно подсушенные кубики груш нагревают СВЧ-полем в течение 5 минут, затем магнетрон выключают и продукт обдувается воздушным потоком со скоростью 0,4 м/с в течение 5 мин. Цикл повторяется пять раз до конечной влажности 23%, а продолжительность третьего этапа составляет 50 минут. Способ позволяет получать сушеные груши высокого качества с высоким содержанием ценных питательных термолабильных веществ, повысить тепловую эффективность и интенсифицировать процесс сушки, снизить энергозатраты на получение готового продукта. 1 ил., 1 табл.

Изобретение относится к технологии обеззараживания сыпучих материалов. В процессе способа сыпучий материал облучают последовательно и непрерывно в две ступени. На первой ступени сыпучий материал неподвижен при перемещении его конвейером относительно ультрафиолетовых облучателей. На второй ступени происходит принудительное изменение ориентации частиц относительно друг друга и относительно ультрафиолетового облучателя посредством вибрационного блока, и одновременно воздействуют озоном в концентрации от 0,03 до 0,1 мг/м3 в воздухе. Устройство состоит из узла загрузки, средства транспортирования как минимум трех ультрафиолетовых облучателей, вибрационного блока и узла выгрузки в виде накопительного бункера. Над открытой частью бункера установлен не связанный с ним механически ультрафиолетовый облучатель с бактерицидными лампами, по крайней мере одна из которых является озонообразующей. Использование изобретения позволит повысить эффективность обеззараживания сыпучих материалов при сохранении их потребительских свойств. 2 н. и 3 з.п. ф-лы, 2 ил., 1 табл.

Изобретение относится к устройствам для обеззараживания сыпучих материалов, в частности зерна и зерно продуктов. Модульная установка состоит из последовательно расположенных модулей. Модуль состоит из квадратного корпуса, внутри которого на равном расстоянии друг от друга, горизонтально, с возможностью регулировки взаимного положения, установлены лампы ультрафиолетового излучения. Лампы оснащены защитным, прозрачным для ультрафиолетового излучения, тефлоновым покрытием, прилегающим к стеклу лампы. Лампы снабжены сверху защитным щитком. В модуле установлен датчик интенсивности ультрафиолетового излучения ламп, направленный на одну из ламп, а также устройство для очистки ламп от загрязнения. Модули установлены на стойках. Стойки закреплены на раме, оснащенной вибрационным механизмом. Использование изобретения позволит провести качественную обработку сыпучих материалов. 6 з.п. ф-лы, 5 ил.
Наверх