Наноструктурное покрытие

Изобретение относится к наноэлектронике и наноэлектромеханике и может быть использовано в различных областях современной наноиндустрии, микроэлектронике, альтернативной энергетике и т.д. Наноструктурное покрытие выполнено из нанокомпозиционного металл-керамического материала состава (CO86Nb12Ta2)x(SiOn)100-x, полученного на

ситалловой подложке ионно-лучевым распылением и имеющего структуру, состоящую из гранул металлической фазы со средним диаметром 2-4 нм, изолированных сплошной керамической фазой, при этом концентрация металлической фазы составляет 20-40 ат.%. 1 з.п. ф-лы, 1 ил.

 

Изобретение относится к наноэлектронике и наноэлектромеханике и может быть использовано в различных областях современной наноиндустрии, микроэлектроники, альтернативной энергетике и т.д.

Исследования последних лет показали, что материалы и покрытия с ультрамелкодисперсной структурой и наноструктурными упрочняющими элементами обладают улучшенными физико-химическими и механическими свойствами. Поэтому в последние годы во всем мире проводятся работы по разработке способов получения материалов с наноструктурой.

Как правило, получаемые покрытия представляют собой металлические сплавы и поэтому улучшают свойства защищаемой поверхности лишь по одному из параметров, например твердость или прочность, в то время как по другим параметрам обнаруживают значительно более низкие показатели. Традиционные способы формирования упрочняющих покрытий являются различными вариантами методов наплавки, таких как плазменное, электронно-лучевое, лазерное, аргонодуговое, электродуговое, электрошлаковое и др., и это позволяет при наплавлении покрытий использовать присадочные материалы для повышения прочности за счет создания гетерофазной, а не однофазной, структуры.

Известны различные методы формирования наноструктурных поверхностных слоев и наноструктурных покрытий, например, методом лазерно-плазменной обработки [В.В.Мелюков, А.В.Частиков, А.А.Чирков, А.М.Чирков, А.В.Окатов. Формирование наноструктурных поверхностных слоев методом лазерно-плазменной обработки при атмосферных условиях. Сб.: Сварка и контроль. - 2005. Материалы докладов 24-й научно-технической конференции сварщиков Урала и Сибири 16-18 марта 2005 г., Челябинск, 2005, с.125-131], или методом абразивной обработки [Zhang Shu-lan, Chen Huai-ning, Lin Quanhong, Liu Gang (Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, КНР). Hanjie xuebao=Trans. China Weld. Inst. 2005.26, №3, c.73-76].

Однако эти методы и покрытия, полученные этими методами, обладают рядом недостатков.

Внешняя поверхность формируемых покрытий характеризуется значительной шероховатостью, что требует последующей дополнительной обработки, уменьшающей толщину покрытия и влияющей на структурное состояние покрытия, что, в свою очередь, снижает его упрочняющие характеристики. Кроме того, размеры зерен в получаемых слоях покрытия составляют сотни и более нанометров, что не является оптимальным для упрочнения получаемого наружного слоя.

Известен способ и материал, получаемый этим способом, получения наплавленного покрытия с применением в качестве присадочного материала смеси порошков исходных компонентов, включающей карбид вольфрама WC [С.Ф.Гнюсов, Д.А.Маков, В.Г.Дураков. Получение износостойких композиционных покрытий с мультимодальным распределением упрочняющей фазы. - Сб.: Сварка и контроль. - Материалы докладов 24-й научно-технической конференции сварщиков Урала и Сибири 16-18 марта 2005 г. - Челябинск, 2005. С.74-82].

Указанный способ реализуется следующим образом.

При аргонодуговой наплавке неплавящимся электродом по прототипу за один проход формировалось покрытие толщиной 3-4 мм. Размер зерна матрицы составлял 8,0-60,0 мкм, а средний размер частиц упрочняющей фазы составлял 3,3 мкм. При этом в полученных покрытиях находившийся в смеси порошков монокарбид вольфрама в результате воздействия сварочной дуги и значительного перегрева ванны в зоне ее действия в процессе наплавки полностью растворялся в жидкой металлической ванне, а при последующем охлаждении упрочняющая фаза выделялась в виде равноосных зерен или в виде дендритов размерами от 4 до 15 мкм.

Недостатком известного способа и материала является то, что при его использовании невозможно получить металл покрытия с ультрамелкодисперсной структурой и упрочняющими частицами в наноразмерном диапазоне, т.к. к началу кристаллизации в жидком металле отсутствует необходимое количество центров кристаллизации для получения металла покрытия с ультрамелкодисперсной структурой и упрочняющими частицами в наноразмерном диапазоне.

Недостатком известного способа и материала является то, что при его использовании невозможно получить металл покрытия с ультрамелкодисперсной структурой и упрочняющими частицами в наноразмерном диапазоне, т.к. к началу кристаллизации в жидком металле отсутствует необходимое количество центров кристаллизации для получения металла покрытия с ультрамелкодисперсной структурой и упрочняющими частицами в наноразмерном диапазоне.

Задачей предложенного технического решения является устранение указанных недостатков и создание наноструктурного покрытия из гранулированного композита «металл-керамика», обеспечивающего повышенную твердость, высокую стабильность параметров с одновременным снижением себестоимости.

Решение указанной задачи достигается за счет того, что в предложенном наноструктурном покрытии согласно изобретению выполнено из нанокомпозиционного металл-керамического материала состава (CO86Nb12Ta2)x(SiOn)100-x, полученного на ситалловой подложке ионно-лучевым распылением и имеющего структуру, состоящую из гранул металлической фазы со средним диаметром 2-4 нм, изолированных сплошной керамической фазой, при этом концентрация металлической фазы в нанокомпозиционном материале составляет 20-40 ат.%.

В варианте исполнения концентрация металлической фазы в нанокомпозиционном материале составляет 25 ат.%.

Указанные пределы выбраны исходя из следующих соображений.

Максимальная твердость реализуется в композите, в котором сплошной фазой является оксидная керамика, а металлическая фаза представлена в виде изолированных друг от друга наногранул размером 2-3 нм. При возникновении в нанокомпозите механических напряжений металлические гранулы пластически деформируются, не давая, тем самым, деформироваться и разрушаться керамике, сохраняя при этом ее сплошность, и обеспечивая, таким образом, целостность материала покрытия. Максимум микротвердости обусловлен оптимальным объемным сочетанием двух фаз, одна из которых более пластична, а другая - более хрупкая. Учитывая вышеизложенное, нижнее значение указанного соотношения выбрано исходя из того, что при дальнейшем уменьшении концентрации металла Hv твердость покрытия снижается, поскольку начинает преобладать естественная хрупкость диэлектрика.

Верхнее значение указанного соотношения выбрано исходя того, что при его дальнейшем увеличении происходит падение твердости покрытия, связанное с пластическим деформированием пленки.

Сущность изобретения иллюстрируется чертежом, где на фиг.1 показана концентрационная зависимость микротвердости нанокомпозита (CO86Nb12Ta2)x(SiOn)100-x, полученная экспериментальным путем.

Пример конкретного выполнения.

Композиты (CO86Nb12Ta2)x(SiOn)100-x получены методом ионно-лучевого распыления составных мишеней.

Совместное осаждение компонентов материала производилось на ситалловые подложки СТ-60, на поверхности которых, в результате процессов самоорганизации, происходило формирование двухфазной структуры. Навески пластин из диэлектрика были распределены на поверхность основы мишени неравномерно, что позволило получить за один цикл напыления образцы в широком диапазоне концентрации металла. Температура подложки не превышала 100…120°С, поэтому диффузионная подвижность адсорбирующих атомов была невысока. Химический состав образцов контролировался рентгеновским электронно-зондовым микроанализом. Морфология изучалась с помощью растровой электронной микроскопии и оптического микроскопа.

Для исследования твердости покрытий из композитов использовались покрытия толщиной 5…6 мкм, нанесенные на ситалловые подложки и содержащие различное количество металлической фазы: 23, 30, 36, 55 и 65 ат.%.

На фиг.1 показана зависимость микротвердости нанокомпозита (CO86Nb12Ta2)x(SiOn)100-x от концентрации металлической фазы в нанокомпозите, полученная экспериментальным путем. Из полученных экспериментальных данных следует, что нанокомпозит имеет максимальную твердость при 20-40 ат.%, преимущественно 25 ат.%, т.е. в указанных пределах.

Использование предложенного технического решения позволит создать наноструктурное покрытие из гранулированного композита «металл-керамика», обеспечивающего повышенную твердость, высокую стабильность параметров с одновременным снижением себестоимости.

1. Наноструктурное покрытие, харктеризующееся тем, что оно выполнено из нанокомпозиционного металл-керамического материала состава (CO86Nb12Ta2)x(SiOn)100-x, полученного на ситалловой подложке ионно-лучевым распылением и имеющего структуру, состоящую из гранул металлической фазы со средним диаметром 2-4 нм, изолированных сплошной керамической фазой, при этом концентрация металлической фазы в нанокомпозиционном материале составляет 20-40 ат.%.

2. Покрытие по п.1, отличающееся тем, что концентрация металлической фазы в нанокомпозиционном материале составляет 25 ат.%.



 

Похожие патенты:

Изобретение относится к технологии нанесения наноструктурных покрытий и может быть использовано в наноэлектронике и наноэлектромеханике. Покрытие получают из композита металл-керамика состава (Co86Nb12Ta2)x(SiOn)100-x.

Изобретение относится к области нанесения покрытий в вакууме электронно-лучевым способом, конкретно к контролю толщины и скорости нанесения покрытий при проведении технологического процесса.

Изобретение относится к способам обработки волосяного покрова меха и может быть использовано для повышения эксплуатационных свойств меховых полуфабрикатов и изделий.

Изобретение относится к устройству для нанесения многослойных оптических покрытий и может быть использовано при изготовлении лазерной техники при создании просветляющих и отражающих покрытий на торцевых поверхностях полупроводниковых лазеров.

Изобретение относится к вакуумной металлургии и его можно использовать при нанесении покрытий на изделия со сложным профилем. .

Изобретение относится к способу изготовления пористых газопоглотительных устройств с пониженной потерей частиц и к устройствам, изготавливаемым этим способом. .

Изобретение относится к ядерной технике и может быть использовано для выравнивания поверхности оксидных материалов. .

Изобретение относится к ядерной технике и может быть использовано для выравнивания поверхности оксидных материалов. .
Изобретение относится к области машиностроения, в частности к способам нанесения защитных покрытий. Может использоваться в энергетическом машиностроении для защиты деталей, подверженных механическим нагрузкам, высоким температурам и воздействию агрессивной рабочей среды.

Изобретение относится к технологии нанесения наноструктурных покрытий и может быть использовано в наноэлектронике и наноэлектромеханике. Покрытие получают из композита металл-керамика состава (Co86Nb12Ta2)x(SiOn)100-x.

Настоящее изобретение относится к покрытому элементу, защитному покрытию, а также к способу получения этого покрытия и может быть использовано при изготовлении режущего инструмента, частей двигателей и газовых турбин.

Изобретение к способу получения люминофора в виде аморфной пленки диоксида кремния с ионами селена, расположенной на кремниевой подложке. Способ включает имплантацию ионов селена с энергией ионов 300±30 кэВ при флюенсе 4÷6·1016 ион/см2 в указанную пленку и первый отжиг при температуре 900÷1000°C в течение 1÷1,5 часов в атмосфере сухого азота.

Изобретение относится к способам нанесения вакуумно-плазменным методом многослойных износостойких покрытий на режущий инструмент и может быть использовано в металлообработке.
Изобретение относится к способу нанесения износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Способ включает вакуумно-плазменное нанесение многослойного покрытия.

Изобретение относится к способам нанесения вакуумно-плазменным методом многослойных износостойких покрытий на режущий инструмент и может быть использовано в металлообработке.

Изобретение относится к способам нанесения вакуумно-плазменным методом многослойных износостойких покрытий на режущий инструмент и может быть использовано в металлообработке.

Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Для повышения работоспособности режущего инструмента вакуумно-плазменным методом наносят многослойное покрытие.

Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Для повышения работоспособности режущего инструмента на него вакуумно-плазменным методом наносят многослойное покрытие.

Изобретение относится к технологии нанесения наноструктурных покрытий и может быть использовано в наноэлектронике и наноэлектромеханике. Покрытие получают из композита металл-керамика состава (Co86Nb12Ta2)x(SiOn)100-x.
Наверх