Кольцевая малоэмиссионная камера сгорания газотурбинного двигателя

Кольцевая малоэмиссионная камера сгорания газотурбинного двигателя содержит корпус с расположенной в нем кольцевой жаровой трубой, включающей две отстоящие друг от друга кольцевые оболочки, соединенные между собой в передней по потоку части жаровой трубы фронтовым устройством, систему подачи топлива и, по меньшей мере, две запальные свечи. Фронтовое устройство снабжено горелочными модулями, расположенными в наружном и внутреннем концентричных рядах, каждый из которых снабжен топливной форсункой и осевым завихрителем воздуха. Фронтовое устройство дополнительно снабжено кольцевым стабилизатором пламени с топливовоздушными патрубками, равнорасположенными по окружности, размещенным между концентричными рядами модулей, кольцевыми щелевыми отверстиями подачи воздуха, расположенными между кольцевым стабилизатором пламени и концентричными рядами модулей. Система подачи топлива снабжена тремя каналами, где первый канал соединен с наружным рядом модулей, второй канал соединен с внутренним рядом модулей, а третий канал соединен с топливными форсунками патрубков кольцевого стабилизатора пламени. Запальные свечи размещены над наружным рядом модулей. Осевой завихритель воздуха каждого модуля выполнен с возможностью обеспечения закрутки воздушного потока в одну сторону, кроме осевых завихрителей модулей соседних с каждой запальной свечой, которые выполнены с возможностью обеспечения противоположной закрутки потока воздуха. Изобретение позволяет снизить уровень эмиссии вредных веществ, улучшить условия зажигания в камере сгорания и повысить компактность камеры сгорания. 4 з.п. ф-лы, 4 ил.

 

Изобретение относится к газотурбинным двигателям (ГТД), в частности к конструкциям кольцевых камер сгорания, и может быть использовано в камерах сгорания авиационных ГТД и наземных установок.

В настоящее время для создания малоэмиссионных камер сгорания используются схемы камер сгорания, в которых значительно увеличено количество воздуха, поступающего через фронтовое устройство для создания бедной топливовоздушной смеси. При этом площадь отверстий для подачи воздуха через фронтовое устройство составляет 60…90% от общей площади отверстий жаровой трубы.

В последнее время основной конструктивной схемой становится схема непосредственного впрыска топлива в камеру сгорания без предварительного смешения топлива и воздуха.

Особенностью предлагаемого технического решения является то, что полноразмерная камера сгорания представлена в виде двухзонной камеры сгорания.

Известна кольцевая камера сгорания для турбореактивного двигателя, фронтовое устройство которой снабжено рядом концентрично расположенных горелочных модулей (патент РФ №2151343, МПК F23R 3/04, опубл. 2000 г.). Горелочные модули располагаются двумя концентрическими рядами вокруг оси симметрии и попарно в продольных плоскостях, проходящих через ось симметрии. Горелочные модули двух рядов располагаются на строго одинаковом расстоянии от выхода данной камеры сгорания и имеют оси, направленные в сторону этого выхода. Соответствующее распределение площади отверстий во фронтовом устройстве, площади отверстий вторичного воздуха и расходов воздуха через них позволяет уменьшить выбросы в атмосферу окислов азота.

Известна кольцевая камера сгорания, содержащая соосные наружный и внутренний корпуса, диффузор на входе, жаровую трубу в полости между корпусами, основную и дополнительную топливные системы с раздельными пневматическими форсунками (патент РФ №2343356, МПК F23R 3/18, опубл. 2009 г.). Жаровая труба включает наружную и внутреннюю обечайки с поясами поперечных отверстий. Фронтовое устройство содержит полый кольцевой стабилизатор пламени А-образного сечения, обращенный передней кромкой со сквозными отверстиями в сторону диффузора, и размещенные с зазором на его боковых стенках радиальные стабилизаторы пламени, ограниченные по свободным концам обечайками жаровой трубы. Радиальные стабилизаторы в поперечном сечении выполнены в виде клиновидных профилей с передними кромками, обращенными в сторону диффузора, и торцевыми участками напротив них, обращенными в сторону жаровой трубы. Топливные системы содержат два коллектора, расположенные в полости кольцевого стабилизатора пламени. Форсунки основной топливной системы выходят на боковые стенки кольцевого стабилизатора перед фронтовым устройством. Форсунки дополнительной топливной системы обращены в сторону выхода жаровой трубы. На выходе всех форсунок установлены топливовоздушные патрубки, сообщающиеся своими входами с полостью кольцевого стабилизатора. Каждый патрубок форсунки дополнительной топливной системы снабжен на выходе перегородкой, установленной под углом к его продольной оси, и образует со стенкой последнего щелевое сопло, расположенное тангенциально к продольной оси кольцевого стабилизатора.

Недостатком данных технических решений является то, что внешний и внутренний концентрические ряды форсунок указанных камер сгорания связаны с двумя различными топливными коллекторами. Для обеспечения запуска или для организации эффективного горения на других режимах расходы топлива в этих коллекторах могут сильно различаться, и это требует тщательной их настройки для реализации требуемого поля температур в объеме жаровой трубы.

Наиболее близкой к заявляемой конструкции является камера сгорания, относящаяся к конструкциям кольцевых камер сгорания, содержащая корпус, в нем кольцевую жаровую трубу, включающую две отстоящие друг от друга кольцевые оболочки, соединенные между собой в передней по потоку части этой жаровой трубы фронтовым устройством, включающим топливные форсунки (патент РФ №2226652, МПК F23R 3/34, опубл. 2004 г.). Каждая из топливных форсунок выполнена в виде корпуса-стойки, ориентированного в плоскости, проходящей через продольную ось жаровой трубы или рядом с этой осью, с двумя горелочными модулями, каждый из которых снабжен осевым и (или) радиальным завихрителем воздуха. Горелочные модули в поперечном сечении жаровой трубы образуют два концентричных ряда.

Изобретение позволяет повысить топливную экономичность и ресурс газовой турбины газотурбинного двигателя.

Недостатком данного технического решения является то, что в данной конструктивной схеме не обеспечивается устойчивое горение, а расходы топлива в зависимости от режима невозможно изменить синхронно (в зависимости от требуемого поля температур). Кроме того, определенная объемная дискретность создаваемых топливных факелов (обусловленная особенностями конструктивной схемы) не обеспечивает оптимальных условий выгорания топлива.

В основу изобретения положено решение следующих задач:

- снижение эмиссии вредных веществ;

- повышение расхода воздуха через фронтовое устройство;

- обеспечение плавного запуска и широкого диапазона устойчивой работы;

- уменьшение габаритов камеры сгорания;

- обеспечение широких пределов обеднения топливовоздушной смеси;

- улучшение условий зажигания в камере сгорания.

Для достижения этого технического результата кольцевая малоэмиссионная камера сгорания ГТД содержит корпус с расположенной в нем кольцевой жаровой трубой, включающей две отстоящие друг от друга кольцевые оболочки, соединенные между собой в передней по потоку части жаровой трубы фронтовым устройством. Камера сгорания снабжена системой подачи топлива и, по меньшей мере, двумя запальными свечами. Фронтовое устройство снабжено горелочными модулями, расположенными в наружном и внутреннем концентричных рядах, каждый из которых снабжен топливной форсункой и осевым завихрителем воздуха.

Новым в изобретении является то, что фронтовое устройство дополнительно снабжено кольцевым стабилизатором пламени с топливовоздушными патрубками, равнорасположенными по окружности, размещенным между концентричными рядами модулей. Фронтовое устройство содержит кольцевые щелевые отверстия подачи воздуха, расположенные между кольцевым стабилизатором пламени и концентричными рядами модулей. Система подачи топлива снабжена тремя каналами, где первый канал соединен с наружным рядом модулей, второй канал - с внутренним рядом модулей, а третий - с топливными форсунками патрубков кольцевого стабилизатора пламени. Запальные свечи размещены над наружным рядом горелочных модулей. Осевой завихритель воздуха каждого модуля выполнен с возможностью обеспечения закрутки воздушного потока в одну сторону, кроме осевых завихрителей модулей соседних с каждой запальной свечой, которые выполнены с возможностью обеспечения противоположной закрутки потока воздуха.

Новым также является то, что поверхность фронтового устройства и торцевая поверхность кольцевого стабилизатора пламени располагаются под углом γ=±0…45 градусов симметрично относительно центра стабилизатора, причем кольцевой стабилизатор пламени выполнен V-образным.

Кроме того, топливовоздушные патрубки расположены в кольцевом стабилизаторе пламени на одинаковом расстоянии, с шагом S, выбранным из диапазона S/H=2…5, где Н - высота стабилизатора. Каждый патрубок содержит трубку подвода топлива, щель для подачи топливовоздушной смеси и щель для подачи воздуха в полость камеры сгорания.

Кольцевая оболочка жаровой трубы может быть выполнена с поясами сквозных отверстий подвода воздуха или сплошной.

Отсутствие воздушных отверстий в обечайках жаровой трубы обеспечивает повышенный расход воздуха через фронтовое устройство:

(Fфр≤0,8 с охлаждением стенок жаровой трубы);

(Fфр≤0,95 с новыми материалами, без охлаждения стенок жаровой трубы).

Для снижения эмиссии вредных веществ увеличено количество воздуха, поступающего через фронтовое устройство для создания бедной топливовоздушной смеси. Малая эмиссия вредных веществ на режимах с α≈2 поддерживается за счет большого расхода воздуха через фронтовое устройство и сжигания основной доли топлива (до 90%) в смеси с составом с α≈2 за модулями малого размера.

Применение кольцевого стабилизатора и тангенциальной подачи топлива через ряд пневматических форсунок за торец стабилизатора обеспечивает плавный запуск (за счет достаточной мелкости распыливания топлива, размер капель составляет 30…100 мк) и широкий диапазон устойчивой работы (αсрыв>40 за счет «авторегулируемости» факелов, горящих за кольцевым стабилизатором).

В камере сгорания обеспечиваются широкие бедные пределы горения за счет конструкции фронтового устройства, состоящего из горелочных модулей, расположенных в наружном и внутреннем концентричных рядах, и центрального стабилизатора, расположенного под углом к ним, который обдувается воздухом, проходящим через две кольцевые щели, и имеет независимую подачу топлива через топливовоздушные патрубки.

Обратная закрутка в осевых завихрителях модулей напротив запальной свечи способствует улучшению условий зажигания в камере сгорания.

Таким образом, решены поставленные в изобретении задачи, по сравнению с известными аналогами.

Настоящее изобретение поясняется последующим подробным описанием кольцевой малоэмиссионной камеры сгорания ГТД и ее работы со ссылкой на чертежи, представленные на фиг.1-4, где

на фиг.1 изображена кольцевая камера сгорания ГТД;

на фиг.2 изображено фронтовое устройство;

на фиг.3 изображен разрез горелочного модуля фронтового устройства;

на фиг.4 изображен разрез топливовоздушного патрубка.

Кольцевая малоэмиссионная камера сгорания ГТД содержит корпус 1 с расположенной в нем кольцевой жаровой трубой 2, включающей две отстоящие друг от друга кольцевые оболочки 3 и 4, соединенные между собой в передней по потоку части жаровой трубы 2 фронтовым устройством 5 (см. фиг.1). Камера сгорания снабжена системой 6 подачи топлива и, по меньшей мере, двумя запальными свечами 7. Фронтовое устройство 5 снабжено горелочными модулями 8, расположенными в наружном и внутреннем концентричных рядах 9, 10 (см. фиг.2), каждый из которых снабжен топливной форсункой 11 и осевым завихрителем 12 воздуха (см. фиг.3).

Фронтовое устройство 5 дополнительно снабжено кольцевым стабилизатором 13 (см. фиг.2) пламени с топливовоздушными патрубками 14, равнорасположенными по окружности, размещенным между концентричными рядами 9, 10 модулей 8. Фронтовое устройство 5 содержит кольцевые щелевые отверстия 15 подачи воздуха, расположенные между кольцевым стабилизатором 13 пламени и концентричными рядами модулей 8. Система 6 подачи топлива снабжена тремя каналами (см. фиг.1-3), где первый канал соединен с наружным рядом 9 модулей 8, второй канал - с внутренним рядом 10 модулей 8, а третий - с топливными форсунками 11 патрубков 14 кольцевого стабилизатора 13 пламени. Запальные свечи 7 размещены над наружным рядом 9 модулей 8. Осевой завихритель 12 воздуха каждого модуля 8 выполнен с возможностью обеспечения закрутки воздушного потока в одну сторону, кроме осевых завихрителей 12 модулей 8, соседних с каждой запальной свечой 7, которые выполнены с возможностью обеспечения противоположной закрутки потока воздуха.

Топливовоздушные патрубки 14 содержат трубку 16 подвода топлива (d=1 мм), щель 17 для подачи топливовоздушной смеси (высота щели h=1,5 мм, диаметр патрубка 10 мм) и щель 18 для подачи воздуха (высота щели h=1,0 мм) в полость камеры сгорания (см. фиг.4).

Модуль 8, снабженный топливной форсункой 11 и осевым завихрителем 12 воздуха, расположен заподлицо с фронтовым устройством 5. Топливо впрыскивается в сопловом сечении модуля 8, практически реализуя непосредственный впрыск его в камеру сгорания. Назначение модулей 8 и их форсунок 11 - создавать бедную топливовоздушную смесь непосредственно в объеме жаровой трубы 2.

Назначение кольцевого стабилизатора 13 - поддерживать горение топливовоздушной смеси непосредственно за стабилизатором 13 и доставлять продукты сгорания к струям топливовоздушной смеси, вытекающей из модулей 8 наружного и внутреннего рядов 9, 10, обеспечивая тем самым их устойчивое поджигание. Для организации горения за стабилизатором 13 в нем на одинаковом расстоянии устанавливаются топливовоздушные патрубки 14. Кроме того, горение за стабилизатором 13 обеспечивает кольцевой переброс пламени по всей жаровой трубе 2. Кольцевой стабилизатор 13 работает на всех режимах. Модули 8 и форсунки 11 подключаются по мере набора мощности двигателя.

Фронтовое устройство 5 и кольцевые оболочки 3, 4 жаровой трубы 2 охлаждаются поясами сквозных отверстий 19 подвода воздуха.

Кольцевой стабилизатор 13 пламени обдувается воздухом, проходящим через кольцевые щелевые (5=2…3 мм) отверстия 15. Этот воздух за счет турбулентной диффузии поступает за стабилизатор 13, что обеспечивает широкие бедные пределы горения в камере сгорания. Кроме того, часть воздуха поступает за торец кольцевого стабилизатора 13 через патрубки 14, равномерно расположенные по окружности.

На крейсерском и взлетном режимах основное топливо (80…90%) подается в камеру сгорания через малоразмерные одноканальные центробежные форсунки 11, расположенные в модулях 8, а вспомогательное топливо (10…20%) подается через патрубки 14. При запуске и режиме малого газа доля топлива, подаваемого за кольцевой стабилизатор 13, может возрастать, как это принято для двухзонных камер сгорания. При расчете камеры сгорания принято, что расход воздуха через жаровую трубу 2 уменьшается на 20% от заданного расхода воздуха через камеру сгорания за счет отборов воздуха на охлаждение соплового аппарата турбины.

Для улучшения запуска камеры сгорания в месте установки запальной (электрической или плазменной) свечи 7 осевые завихрители 12 модулей 8 устанавливаются с противоположной закруткой относительно остальных модулей 8. Такая закрутка обеспечивает сложение вихревых движений, создаваемых соседними завихрителями 12 таким образом, что на выходе в камеру сгорания их общий поток направлен от стабилизатора 13 к месту установки свечи 7. Тем самым достигается дополнительная поставка топлива из-за стабилизатора 13 к свече 7 и возможность запуска только на вспомогательных форсунках 11 горелочных модулей 8, установленных за стабилизатором 13.

В этом случае для создания топливовоздушной смеси за стабилизатором 13 положение свечи 7 соответствует половине расстояния между патрубками 14.

Техническое решение позволяет за счет значительного увеличения количества воздуха, поступающего через фронтовое устройство 5 в камеру сгорания для создания бедной топливовоздушной смеси, снизить уровень эмиссии вредных веществ. Обратная закрутка в осевых завихрителях 12 модулей 8 напротив запальной свечи 7 способствует улучшению зажигания в камере сгорания. Особенность данного технического решение заключается также в относительной компактности камеры сгорания.

1. Кольцевая малоэмиссионная камера сгорания газотурбинного двигателя, содержащая корпус с расположенной в нем кольцевой жаровой трубой, включающей две отстоящие друг от друга кольцевые оболочки, соединенные между собой в передней по потоку части жаровой трубы фронтовым устройством, систему подачи топлива и, по меньшей мере, две запальные свечи, при этом фронтовое устройство снабжено горелочными модулями, расположенными в наружном и внутреннем концентричных рядах, каждый из которых снабжен топливной форсункой и осевым завихрителем воздуха, отличающаяся тем, что фронтовое устройство дополнительно снабжено кольцевым стабилизатором пламени с топливовоздушными патрубками, равнорасположенными по окружности, размещенным между концентричными рядами модулей, кольцевыми щелевыми отверстиями подачи воздуха, расположенными между кольцевым стабилизатором пламени и концентричными рядами модулей, система подачи топлива снабжена тремя каналами, где первый канал соединен с наружным рядом модулей, второй канал соединен с внутренним рядом модулей, а третий канал соединен с топливными форсунками патрубков кольцевого стабилизатора пламени, запальные свечи размещены над наружным рядом модулей, а осевой завихритель воздуха каждого модуля выполнен с возможностью обеспечения закрутки воздушного потока в одну сторону, кроме осевых завихрителей модулей соседних с каждой запальной свечой, которые выполнены с возможностью обеспечения противоположной закрутки потока воздуха.

2. Камера сгорания по п.1, отличающаяся тем, что поверхность фронтового устройства и торцевая поверхность кольцевого стабилизатора пламени располагаются под углом γ=±0…45 градусов симметрично относительно центра стабилизатора, причем кольцевой стабилизатор пламени выполнен V-образным.

3. Камера сгорания по пп.1 и 2, отличающаяся тем, что топливовоздушные патрубки расположены в кольцевом стабилизаторе пламени на одинаковом расстоянии, с шагом S, выбранным из диапазона S/H=2…5, где Н - высота стабилизатора, причем каждый патрубок содержит трубку подвода топлива, щель для подачи топливовоздушной смеси и щель для подачи воздуха в полость камеры сгорания.

4. Камера сгорания по п.3, отличающаяся тем, что кольцевые оболочки жаровой трубы выполнены с поясами сквозных отверстий подвода воздуха.

5. Камера сгорания по п.3, отличающаяся тем, что кольцевые оболочки жаровой трубы выполнены сплошными.



 

Похожие патенты:

Изобретение относится к энергетическому, химическому и транспортному машиностроению и может быть использовано в камерах сгорания газотурбинных установок. Предложен способ сжигания топлива, заключающийся в предварительном разделении потока воздуха на коаксиальные кольцевые струи, закрутке соседних смежных струй в противоположных направлениях, причем ближайшие одна к другой части соседних закрученных в противоположном направлении струй подают в радиальном направлении навстречу одна другой с образованием турбулентного сдвигового слоя, при этом подачу топлива осуществляют в этот слой для последующего воспламенения образовавшейся топливовоздушной смеси.

Изобретение относится к устройству сгорания, в частности газотурбинному двигателю, содержащему: трубопровод подачи топлива в устройство сгорания для обеспечения подачи всего топлива в устройство сгорания; по меньшей мере одну горелку, включающую множество трубопроводов подачи топлива по меньшей мере в одну горелку, при этом подача топлива в множество трубопроводов подачи топлива по меньшей мере в одну горелку соответствует общей подаче топлива в трубопровод подачи топлива в устройство; объем сгорания, связанный по меньшей мере с одной горелкой; датчик температуры, расположенный в устройстве с возможностью передачи информации о температуре, относящейся к части устройства, которая подлежит защите от перегрева; датчик давления, предназначенный для передачи информации о давлении внутри объема сгорания; и систему управления.

Изобретение относится к области авиационной техники. Сверхзвуковой плазмохимический стабилизатор горения для прямоточной камеры сгорания состоит из установленных в проточной части камеры сгорания двух последовательно расположенных по потоку электродов, выполненных в виде обтекаемых пилонов с симметричными аэродинамическими профилями, один из которых - анод, электрически изолирован от металлической стенки камеры сгорания и оборудован трубкой для подвода топлива и инжекторами для впрыска топлива в поток, при этом анод имеет излом так, что корневая часть анода имеет отрицательную стреловидность относительно направления потока, а концевая - нулевую стреловидность, а второй электрод - катод расположен в следе за первым и непосредственно закреплен на стенке камеры сгорания, в анод дополнительно встроены трубка и инжекторы для впрыска в поток одновременно с топливом химически активных добавок, торец концевой части анода со стороны набегающего потока имеет выступ в виде тонкой прямоугольной пластины, расположенной в плоскости симметрии пилона, задняя кромка пластины скошена и имеет скругления в угловых точках, при этом угол между торцевой поверхностью и задней кромкой анода также скруглен.

Изобретение относится к узлу сгорания для газотурбинного двигателя. .

Горелка // 2470229

Изобретение относится к распределителю топлива, в частности, для горелки и завихрителя. .

Камера сгорания содержит торцевую крышку, камеру воспламенения, расположенную за торцевой крышкой, форсунки, расположенные радиально в торцевой крышке и содержащие первое подмножество форсунок и второе подмножество форсунок. Камера сгорания содержит также закрепленный колпак, окружающий каждую форсунку из второго подмножества форсунок и проходящий за указанную форсунку в камеру воспламенения. В режиме пониженной мощности топливо, подаваемое в форсунки первого подмножества, воспламеняется, а подача топлива к каждой форсунке второго подмножества прекращена. Изобретение позволяет подавить преждевременное подавление горения и увеличение выбросов оксида углерода. 2 н. и 11 з.п. ф-лы, 9 ил.

Горелка газовой турбины содержит реакционную камеру (5) и множество выходящих в реакционную камеру (5) реактивных сопел (6). Реактивными соплами (6) с помощью струи (2) флюида через выпускное отверстие (22) флюид подается в реакционную камеру (5). Реакционная камера (5) предназначена для сжигания флюида с образованием горячего газа (4). В, по меньшей мере, одном реактивном сопле (6, 6а, 6b, 6с) кольцевой зазор (8) расположен вокруг струи (2) флюида. Часть горячего газа (4) засасывается из реакционной камеры (5) и против направления потока флюида поступает в кольцевой зазор (8) и внутри реактивного сопла (6, 6а, 6b, 6с) смешивается со струей (2) флюида. Кольцевой зазор (8) образован с помощью насадка (12, 12а, 12b). Насадок (12а) на конце, расположенном выше по течению, имеет утолщение (15). Изобретение позволяет стабилизировать пламя такой горелки. 2 н. и 23 з.п. ф-лы, 7 ил.

Камера сгорания для газовой турбины содержит группу радиально внешних сопел, по меньшей мере центральное сопло, первую и вторую камеры сгорания. Внешние сопла расположены по существу по кольцевой схеме и выпускной конец каждого из них расположен с возможностью подачи топлива и/или воздуха в первую камеру сгорания. Выпускной конец центрального сопла расположен в осевом направлении перед выпускными концами радиально внешних сопел и выполнен и размещен с возможностью подачи топлива и воздуха во вторую камеру сгорания. Вторая камера сгорания расположена в осевом направлении перед первой камерой сгорания, открыта в нее и имеет длину, достаточную для поддержания факела пламени центрального сопла ограниченным указанной второй камерой сгорания. Выпускные концы радиально внешних сопел удерживаются в кольцевой пластине. Вторая камера сгорания ограничена трубчатым элементом, проходящим от указанной кольцевой пластины в направлении вверх по течению. Изобретение позволяет уменьшить уровень СО в камере сгорания при низкой нагрузке или при ее отсутствии, а также увеличивает надежность оборудования. 3 н. и 15 з.п. ф-лы, 4 ил.

Камера сгорания в сборе содержит основной корпус, формируемый подающим коллектором с системой подачи топлива и топливными форсунками, продолжающимися от подающего коллектора и снабжаемыми топливом посредством системы подачи топлива подающего коллектора. Подающий коллектор имеет сандвич-конструкцию и сформирован из отдельных элементов. Количество отдельных элементов коллектора превышает количество типов топлива в системе подачи топлива. Система подачи топлива содержит по меньшей мере один газопроводный канал и по меньшей мере один жидкотопливный канал. Подающий коллектор сформирован из по меньшей мере трех отдельных элементов. Изобретение позволяет создать эффективную камеру сгорания в сборе при значительном снижении затрат на изготовление основного корпуса. 2 н. и 10 з.п. ф-лы, 6 ил.

Камера сгорания газовой турбины содержит пилотную топливную форсунку, расположенную в среднем участке цилиндра, открывающегося на одном конце в камеру сгорания. Пилотная топливная форсунка содержит топливную форсунку, а также радиально отстоящую вокруг внешнего периметра топливной форсунки цилиндрическую наружную обшивку. Между топливной форсункой и наружной обшивкой расположен пилотный турбулизирующий элемент. Несколько основных горелок расположены относительно радиального направления вокруг пилотной топливной форсунки. Пилотный конус выполнен с внутренней стороной и внешней стороной и расположен со стороны камеры сгорания на пилотной топливной форсунке и со стороны камеры сгорания имеет отверстие, так что при смешивании воздуха и пилотного топлива в пилотном конусе (4) образуется пилотное пламя для воспламенения впрыскиваемого от основных горелок топлива. Пилотный конус имеет на своей внутренней стороне и внешней стороне турбулизирующие генераторы. Турбулизирующие генераторы являются трапециевидными и/или треугольными полосами, расположенными в отверстии пилотного конуса по всей окружности отверстия. Трапециевидные и/или треугольные полосы расположены на пилотном конусе попеременно под углом +/-30°. Изобретение направлено на создание камеры сгорания, которая может эксплуатироваться с повышенной температурой пламени, и, следовательно, с увеличенным кпд. 3 н. и 2 з.п. ф-лы, 9 ил.

Изобретение относится к области сжигания топлива и может найти применение в воздушно-реактивных двигателях, в газотурбинных, топочных и теплоэнергетических установках, в установках по переработке и утилизации бытовых и промышленных отходов. Устройство для сжигания топлива включает камеру сгорания, содержащую в корпусе коническую жаровую трубу, образующую канал подвода основного воздуха, устройство подвода основного топлива. К устройству подвода основного топлива примыкает головка камеры сгорания, выполненная сферической с радиусом, равным радиусу жаровой трубы. Корпус камеры сгорания содержит крышку с внутренней поверхностью в виде «тора». Торец стенки жаровой трубы выполнен скругленным и вместе с внутренней поверхностью в виде «тора» образует канал с проходным сечением, равным проходному сечению канала, образованного наружным диаметром жаровой трубы и внутренним диаметром корпуса устройства. Торец жаровой трубы заглублен в крышку на длину, равную не менее двух расстояний между корпусом и жаровой трубой. На противоположной стороне жаровой трубы расположена головка камеры сгорания, снабженная форсункой пускового топлива и свечой зажигания. Изобретение направлено на упрощение конструкции и технологии ее сборки, повышение надежности работы. 3 ил.

Изобретение относится к горелочному устройству промежуточного подогрева и способу работы газотурбинной установки с последовательным сгоранием. Горелочное устройство промежуточного подогрева выполнено для второй камеры сгорания газотурбинной установки. Газотурбинная установка содержит первое сжигающее устройство с первой камерой сгорания и первой горелкой и второе сжигающее устройство со второй камерой сгорания и второй горелкой. Горелочное устройство содержит канал с площадью поперечного сечения, центральное тело, плоскость впрыска топлива. Плоскость впрыска топлива расположена вдоль длины центрального тела. Центральное тело расположено в канале выше по потоку от второй камеры сгорания и оканчивается на впуске второй камеры сгорания. Поперечное сечение канала, ограниченного второй горелкой и последующей второй камерой сгорания, увеличивается ступенчато от выпуска второй горелки до впуска второй камеры сгорания. Отношение периметра поперечного сечения выпуска второй горелки к периметру поперечного сечения впуска второй камеры сгорания составляет от 0,6 до 1. Техническим результатом является упрощение проектирования компонентов газотурбинной установки. 2 н. и 23 з.п. ф-лы, 11 ил.

Система для впрыска эмульсии из первой текучей среды и второй текучей среды в пламя горелки содержит центральный газовый канал, наружный газовый канал, канал текучей среды и смесительное устройство для образования эмульсии из первой текучей среды и второй текучей среды и для выпуска эмульсии в сужающийся кольцевой канал текучей среды и для впрыска эмульсии из указанного кольцевого канала текучей среды в пламя. Центральный газовый канал проходит вдоль продольной центральной оси от верхнего по потоку конца до нижнего по потоку конца. Наружный газовый канал расположен коаксиально с газовым каналом. Канал текучей среды расположен коаксиально между газовым каналом и наружным газовым каналом с образованием сужающегося вниз по потоку кольцевого канала текучей среды. Центральный газовый канал и канал текучей среды разделены с помощью первой стенки в форме усеченного конуса на ее нижнем по потоку конце, заканчивающемся кольцевым внутренним выступом. Канал текучей среды и наружный газовый канал разделены с помощью второй стенки в форме усеченного конуса на ее нижнем по потоку конце, заканчивающимся кольцевым наружным выступом. Система установлена с концентричным окружением источника нагревания, подающего через газовый канал горячие газы, направляемые в пламя горелки. Изобретение уменьшает выброс NOx при горении основного пламени. 2 н. и 7 з.п. ф-лы, 6 ил.

Многозонная камера сгорания содержит корпус, имеющий головной конец, секцию камеры сгорания, расположенную ниже по потоку от головного конца, и смесительную секцию, расположенную между указанными головным концом и секцией камеры сгорания, предварительный смеситель, ступенчатый центральный корпус. Предварительный смеситель проходит от головного конца через смесительную секцию и предназначен для вывода, в первом осевом местоположении, первой смеси в секцию камеры сгорания. Ступенчатый центральный корпус расположен в кольцевом пространстве, ограниченном в предварительном смесителе, и содержит внешний корпус и внутренний корпус. Внешний корпус предназначен для вывода, во втором осевом местоположении ниже по потоку от первого осевого местоположения, второй смеси в секцию камеры сгорания. Внутренний корпус расположен в кольцевом пространстве, ограниченном во внешнем корпусе, и предназначен для вывода, в третьем осевом местоположении ниже по потоку от второго осевого местоположения, третьей смеси в секцию камеры сгорания, при этом обеспечивается независимое и отдельное регулирование вывода указанных смесей в соответствии с рабочим режимом многозонной камеры сгорания. Изобретение направлено на повышение эффективности сгорания. 6 з.п. ф-лы, 3 ил.

Группа изобретений относится к парогазогенераторам для применения в забое промысловых скважин. Парогазогенератор содержит корпус, образующий основную камеру сгорания, корпус форсунки, присоединенный в корпусе, теплоизоляцию, компоновку форсунки с предварительным смешиванием воздуха с топливом, впуск воздуха предварительного смешивания, элемент предварительного смешивания топлива, калильное воспламеняющее устройство. Кроме того, парогазогенератор содержит топливную форсунку, горелку и струйный удлинитель. Причем корпус включает в себя впуск топлива для приема потока топлива и впуск воздуха для приема потока воздуха. Корпус форсунки включает в себя камеру первоначального сгорания. Теплоизоляция выполнена внутри камеры первоначального сгорания. Компоновка форсунки с предварительным смешиванием воздуха с топливом выполнена с возможностью дозирования подачи топливовоздушной смеси в камеру первоначального сгорания. Впуск воздуха предварительного смешивания выполнен с возможностью направления части потока воздуха, принятого из впуска воздуха, в компоновку форсунки с предварительным смешиванием воздуха с топливом. Элемент предварительного смешивания топлива выполнен с возможностью направления части потока топлива из впуска топлива в компоновку форсунки с предварительным смешиванием воздуха с топливом. Калильное воспламеняющее устройство выполнено с возможностью нагрева и воспламенения топливовоздушной смеси в камере первоначального сгорания для создания нестационарного выброса, проходящего в основную камеру сгорания. Топливная форсунка выполнена с возможностью дозирования подачи остального топлива в основную камеру сгорания. Горелка выполнена с возможностью дозирования подачи остального воздуха в основной камере сгорания. При этом поток топлива из топливной форсунки и поток воздуха из горелки воспламеняются в основной камере сгорания с помощью нестационарного выброса из камеры первоначального сгорания. Струйный удлинитель установлен для предотвращения входа топлива из топливной форсунки в камеру первоначального сгорания. Техническим результатом является повышение эффективности системы сжигания топлива. 3 н. и 18 з.п. ф-лы, 5 ил.
Наверх