Магнитоэлектрический двигатель

Изобретение относится к области электротехники и может быть использовано, в частности, в гибридных автомобилях и электромобилях, электромеханических, в том числе автоматических системах управления и т.д. Технический результат заключается в увеличении мощности двигателя при сохранении его габаритов. В магнитоэлектрическом двигателе ротор содержит закрепленный на валу диск, на котором размещен кольцеобразный ряд постоянных магнитов с чередующейся полярностью. Статор содержит две параллельных друг другу пластины, между которыми размещены обмотки статора. Пластины статора снабжены сердечниками из электротехнической стали, на которых размещены обмотки статора. Сердечники выполнены в виде колец, на обращенных друг к другу поверхностях которых выполнены выступы. Ширина B выступа составляет половину ширины C постоянного магнита. Выступы одного из сердечников смещены по окружности относительно выступов другого сердечника на половину ширины C постоянного магнита. Диск ротора размещен между сердечниками обмоток статора. 4 ил.

 

Изобретение относится к области электротехники и может быть использовано, в частности, в гибридных автомобилях и электромобилях, электромеханических, в том числе, автоматических системах управления и т.д.

Известен магнитоэлектрический моментный двигатель, содержащий два статора с тороидальными магнитопроводами и катушечными обмотками, дисковый ротор с постоянными магнитами с осевой намагниченностью и чередующейся полярностью, подшипники с внешними и внутренними кольцами и вал ротора, при этом один из статоров жестко укреплен в корпусе; двигатель снабжен вторым дисковым ротором с валом, аналогичным первому ротору, неподвижной полой осью со ступицей и регулировочными кольцами, при этом роторы расположены соосно и установлены с возможностью взаимного вращения, валы роторов выполнены полыми и размещены на внешних кольцах подшипников, которые с двух концов надеты на неподвижную полую ось, первый из статоров неподвижно укреплен на ступице полой оси, а второй статор установлен с возможностью разворота относительно первого, регулировочные кольца размещены на неподвижной оси между торцевыми поверхностями ступицы и внутренними кольцами подшипников; тороидальные магнитопроводы выполнены с трапецеидальными зубцами и ярмом, причем высота ярма превышает высоту зубцов на две высоты обмотки статора, SU 1775807 A1.

Основным недостатком данного двигателя является так называемое «залипание» ротора вследствие взаимного притяжения зубцов статора и постоянных магнитов ротора.

Известен также магнитоэлектрический двигатель, ротор которого выполнен из двух закрепленных на валу параллельных друг другу дисков, на каждом из которых размещен кольцеобразный ряд постоянных магнитов с чередующейся полярностью, при этом полюсы постоянных магнитов, размещенных на одном из дисков ротора, обращены к противоположным полюсам магнитов, размещенным на другом диске ротора, статор представляет собой пластину в виде диска и размещен между дисками ротора с зазором относительно вала и снабжен кольцевыми обмотками в форме равнобедренных трапеций, боковые стороны которых расположены радиально относительно оси вращения ротора; статор имеет множество расходящихся веером по кругу спиц с прорезями; кольцевые обмотки размещены в указанных спицах; для фиксации обмоток статора служат внутренние и внешние кольца, CN 101951106 (A).

Его недостатком является неравномерность крутящего момента на валу двигателя и вызываемая этим неравномерность вращения ротора. Это объясняется тем, что максимальное взаимодействие магнитного поля обмотки статора и постоянного магнита ротора имеет место при совпадении осей симметрии кольцевой обмотки и магнита. При изменении взаимного положения указанных осей друг относительно друга это взаимодействие уменьшается.

Известен магнитоэлектрический двигатель, ротор которого содержит закрепленные на валу параллельные друг другу диски, на каждом из которых размещен кольцеобразный ряд постоянных магнитов с чередующейся полярностью, при этом полюсы постоянных магнитов, размещенных на одном из дисков ротора, обращены к противоположным полюсам магнитов, размещенных на другом диске ротора, статор размещен между дисками ротора с зазором относительно вала и снабжен кольцевыми обмотками в форме равнобедренных трапеций, боковые стороны которых расположены радиально относительно оси вращения ротора, статор выполнен в виде двух параллельных друг другу пластин, кольцевые обмотки размещены между пластинами, участки кольцевых обмоток в основаниях трапеций выгнуты по дуге, кольцевые обмотки одной пластины статора вставлены в кольцевые обмотки другой пластины статора с образованием модулей, причем расстояние l между участками кольцевых обмоток в основаниях трапеций превышает ширину b кольцеобразного ряда постоянных магнитов; между кольцевыми обмотками статора размещена дополнительная плоская кольцевая обмотка в форме равнобедренной трапеции, боковые стороны которой расположены в одной плоскости между боковыми сторонами других кольцевых обмоток, RU 121404 U1.

Данный двигатель принят в качестве прототипа настоящего изобретения.

Недостатком прототипа является большое расстояние между полюсами противоположных постоянных магнитов, размещенных на дисках ротора. В связи с этим напряженность магнитного поля в зазоре, где размещены обмотки статора резко уменьшается в зависимости от ширины этого зазора, которая определяется шириной статора. В результате падает мощность двигателя.

Задачей настоящего изобретения является увеличение мощности двигателя при сохранении его габаритов.

Согласно изобретению магнитоэлектрический двигатель, ротор которого содержит закрепленный на валу диск, на котором размещен кольцеобразный ряд постоянных магнитов с чередующейся полярностью, а статор содержит две параллельных друг другу пластины, между которыми размещены обмотки статора, пластины статора снабжены сердечниками из электротехнической стали, на которых размещены обмотки статора, сердечники выполнены в виде колец, на обращенных друг к другу поверхностях которых выполнены выступы, ширина В выступа составляет половину ширины С постоянного магнита, выступы одного из сердечников смещены по окружности относительно выступов другого сердечника на половину ширины С постоянного магнита, при этом диск ротора размещен между сердечниками обмоток статора.

Заявителем не выявлены какие-либо технические решения, идентичные заявленному, что позволяет сделать вывод о соответствии изобретения условию «Новизна».

Реализация отличительных признаков изобретения обеспечивает важный технический результат, состоящий в следующем. В настоящем изобретении напряженность магнитного поля, влияющая на мощность двигателя, определяется суммарной величиной зазоров между постоянными магнитами ротора и выступами сердечников обмоток статора. Каждый из этих зазоров может не превышать 0,5 мм и зависит исключительно от точности изготовления и сборки механических элементов двигателя.

В устройстве-прототипе величина зазора, определяющего напряженность магнитного поля, зависит от толщины размещенных в этом зазоре обмоток статора и составляет, практически, не менее 10 мм.

Заявленное техническое решение позволяет уменьшить зазор, определяющий напряженность магнитного поля не менее чем в 10 раз и тем самым резко увеличить мощность магнитоэлектрического двигателя при сохранении его габаритов.

Указанные выше обстоятельства определяют, по мнению заявителя, соответствие настоящего изобретения условию патентоспособности «Изобретательский уровень».

Сущность изобретения поясняется чертежами, где изображено:

на фиг.1 - вид спереди;

на фиг.2 - разрез А-А на фиг.1;

на фиг.3 - разрез Б-Б на фиг.1;

на фиг.4 - фрагмент сердечника обмоток статора в аксонометрии.

Магнитоэлектрический двигатель включает ротор, содержащий закрепленный на валу 1 диск 2, выполненный из дюралюминия. На диске 2 размещен кольцеобразный ряд постоянных магнитов 3 прямоугольной формы с чередующейся полярностью (фиг.1). Магниты 3 расположены эквидистантно относительно друг друга. Статор двигателя содержит две параллельные пластины 4, 5, выполненные из немагнитного материала, в частности, алюминиевого сплава. Пластины 4, 5 сопряжены с валом 1 посредством подшипников 6, 7. На пластинах 4, 5 статора укреплены сердечники из электротехнической стали, выполненные в виде двух колец 8, 9, на обращенных друг к другу поверхностях которых выполнены, например, путем фрезерования, выступы 10, 11, соответственно. Ширина В каждого выступа составляет половину ширины С постоянного магнита 3. Выступы 10 на кольце 8 смещены относительно выступов 11 на кольце 9 на половину ширины постоянного магнита 3 (С/2). Промежутки между постоянными магнитами 3 заполнены эпоксидным компаундом 12. По периферии постоянные магниты 3 стянуты бандажной лентой 13. На сердечниках из электротехнической стали размещены обмотки 14 статора. В приведенном на чертежах примере обмотки 14 размещены на выступах 10, 11 сердечников, возможно также размещение обмоток 14 на сердечниках между выступами 10, 11, однако последнее несколько сложнее в технологическом отношении. Обмотки 14 соединены между собой последовательно.

Магнитоэлектрический двигатель работает следующим образом. При подаче переменного электрического тока на обмотки 14 статора происходит взаимодействие между магнитными полями постоянных магнитов 3 и магнитными полями, создаваемыми за счет протекания электрического тока в обмотках 14. В результате возникает крутящий момент, обеспечивающий вращение вала 1 ротора. Так как сердечники представляют собой единые элементы - кольца с выступами, и поверхности выступов обработаны за одну установку сердечника и обрабатывающего инструмента, поверхности выступов каждого сердечника находятся строго в одной плоскости. Вследствие этого обеспечивается минимальный и равномерный зазор между сердечниками обмоток статора и поверхностями постоянных магнитов 3. Поскольку ширина В выступа составляет половину ширины С постоянного магнита ротора и выступы одного из сердечников смещены по окружности относительно выступов другого сердечника на половину ширины постоянного магнита, исключается эффект «залипания ротора», который затрудняет пуск двигателя и является причиной шума при его работе. Это объясняется тем, что магнитное поле сердечников, укрепленных на пластине 4 статора, уравновешивает магнитное поле сердечников, находящихся на пластине 5 статора. В результате при любом положении ротора суммарная составляющая действующих на него сил, практически, равна нулю.

Для изготовления устройства использованы обычные конструкционные материалы и заводское оборудование. Это обстоятельство, по мнению заявителя, позволяет сделать вывод о том, что данное изобретение соответствует критерию «Промышленная применимость».

Магнитоэлектрический двигатель, ротор которого содержит закрепленный на валу диск, на котором размещен кольцеобразный ряд постоянных магнитов с чередующейся полярностью, а статор содержит две параллельных друг другу пластины, между которыми размещены обмотки статора, отличающийся тем, что пластины статора снабжены сердечниками из электротехнической стали, на которых размещены обмотки статора, сердечники выполнены в виде колец, на обращенных друг к другу поверхностях которых выполнены выступы, ширина В выступа составляет половину ширины С постоянного магнита, выступы одного из сердечников смещены по окружности относительно выступов другого сердечника на половину ширины С постоянного магнита, при этом диск ротора размещен между сердечниками обмоток статора.



 

Похожие патенты:

Изобретение относится к области электротехники, а именно к низкооборотным электрическим генераторам, и может быть использовано, в частности, в ветроэнергетических установках.

Изобретение относится к области электротехники, а именно к низкооборотным электрическим генераторам, и может быть использовано в ветроэнергетических установках.

Изобретение относится к области электротехники, в частности к низкооборотным бесконтактным моментным электрическим машинам с постоянными магнитами, и может использоваться для преобразования энергии вращения роторов малых ветро- и гидроэнергетических установок в электрический ток с компенсацией сил магнитного удержания ротора при равномерно нагруженных выходных обмотках.

Изобретение относится к области электротехники и может быть использовано, в частности, в гибридных автомобилях и электромобилях, электромеханических, в том числе автоматических системах управления и т.д.

Изобретение относится к области электротехники, а именно к низкооборотным электрическим генераторам, и может быть использовано, в частности, в ветроэнергетических установках.

Изобретение относится к области электротехники, а именно - к электрическим машинам постоянного тока с возбуждением от постоянных магнитов. .

Изобретение относится к области электротехники и электромашиностроения, а именно к конструкции погружных водонаполненных синхронных генераторов вертикального исполнения.

Изобретение относится к области электротехники, а именно к низкооборотным электрическим генераторам, и может быть использовано, в частности, в ветроэнергетических установках.

Изобретение относится к области электротехники, в частности касается усовершенствования конструкции синхронных генераторов, которые могут быть использованы в ветроэлектростанциях, а также в погружных мини-гидроэлектростанциях.

Изобретение относится к области ветроэнергетики, а именно к ветроэнергетическим агрегатам, предназначенным для заряда аккумуляторных батарей и электропитания различных потребителей.

Изобретение относится к области электротехники, а именно к низкооборотным электрическим генераторам, и может быть использовано, в частности, в ветроэнергетических установках.

Изобретение относится к электромагнитному устройству, выполненному с возможностью обратимой работы в качестве генератора и электродвигателя. Технический результат - обеспечение возможности регулирования и оптимизации относительно положения статора и ротора в целях получения максимального кпд и максимальной рабочей гибкости системы.

Изобретение относится к области электротехники, а именно к синхронным электродвигателям с реактивным ротором, и может быть применено в электромеханических системах.

Изобретение относится к области электротехники, а именно - к электрическим машинам постоянного тока с возбуждением от постоянных магнитов. .

Изобретение относится к области электротехники и касается особенностей конструктивного выполнения специальных электрических машин, а именно электрических асинхронных герметизированных двигателей, используемых в промышленных установках для работы в химически агрессивных, радиационных и взрывоопасных газообразных и жидких средах, при высоких значениях давления и температуры.

Изобретение относится к области электротехники, а именно к низкооборотным электрическим генераторам, и может быть использовано, в частности, в ветроэнергетических установках.

Изобретение относится к электротехнике, к электродинамическим устройствам для передачи механической энергии от ведущего вала к ведомому и может быть использовано в трансмиссиях транспортных средств в качестве автоматического вариатора скорости и крутящего момента.

Изобретение относится к области электротехники и может быть использовано в качестве приводного двигателя постоянного тока в устройствах электропривода для транспорта.

Изобретение относится к области электротехники и электроэнергетики, а именно - к устройствам для накопления и преобразования энергии при помощи супермаховика, оснащенного электрической машиной, работающей попеременно в режиме двигателя и генератора, и может найти применение в электроэнергетической отрасли при создании пиковых электроустановок, предназначенных для включения в промышленные сети и компенсирующих резкие пики и спады потребления энергии, в космической технике, в транспортных установках.

Изобретение относится к области электротехники, а именно - к регулируемым двигателям переменного тока, и может быть использовано при проектировании и производстве электропривода, необходимого для плавного и экономичного регулирования скорости вращения вала в широких пределах ее изменения с сохранением достаточно высокого пускового момента.

Изобретение относится к области электротехники, а именно к низкооборотным электрическим генераторам, и может быть использовано, в частности, в ветроэнергетических установках.
Наверх