Скважинная сепарационная установка

Изобретение относится к нефтяной промышленности и может быть использовано при разработке обводненной нефтяной залежи для разделения продукции нефтяных скважин на нефть и воду. Техническим результатом является упрощение конструкции сепарационной установки, повышение надёжности и эффективности работы установки. Скважинная сепарационная установка содержит установленную в скважине сепарационную камеру с трубопроводом подвода водонефтяной смеси, трубопроводы отвода воды и нефти с входными отверстиями. Сепарационная камера выполнена в виде внутренней полости герметичной скважины. При этом трубопровод подвода водонефтяной смеси спущен в сепарационную камеру на глубину, определяемую расстояниями от его нижнего конца до входных отверстий трубопроводов отвода воды и нефти, позволяющих отводить из сепарационной камеры в постоянном режиме воду и нефть в объемах, которые соответствуют обводненности водонефтяной смеси с учетом скорости всплытия нефти в воде. 2 з.п. ф-лы, 2 ил.

 

Изобретение относится к нефтяной промышленности и может быть использовано при разработке обводненной нефтяной залежи для разделения продукции нефтяных скважин на нефть и воду.

Известна сепарационная установка (патент RU №2252312, МПК Е21В 43/38, опубл. 20.05.2005 г., бюл. №14), содержащая колонну с трубопроводами подвода водонефтяной эмульсии и отвода нефти и воды, пакер, установленный ниже колонны, трубопровод подвода водонефтяной эмульсии, подсоединенный тангенциально к верхней части колонны с возможностью закручивания водонефтяной эмульсии и ее разделения под действием центробежных сил на нефть и воду. Нижняя часть колонны открыта, трубопровод отвода нефти расположен внутри колонны, а трубопровод отвода воды образован внутренней поверхностью скважины и наружной поверхностью колонны и подсоединен к устью скважины.

Недостатком установки является невысокая надежность работы: при незначительном изменении расхода или вязкости подаваемой для разделения жидкости изменяется скорость ее течения в установке, что приводит либо к снижению центробежных сил и соответственно к снижению эффективности разделения нефти и воды, либо к возрастанию давления в установке, изменению отрегулированных расходов нефти и воды через отводящие трубопроводы и поступлению воды в трубопровод для нефти или нефти в трубопровод для воды.

Наиболее близкой по технической сущности и достигаемому результату является сепарационная установка (патент RU №2291292, МПК Е21В 43/38, опубл. 10.01.2007 г. бюл. №1), содержащая установленную в скважине открытую снизу сепарационную камеру с трубопроводом подвода водонефтяной эмульсии, присоединенным к верхней части камеры, трубопроводы отвода воды и нефти. По высоте камеры на расстоянии, равном 8-10 диаметрам камеры, размещен ряд завихрителей, выполненных в виде лопастей, при этом лопасти последующего ряда завихрителей размещены со смещением относительно лопастей предыдущего ряда, трубопровод отвода нефти присоединен к устью скважины, трубопровод отвода воды установлен внутри камеры соосно с ней по длине. Нижний конец трубопровода отвода воды выполнен конусом, на поверхности которого выполнены щелевые прорези. Для исключения притока скважина заглушена пакером.

Недостатками данной установки являются сложность конструкции сепарационной камеры с рядами завихрителей, необходимость поддержания на входе в установку заданных давления и расхода поступающей в нее жидкости, поскольку при изменении этих параметров изменится скорость перемещения жидкости в сепарационной камере и, соответственно, величина центробежных сил, образующихся в результате взаимодействия потока жидкости с завихрителями. Это снижает эффективность ее работы и затрудняет использование, например, для отделения попутной воды из обводненной продукции, поступающей в сепарационную установку из нескольких добывающих скважин, поскольку давление и расход поступающей обводненной продукции не являются постоянными из-за того, что некоторые из добывающих скважин по тем или иным причинам могут находиться в простое.

Техническими задачами изобретения являются упрощение конструкции сепарационной установки за счет изменения принципа разделения продукции на воду и нефть с центробежного на гравитационный, повышение надежности и эффективности работы установки за счет конструктивно обеспеченной минимизации влияния на данные показатели изменения свойств и расхода поступающей в установку продукции в широком диапазоне их значений.

Указанные технические задачи решаются скважинной сепарационной установкой, содержащей установленную в скважине сепарационную камеру с трубопроводом подвода водонефтяной смеси, трубопроводы отвода воды и нефти с входными отверстиями.

Новым является то, что сепарационная камера выполнена в виде внутренней полости герметичной скважины, трубопровод подвода водонефтяной смеси спущен в сепарационную камеру на глубину, определяемую расстояниями от его нижнего конца до входных отверстий трубопроводов отвода воды и нефти, позволяющими отводить из сепарационной камеры в постоянном режиме воду и нефть в объемах, соответствующих обводненности водонефтяной смеси с учетом скорости всплытия нефти в воде.

Новым является то, что трубопровод отвода воды снабжен проточным анализатором, а трубопровод отвода нефти - регулирующим устройством с приводом, функционально связанным с проточным анализатором, для исключения попадания нефти в трубопровод отвода воды.

Новым является также то, что трубопровод подвода водонефтяной смеси сообщен с трубопроводом отвода нефти байпасной линией.

На фиг.1 схематично показана скважинная сепарационная установка, на фиг.2 - вариант герметизации скважины пакером.

Скважинная сепарационная установка содержит установленную в скважине 1 (фиг.1) сепарационную камеру 2 с трубопроводом 3 подвода водонефтяной смеси, трубопроводы 4 и 5 соответственно отвода воды и нефти с входными отверстиями 6 и 7. Сепарационная камера 2 выполнена в виде внутренней полости 8 герметичной скважины 1. Трубопровод 3 подвода водонефтяной смеси спущен в сепарационную камеру 2 на глубину, определяемую из условия, что расстояния от его нижнего конца 9 до входных отверстий 6 и 7 трубопроводов 4 и 5 отвода воды и нефти позволяют отводить из сепарационной камеры 2 в постоянном режиме воду и нефть в объемах, соответствующих обводненности водонефтяной смеси, с учетом скорости всплытия нефти в воде.

Трубопровод 4 отвода воды может быть снабжен проточным анализатором 10, а трубопровод 5 отвода нефти - регулирующим устройством 11 с приводом 12, функционально связанным с проточным анализатором 10 для исключения попадания нефти в трубопровод 4 отвода воды при изменениях обводненности и расхода водонефтяной смеси.

Трубопровод 3 подвода водонефтяной смеси может быть сообщен с трубопроводом 5 отвода нефти байпасной линией 13.

Если скважина, выбранная для монтажа в ней сепарационной установки, ранее использовалась по другому назначению и в ней имеется вскрытый перфорацией пласт 14 (фиг.2), то герметичность скважины 1 может быть обеспечена, например, механическим пакером 15 (условно показан эксцентричным), устанавливаемым выше вскрытого пласта 14, размещенным на нижнем конце трубопровода 4 отвода воды и спускаемым в скважину 1 одновременно с трубопроводом 4 отвода воды. В этом случае вода из сепарационной камеры 2 поступает в трубопровод 4 отвода воды через боковые отверстия 16, выполненные на трубопроводе 4 отвода воды непосредственно над пакером 15.

Скважинная сепарационная установка работает следующим образом.

В герметичной скважине 1 (фиг.1) размещают трубопровод 4 отвода воды и трубопровод 3 подвода водонефтяной смеси. Обводненная продукция от нескольких добывающих скважин 17 под давлением установленных в них скважинных насосов (на фиг.1 не показаны) поступает в трубопровод 3 подвода водонефтяной смеси и далее через открытый нижний конец 9 поступает во внутреннюю полость 8 скважины 1, где под действием гравитационных сил водонефтяная смесь разделяется на воду и нефть. При этом вода заполняет нижнюю часть внутренней полости 8 скважины 1, откуда через отверстие 6 поступает в трубопровод 4 отвода воды. Нефть, имеющая меньшую плотность, всплывает в верхнюю часть полости 8 скважины 1, откуда через отверстие 7 поступает в трубопровод 5 отвода нефти.

Известно, что качество разделения водонефтяной смеси на воду и нефть находится в прямой зависимости от времени этого разделения, в нашем случае от времени нахождения воды и нефти в сепарационной камере 2, которой является вся полость 8 герметичной скважины 1. Исходя из этого условия, и вода, и нефть, поступившие в виде водонефтяной смеси в сепарационную камеру 2 из открытого конца 9 трубопровода 3 в количествах, пропорциональных обводненности водонефтяной смеси, прежде чем поступить в соответствующие отверстия 6 и 7 трубопроводов 4 и 5 отвода воды и нефти, должны находиться в сепарационной камере 2 примерно одинаковое количество времени, что может быть достигнуто размещением нижнего конца 9 трубопровода 4 на определенных расстояниях до входных отверстий 6 и 7.

С этой целью трубопровод 3 подвода водонефтяной смеси спущен в сепарационную камеру 2 на глубину, определяемую из условия, что расстояния от его нижнего конца 9 до входных отверстий 6 и 7 трубопроводов 4 и 5 отвода воды и нефти позволяют отводить из сепарационной камеры 2 в постоянном режиме воду и нефть в объемах, соответствующих обводненности водонефтяной смеси, с учетом скорости всплытия нефти в воде.

Расход нефти при перемещении ее вверх к отверстию 7 и расход воды при перемещении ее вниз к отверстию 6 пропорционален количествам воды и нефти, поступающим в сепарационную камеру 2, и, соответственно, пропорционален обводненности водонефтяной смеси. По известным расходам воды и нефти и площади сечения сепарационной камеры 2 можно определить скорости перемещения воды вниз и нефти вверх, после чего, исходя из условия равенства времени пребывания нефти и воды в сепарационной камере 2, определить расстояния от нижнего конца 9 трубопровода 3 до входных отверстий 6 и 7. При этом для исключения возможности увлечения нефти водой и попадания ее в трубопровод 4 отвода воды необходимо, чтобы скорость движения воды вниз не превышала скорости всплытия нефти в воде.

Таким образом, глубина расположения нижнего конца 9 трубопровода 3 подвода водонефтяной смеси в сепарационной камере 2, являющаяся расстоянием от нижнего конца 9 трубопровода 3 до входного отверстия 7, с достаточной точностью может быть определена системой уравнений:

L H L B = 100 B B L H + L B = S B }

где LH - глубина расположения нижнего конца 9 трубопровода 3 подвода водонефтяной смеси в сепарационной камере 2 (или расстояние, которое проходит нефть от нижнего конца 9 трубопровода 3 до входного отверстия 7), м;

LB - расстояние, которое проходит вода от нижнего конца 9 трубопровода 3 до входного отверстия 7 трубопровода отвода воды, м;

В - обводненность водонефтяной смеси, поступающей в сепарационную камеру, %;

SB - глубина расположения трубопровода 4 отвода воды (или расстояние от устья скважины до отверстия 7), м.

Значения В и SB являются в системе уравнений известными величинами: обводненность водонефтяной смеси определяется как средняя арифметическая величина известных обводненностей продукции добывающих скважин 17, а глубина расположения трубопровода 4 - глубиной герметичной скважины 1 и прочностью материала трубопровода, или глубиной расположения в скважине пакера 15 (фиг.2).

Регулирующее устройство 11 (фиг.1) предназначено для изменения расходов жидкостей через трубопроводы 4 и 5 отводов воды и нефти, и настраивается таким образом, что обеспечить приемлемое качество выходящей из сепарационной камеры 2 воды по содержанию в ней нефтепродуктов в зависимости от расхода водонефтяной смеси и ее обводненности. Проточный анализатор 10, который может быть установлен на трубопроводе 4 отвода воды, функционально связан, например, линией связи 18 с приводом 12 регулирующего устройства 11. Это позволяет при изменении качества воды по содержанию нефтепродуктов в трубопроводе 4 (что может произойти при изменении расхода и обводненности поступающей в сепарационную камеру водонефтяной смеси, например, вследствие отключения одной из добывающих скважин 17), изменить расход жидкости по трубопроводу 5 и, соответственно, по трубопроводу 4 и восстановить требуемое качество воды. При использовании скважинной сепарационной установки для разделения обводненной продукции, поступающей например с одной высокодебитной скважины, снабженной электроцентробежным скважинным насосом (на фиг.1 не показано), расход водонефтяной смеси и ее обводненность практически не изменяются по времени. В этом случае скважинная сепарационная установка может использоваться без проточного анализатора 10, линии связи 18 и привода 12, управляющего регулирующим устройством 11.

При проведении каких-либо работ (ремонтных, регламентных и т.д.) на скважинной сепарационной установке байпасная линия 13, закрытая в нормальном состоянии, позволяет перепустить продукцию добывающих скважин 17 напрямую в трубопровод 5 отвода нефти и выполнить эти работы без отключения добывающих скважин 17, что привело бы к потерям в добыче нефти.

Такое выполнение скважинной сепарационной установки позволяет:

- упростить ее конструкцию за счет изменения принципа разделения водонефтяной смеси на воду и нефть с центробежного на гравитационный;

- повысить надежность и эффективность ее работы за счет конструктивно обеспеченной минимизации влияния изменения свойств и расхода поступающей в сепарационную камеру продукции в широком диапазоне их значений;

- применять ее на кусте скважин с целью отделения попутной воды из обводненной продукции, поступающей в сепарационную камеру с нескольких добывающих скважин, с последующим использованием сепарированной воды на том же кусте с целью поддержания пластового давления или утилизации;

- производить какие-либо ремонтные работы на скважинной сепарационной установке без отключения добывающих скважин и потерь в добыче нефти.

1. Скважинная сепарационная установка, содержащая установленную в скважине сепарационную камеру с трубопроводом подвода водонефтяной смеси, трубопроводы отвода воды и нефти с входными отверстиями, отличающаяся тем, что сепарационная камера выполнена в виде внутренней полости герметичной скважины, трубопровод подвода водонефтяной смеси спущен в сепарационную камеру на глубину, определяемую расстояниями от его нижнего конца до входных отверстий трубопроводов отвода воды и нефти, позволяющими отводить из сепарационной камеры в постоянном режиме воду и нефть в объемах, соответствующих обводненности водонефтяной смеси, с учетом скорости всплытия нефти в воде.

2. Скважинная сепарационная установка по п.1, отличающаяся тем, что трубопровод отвода воды снабжен проточным анализатором, а трубопровод отвода нефти - регулирующим устройством с приводом, функционально связанным с проточным анализатором для исключения попадания нефти в трубопровод отвода воды.

3. Скважинная сепарационная установка по п.1, отличающаяся тем, что трубопровод подвода водонефтяной смеси сообщен с трубопроводом отвода нефти байпасной линией.



 

Похожие патенты:

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано при добыче текучих сред из глубоких скважин с применением глубинных насосов типа электроцентробежных насосов - ЭЦН.

Изобретение относится к нефтегазодобывающей промышленности и, в частности, к способу добычи нефти из обводненных скважин. Обеспечивает повышение эффективности способа за счет более эффективной сепарации газа, охлаждения пластовой жидкости, притекающей к приему насоса, а также за счет исключения засорения бокового ствола цементным раствором.
Изобретение относится к нефтяной промышленности и может найти применение при эксплуатации нефтепромыслового оборудования с использованием его радиочастотной идентификации.

Изобретение относится к области энергетики и может быть использовано для выработки электроэнергии, полученной при утилизации топлив в факелах путем сжигания жидких, газообразных отходов лесной и сельскохозяйственной промышленности, биогаза, продуктов переработки бытовых отходов, продуктов подземной или промышленной газификации твердых топлив, отходов нефтедобычи и нефтепереработки.

Изобретение относится к способам и устройствам для дистанционного отслеживания, управления и автоматизации работы насосов, например для добычи углеводородов и осушения, а конкретнее к контроллеру для штоковых насосов, насосов с поступательной полостью, для управления впрыском скважины, приводов с переменной скоростью и т.п.

Изобретение относится к газовой промышленности, в частности к способам ликвидации подземных хранилищ газа. Способ включает отбор активного объема газа и последующий отбор буферного объема газа.

Изобретение относится к области нефтяной промышленности и, более конкретно, к поиску и добыче нефти. Обеспечивает возможность создания системы разработки, обеспечивающей добычу нефти непосредственно из нефтеподводящего канала, соединяющего глубинный резервуар с нефтяной залежью.

Группа изобретений относится к области добычи полезных ископаемых из подземных месторождений, в частности касается способа обеспечения доступа к подземному угольному пласту.

Изобретение относится к горному делу, в частности к добыче газа из сланцевых месторождений. Обеспечивает создание в газосланцевой залежи коллекторов большого сечения с хорошо развитой трещиноватой структурой как на боковой поверхности бурового канала, так и в виде площадных трещин в массиве газосланцевой залежи.

Способ освоения и эксплуатации скважин с высоковязкой продукцией и устройства для его реализации относятся к области нефтедобывающей промышленности и могут быть использованы для подъема продукции скважины при их освоении и эксплуатации.

Группа изобретений относится к скважинным насосным системам, погружаемым в скважинные флюиды. Более конкретно, настоящие изобретения относятся к рециркуляции части потока, подаваемого погружным насосом скважинной насосной системы на впуск последней. Обеспечивает повышение надежности работы погружной насосной системы. Сущность решения: скважинная система размещена в скважине и содержит нижний насос с выпуском и впуском; рециркуляционную муфту, соединенную с выпуском нижнего насоса; верхний насос с выпуском и впуском, сообщенным с впуском нижнего насоса через рециркуляционную муфту; двигательный узел, подсоединенный под нижним насосом для приведения насосов в действие; канал впуска флюида в насосную систему, сообщенный с впусками нижнего и верхнего насосов; приводной вал, простирающийся от двигательного узла через нижний насос, рециркуляционную муфту и верхний насос; линию рециркуляции, впуск которой сообщен с рециркуляционной муфтой и с выпускным каналом, предназначенным для выпуска флюида из линии рециркуляции на стороне двигательного узла; канал, проходящий насквозь рециркуляционную муфту и имеющий нижнюю часть, сужающуюся по радиусу внутрь, и вал, проходящий через этот канал, образуя кольцеобразное пространство между валом и каналом, и при этом конфигурация рециркуляционной муфты позволяет направить часть флюида, принятого из выпуска нижнего насоса, на впуск верхнего насоса, а оставшуюся часть принятого потока - в линию рециркуляции. 2 н. и 11 з.п. ф-лы, 5 ил.

Изобретение относится к компенсаторам давления, предназначенным для компенсации давления между окружающей средой вокруг подводного устройства и жидкой средой, заполняющей объем подводного устройства. Компенсатор давления имеет, по меньшей мере, один внешний сильфон и первую камеру, ограниченную внешним сильфоном. Компенсатор дополнительно содержит, по меньшей мере, один внутренний сильфон, расположенный внутри первой камеры, и вторую камеру, ограниченную внутренним сильфоном. Между внешним сильфоном и внутренним сильфоном имеется ограниченный компенсационный объем, сообщенный с объемом подводного устройства. Обеспечивается защита подводного оборудования во время эксплуатации от проникновения морской воды. 2 н. и 15 з.п. ф-лы, 10 ил.

Группа изобретений относится к горному делу и может быть применена в соединительных звеньях электрического погружного насоса. Электрическая погружная насосная система включает протектор и двигательную секцию, и уплотнители, препятствующие утечке из протектора и двигательной секции во время сборки. Уплотнители взаимодействуют с узлом муфты для соединения валов протектора и двигательной секции. Наружный диаметр узла муфты увеличивается на уступе, который окружает узел муфты. В одном примере, уплотнитель, препятствующий утечке из уплотнительного узла, образует герметизирующую границу раздела вокруг части с большим диаметром узла муфты, которая удаляется при сдвигании муфты так, что ее часть с меньшим диаметром граничит с уплотнительным узлом. Двигательная секция герметизируется другим уплотнительным узлом, включающим корпус, окружающий вал двигателя с образованием кольцевого пространства, которое выборочно заполняется уплотнительным диском. Уплотнительный диск также может быть сдвинут внутри корпуса при соединении валов посредством узла муфты. Технический результат заключается в повышении надежности соединения звеньев погружных электрических насосов. 3 н. и 15 з.п. ф-лы, 6 ил.

Изобретение относится к добыче жидкости из скважин с помощью погружных электроцентробежных насосных установок и может быть использовано при эксплуатации добывающих нефтяных скважин, преимущественно малодебитных и среднедебитных. Технический результат - обеспечение производительной и надежной безотказной работы оборудования. Сущность изобретения: способ включает повторение циклов откачки жидкости из скважины, чередующейся с накоплением жидкости в скважине при выключенной погружной электроцентробежной насосной установке, регулирование соотношения продолжительностей откачки и накопления в зависимости от динамического уровня жидкости в скважине. Согласно изобретению продолжительность всех циклов устанавливают равной в пределах от 40 мин до 80 мин. Номинальную производительность погружной электроцентробежной насосной установки выбирают в 3-5 раз больше действительной продуктивности скважины. Продолжительность откачки жидкости в разных циклах периодически регулируют изменением предыдущего значения на 10-20% до момента достижения заданного уровня жидкости. 2 з.п. ф-лы.

Изобретение относится к нефтяной промышленности и может найти применение при эксплуатации скважины. Устройство включает обсадную колонну, дополнительную эксплуатационную колонну и колонну насосно-компрессорных труб. Используют дополнительную эксплуатационную колонну, не доходящую до устья скважины. Колонну насосно-компрессорных труб выше дополнительной эксплуатационной колонны и вблизи от верха дополнительной эксплуатационной колонны снабжают неподвижно закрепленной наружной муфтой. В качестве муфты используют муфту с наружным диаметром больше внутреннего диаметра дополнительной эксплуатационной колонны и не больше наружного диаметра стандартного колонного шаблона для обсадной колонны и с соотношением наружного диаметра к высоте муфты в пределах от 0,70 до 0,83. Упрощается процесс ликвидации аварий, сокращается время ремонта. 2 ил., 2 табл.

Группа изобретений относится к области добычи нефти и может быть использована для эксплуатации скважин, оборудованных электронасосами, в частности погружными центробежными электронасосами. Обеспечивает повышение эффективности способа и надежности работы устройства как в малодебитных, так и в высокопродуктивных скважинах. Сущность изобретений: способ заключается в периодическом повторении циклов, включающих откачку, поиск частоты прекращения подачи и накопление. При этом для обеспечения отбора такого количества жидкости из скважины, которое равно ее притоку, выбирают насосную установку с более высокой производительностью по сравнению с притоком жидкости из пласта в скважину. В процессе выполнения циклов производят коррекцию соотношения времени откачки-накопления в зависимости от результатов работы в предыдущих циклах до тех пор, пока соотношение откачки-накопления не перестанет изменяться. Момент наступления прекращения подачи определяют по равенству значений текущего момента на валу погружного электродвигателя и контрольного момента, который определяют предварительно по скачкообразному падению значения момента на валу двигателя в точке наступления прекращения подачи при снижении частоты питающего напряжения. Устройство содержит размещенную в колонне эксплуатационных труб скважины насосную установку, состоящую из центробежного насоса и погружного электродвигателя, подвешенную на колонне подземных труб. При этом погружной электродвигатель токопроводящим кабелем связан с находящимися на поверхности преобразователем частоты и управляющим устройством. Устройство содержит также согласующий трансформатор, блок определения частоты, тока, момента, мощности, блок связи, блок индикации и управления. При этом токопроводящий кабель связан с первым входом-выходом согласующего трансформатора, который вторым входом-выходом связан со входом-выходом преобразователя частоты. Преобразователь частоты своим вторым входом-выходом связан с блоком питания, а третьим входом-выходом - с первым входом-выходом блока определения частоты, тока, момента, мощности, который своим вторым входом-выходом связан с первым входом-выходом блока связи, второй вход-выход которого связан с четвертым входом-выходом преобразователя частоты, а третьим входом-выходом связан с первым входом-выходом контроллера управления, второй вход-выход которого связан с блоком индикации и управления. При этом обеспечена возможность поступления всех сигналов на блоки, находящиеся на поверхности, через токопроводящий кабель непосредственно с вала погружного электродвигателя. 2 н.п. ф-лы, 3 ил.
Изобретение относится к нефтяной промышленности и может найти применение при строительстве скважины. При строительстве нефтедобывающей скважины проводят бурение вертикального ствола через горные породы, в том числе через неустойчивые глинистые породы с входом в продуктивный пласт, спуск эксплуатационной колонны до продуктивного пласта, цементирование заколонного пространства, бурение ствола из эксплуатационной колонны в продуктивный пласт. При вскрытии горизонта с неустойчивыми глинистыми породами механическую скорость бурения назначают не более 6 м/час, бурение ведут с повышенным расходом промывочной жидкости порядка 30-40 л/с с применением буровых растворов плотностью от 1,12 до 1,40 г/см3, после бурения ствола скважины выполняют очистительный рейс буровой компоновки по стволу скважины с проработкой ствола скважины роторным способом при частоте вращения ротора от 40 до 100 об/мин, прокачкой бурового раствора, смешанного с фиброволокном, в объеме 6-15 м3 и расхаживанием буровой компоновки на длину ведущей трубы, для обсаживания ствола скважины производят секционный спуск эксплуатационной колонны, первую секцию эксплуатационной колонны длиной 400-1000 м спускают к забою скважины на бурильном инструменте и цементируют заколонное пространство в интервале от забоя и до головы первой секции, проводят технологическую выдержку на затвердение цемента, производят спуск второй секции эксплуатационной колонны, стыкуют секции, цементируют заколонное пространство, проводят технологическую выдержку на затвердение цемента, опрессовывают эксплуатационную колонну. Обеспечивается предотвращение прихвата бурового инструмента при разбуривании неустойчивых глинистых пород. 1 з.п. ф-лы, 3 пр.

Изобретение относится к нефтедобывающей отрасли. Техническим результатом является получение максимальной информативности промыслового исследования с закачкой в пласт агента нагнетания и добычей флюидов из пласта в различных условиях, включая исследования в условиях автономии, при наличии толщи многолетнемерзлых пород, а также при низкой приемистости продуктивного интервала. Предложен способ компоновки внутрискважинного и устьевого оборудования для проведения исследований скважины, предусматривающих закачку в пласт агента нагнетания и добычу флюидов из пласта, включающий спуск в скважину колонны насосно-компрессорных труб (НКТ) со струйным насосом или циркуляционными клапанами, предназначенными для компрессорной эксплуатации с разобщением пакером НКТ и затрубного пространства. При этом башмак НКТ спускают до уровня или как можно ближе к уровню верхних дыр перфорации. Пакер размещают на удалении не более 20 метров от башмака НКТ, над пакером как можно ближе к нему на одной из труб НКТ размещают один или два циркуляционных клапана или струйный насос и под ними мандрель с одним или двумя, для трубного и затрубного пространства дистанционными (перманентными) кварцевыми датчиками давления и температуры. Устье скважины оборудуют компоновкой, содержащей лубрикатор, два устьевых датчика давления и температуры для контроля буферных и затрубных параметров, штуцерной камерой с регулируемым штуцером, многофазным расходомером, пробоотборником, позволяющим в условиях работы скважины отбирать устьевые пробы нефти, воды и газа, нагнетательным узлом, состоящим из двух уголков и двух штуцерных камер. Предусматривают возможность подключения подающего агрегата для закачки агента нагнетания или подачи рабочего агента из емкости к буферной линии или затрубному пространству. Линию от подающего агрегата оборудуют отводом через штуцерную камеру с регулируемым штуцером обратно в емкость; на линии от подающего агрегата к скважине после отводной линии устанавливают расходомер для контроля объемов подачи агента к скважине. Для повышения надежности измерения давления и температуры под пакером размещают один или два автономных или дистанционных датчика давления и температуры. Для повышения точности замера дебита фаз в притоке из пласта на колонне НКТ над или под пакером размещают забойный многофазный расходомер с функциями постоянного контроля расхода фаз, а также с функцией замера забойного давления и температуры. Для обеспечения возможности прямой и обратной циркуляции в стволе скважины в состав внутрискважинной компоновки включают прямой и обратный циркуляционные клапаны. 3 з.п. ф-лы, 2 ил.

Изобретение относится к нефтедобывающей промышленности и, в частности, к добыче скважинной жидкости на нефтяных месторождениях. Обеспечивает повышение эффективности добычи за счет возможности температурного воздействия на добываемую скважинную жидкость. Сущность изобретения: способ включает подъем скважинной жидкости по колонне лифтовых труб с воздействием на нее для изменения ее физических свойств. Согласно изобретению воздействие на скважинную жидкость осуществляют путем ее электродного нагрева в закрытой рабочей камере установки посредством подачи электрического тока с поверхности земли через многожильный электрический кабель на расположенные внутри рабочей камеры электроды. В результате этого обеспечивают тепловое расширение скважинной жидкости и ее перетекание в колонну лифтовых труб через подъемный канал с малым поперечным сечением относительно его длины. При этом для осуществления процесса заполнения рабочей камеры установки и электродного нагрева скважинной жидкости, с последующим ее расширением, установка оборудована всасывающим клапаном для обеспечения поступления скважинной жидкости в рабочую камеру, нагнетательным клапаном для обеспечения перетекания части скважинной жидкости из рабочей камеры в колонну лифтовых труб и порционной транспортировки скважинной жидкости на поверхность и клапаном принудительного действия, имеющим возможность его закрытия после полного заполнения рабочей камеры скважинной жидкостью и его открытия после нагрева скважинной жидкости до установленной величины. 1 з.п. ф-лы, 1 ил.

Изобретение относится к горному делу и может быть применено для эксплуатации проблемных заклинивающих скважин штанговыми насосами. Способ включает возвратно-поступательное движение и вращение колонны штанг. Скорость движения колонны штанг вниз изменяют пропорционально изменению нагрузки на устьевом штоке. Длину хода колонны штанг могут изменять пропорционально изменению нагрузки на устьевом штоке. Вращение колонны штанг могут осуществлять непрерывно. Технический результат заключается в обеспечении возможности устранения заклинивания колонны насосных штанг без разборки скважинного оборудования. 2 з.п. ф-лы, 3 ил.

Изобретение относится к нефтяной промышленности и может быть использовано при разработке обводненной нефтяной залежи для разделения продукции нефтяных скважин на нефть и воду. Техническим результатом является упрощение конструкции сепарационной установки, повышение надёжности и эффективности работы установки. Скважинная сепарационная установка содержит установленную в скважине сепарационную камеру с трубопроводом подвода водонефтяной смеси, трубопроводы отвода воды и нефти с входными отверстиями. Сепарационная камера выполнена в виде внутренней полости герметичной скважины. При этом трубопровод подвода водонефтяной смеси спущен в сепарационную камеру на глубину, определяемую расстояниями от его нижнего конца до входных отверстий трубопроводов отвода воды и нефти, позволяющих отводить из сепарационной камеры в постоянном режиме воду и нефть в объемах, которые соответствуют обводненности водонефтяной смеси с учетом скорости всплытия нефти в воде. 2 з.п. ф-лы, 2 ил.

Наверх