Способ кондиционирования жидких радиоактивных отходов

Изобретение относится к проблемам охраны окружающей среды, в частности к процессам кондиционирования методом цементирования жидких радиоактивных отходов (ЖРО), включая борсодержащие ЖРО. Кондиционирования жидких радиоактивных отходов проводят цементированием с использованием электромагнитной обработки в вихревом слое с ферромагнитными телами вращения и последующим отверждением продукта. В качестве ферромагнитных тел вращения используют мелкодисперсные или нанодисперсные порошки оксидов железа, которые вносят в исходные жидкие радиоактивные отходы в количестве не менее 5% (масс.). Далее радиоактивные отходы последовательно подвергают электромагнитной обработке в вихревом слое и смешиванию с портландцементом при раствороцементном отношении не менее 0,6. В качестве ферромагнитных тел вращения используют мелкодисперсные или нанодисперсные порошки оксидов железа размером соответственно 30-50 мкм и 30-80 нм, а в качестве жидких радиоактивных отходов используют жидкие борсодержащие радиоактивные отходы с общим солесодержанием до 500 г/дм3. Электромагнитную обработку проводят в "вихревом слое" не менее 30 секунд. Изобретение позволяет сократить срок отверждения, повысить прочность цементной матрицы и расширить виды отверждаемых ЖРО. 3 з.п. ф-лы, 1 ил.

 

Изобретение относится к области охраны окружающей среды, в частности к процессам кондиционирования жидких радиоактивных отходов (ЖРО), включая борсодержащие ЖРО, методом цементирования, и может быть использовано на атомных электростанциях и специализированных предприятиях, кондиционирующих радиоактивные отходы.

Кондиционирование жидких радиоактивных отходов с целью перевода их в форму, пригодную для экологически безопасного длительного хранения или захоронения, является одной из важных проблем современной ядерной энергетики.

Кондиционирование ЖРО подразумевает перевод их в стабильную физико-химическую форму, максимально ограничивающую выход радионуклидов за пределы матричного материала.

Общепризнанно, что отверждение ЖРО является наиболее надежным способом их изоляции от биосферы. Общепринятыми способами отверждения ЖРО являются включение их в битумный, цементный или керамический матричный материал, а так же перевод в стеклоподобное состояние с целью уменьшения возможности миграции радионуклидов в окружающую среду.

Известен способ остекловывания жидких радиоактивных отходов, заключающийся в том, что смешивают ЖРО с кристаллическими стеклообразователями, в качестве которых используют кварцевый песок и диатолит, вносят дополнительно ферромагнитные частицы, полученную смесь обрабатывают в «вихревом слое», задавая величину подведенной энергии в определенном интервале равном 0,5-3,0 ГДж/м3. После обработки смеси в "вихревом слое" от нее отделяют ферромагнитные частицы, а затем подвергают термообработке при 1100-1200°C. и последующей выдержке при указанной температуре до образования гомогенного расплава.

Электромагнитная обработка в «вихревом слое» позволяет увеличить скорость процесса за счет облегчения растворения стеклообразователей в силикатном расплаве (снижается вязкость расплава стекла).

Недостатками данного способа является то, что указанным способом возможна обработка ЖРО с солесодержанием не более 400 г/дм3. Более того, необходимость остекловывания ЖРО при высоких температурах 1100-1200°C требует больших энергетических и капитальных затрат [авт. свид. СССР №1452371, МКИ 21 F 9/16, опубл. 30.09.1990].

Известен также способ отверждения отходов, содержащих соединения бора - борную кислоту или бораты, путем цементирования, заключающийся в том, что в радиоактивные отходы сначала вводят добавку хлорида щелочноземельного металла, фторида щелочного металла или маннит для образования трудно растворимого в воде или комплексного соединения борной кислоты или бората, и смешивают с цементом. Затем смесь загружают в контейнер для отверждения.

Использование добавок позволяет нейтрализовать кислую реакцию борсодержащих ЖРО, чтобы затем кондиционировать их методом цементирования. Недостатком данного способа является увеличение в 2,8-3,9 раза объема конечного продукта цементирования за счет добавления жидкого стекла и нейтрализующих агентов для регулирования величины pH [патент ФРГ №2827030, МКИ G21F 9/16, опубл. 20.06.1978].

Известен аналогичный способ цементирования борсодержащих ЖРО, заключающийся в нейтрализации жидких отходов, содержащих борную кислоту, соединением щелочноземельного металла, нагревании до температуры не ниже 85°C, перемешивании, охлаждении до температуры не ниже 70°C и отверждении с использованием цемента.

Недостатками данного способа является увеличение объема конечного продукта цементирования за счет дополнительного введения добавок, а также сложность способа, обусловленная необходимостью дополнительного оборудования и многократных операций для термической обработки, перемешивания и охлаждения [патент Японии №4208768 В2, МКИ8 G21F 9/16, приор. 07.06.04].

Наиболее близким к заявляемому способу, выбранным в качестве прототипа, является способ отверждения жидких радиоактивных отходов, включающий предварительную гомогенизацию ЖРО, подачу в смеситель тангенциально под давлением, смешение их с цементом в смесителе так, чтобы раствороцементное отношение составляло 0,6-0,65. Далее смесь поступает в зону «вихревого слоя», где подвергается электромагнитной обработке в течение 5-30 сек.

«Вихревой слой» создается в камере вихревого смесителя, в которой под действием вращающегося магнитного поля, образуемого электрообмотками индуктора, хаотично движутся рабочие тела вращения, выполненные из ферромагнитного материала (стержни диаметром 3-5 мм, длиной 5-15 мм). Полученный таким образом после электромагнитной обработки в «вихревом слое» радиоактивный цементный раствор под действием собственного веса удаляется из зоны «вихревого слоя» через разделительную решетку (ферромагнитные частицы остаются на решетке) и заливается в бочки.

С целью экономии объемов конечного компаунда, подлежащего длительному хранению, ферромагнитные тела вращения используются многократно, для чего необходимо их отделение и дезактивация, а также дезактивация (промывка) разделительной решетки.

Указанный способ предназначен для ЖРО традиционного состава с щелочной реакцией среды, не содержащих соединений бора, при этом в конечном цементном компаунде, подлежащем длительному хранению (захоронению), солесодержание жидких радиоактивных отходов невысоко [авт. свид. СССР №1690488, МКИ G21F 9/16, опубл. 23.06.1993 г.].

Недостатки способа-прототипа следующие:

1. Электромагнитная обработка в «вихревом слое» всего объема радиоактивного цементного раствора увеличивает продолжительность технологических радиационно опасных операций, повышает энергозатраты, усложняет отделение на разделительной решетке ферромагнитных тел вращения от цементного раствора.

2. Многократное использование ферромагнитных тел вращения обусловливает необходимость их дезактивации, а также дезактивации разделительной решетки, что приводит к увеличению количества радиационно опасных технологических операций и образованию вторичных ЖРО.

3. Указанный способ не предназначен для борсодержащих ЖРО с кислой реакцией среды, в конечном цементном компаунде, подлежащем длительному хранению (захоронению), солесодержание ЖРО не превышает 100-300 г/дм3.

Задачей настоящего изобретения является сокращение сроков отверждения, повышение прочности цементной матрицы и расширение видов отверждаемых ЖРО, включая борсодержащие и высокосолевые отходы.

Задачей изобретения является также упрощение способа за счет уменьшения времени осуществления радиационно опасной операции обработки в вихревом слое и повышение экономичности процесса.

Поставленная задача решается способом кондиционирования жидких радиоактивных отходов цементированием с использованием электромагнитной обработки в вихревом слое с ферромагнитными телами вращения и последующим отверждением продукта обработки, при этом в качестве ферромагнитных тел вращения используют мелкодисперсные или нанодисперсные порошки оксидов железа, которые вводят в исходные жидкие радиоактивные отходы в количестве не менее 5% (мас), после чего радиоактивные отходы последовательно подвергают электромагнитной обработке в вихревом слое и смешиванию с портландцементом при раствороцементном отношении не менее 0,6.

Преимущественно в качестве ферромагнитных тел вращения используют мелкодисперсные или нанодисперсные порошки оксидов железа размером соответственно 30-50 мкм и 30-80 нм, а в качестве жидких радиоактивных отходов используют жидкие борсодержащие радиоактивные отходы с общим солесодержанием до 500 г/дм3.

Обычно электромагнитную обработку проводят в "вихревом слое" не менее 30 секунд.

Способ подтверждается следующими примерами.

Пример 1

1) ЖРО Курской АЭС (удельная активность 5·106 Бк/дм3), представляющие собой водные растворы нитратов, хлоридов, сульфатов, оксалатов натрия, кальция, железа, аммония с общим солесодержанием 300 г/дм3, не содержащие соединений бора, в количестве 100 см3 помещают в металлический стакан с нанопорошком оксида железа Fe2O3 (30-80 нм) в количестве не менее 5% от массы ЖРО. Стакан герметично закрывают металлической крышкой и помещают в активную зону камеры лабораторного вихревого аппарата марки ВА-100. Электромагнитную обработку в «вихревом слое» ведут не менее 30 секунд. Обработанные ЖРО с нанопорошком оксида железа Fe3O8 (30-80 нм) выгружают из металлического стакана и смешивают с портландцементом марки не ниже М400 при раствороцементном отношении P/Ц = mЖРО/mцeмeнтa=0,6, где mЖРО - масса ЖРО, г; mцемета - масса портландцемента, г, до получения однородного по консистенции цементного раствора.

Полученные цементные растворы помещают в разборные формы с ячейками размером 2·2·2 см, выдерживают в воздушно-влажных условиях до отверждения. У затвердевших образцов-кубиков измеряют предел прочности при сжатии в соответствии с ГОСТ 310.4-86. Фрагменты разрушенных при определении прочности цементных образцов исследуют с помощью сканирующего электронного микроскопа (СЭМ).

Пример 2

Аналогично примеру 1, повторяют эксперимент электромагнитной обработки в «вихревом слое» ЖРО того же состава с рабочими телами вращения в виде ферромагнитных стержней размером 0,8-1,5 см. После отделения стержней обработанные ЖРО выгружают и смешивают с портландцементом марки не ниже М400 при раствороцементном отношении Р/Ц=0,6.

Свойства цементных компаундов, полученных согласно примерам 1, 2, представлены в табл.1 и на фиг.1.

На фиг.1. представлены микрофотографии СЭМ фрагментов разрушенных при определении прочности цементных образцов в возрасте твердения 7 сут, где

а, б) - микрофотографии образца, полученного по примеру 1 (при электромагнитной обработке в «вихревом слое» ЖРО с нанопорошком оксида железа);

в, г) - микрофотографии образца, полученного по примеру 2 (при электромагнитной обработке ЖРО в «вихревом слое» с отделяемыми ферромагнитными стержнями).

На микрофотографиях видно, что использование нанодисперсных частиц оксидов железа, остающихся после электромагнитной обработки при смешивании с цементом в цементном растворе, приводит к упорядочиванию кристаллов гидратных новообразований минералов цемента (гидроалюмоферритов кальция) в затвердевшем конечном цементном компаунде.

Таблица 1
№ примера Срок схватывания, час Предел прочности при сжатии, МПа/сут
7 14 28 56
1 6-12 17,5 21,5 25,0 32,7
2 24 14,0 18,5 23,0 29,5

Данные табл.1 и фиг.1 подтверждают, что конечные цементные компаунды, полученные при замене ферромагнитных стержней на наночастицы оксида железа, имеют:

- удовлетворяющие ГОСТ Р 51883-2002 прочностные свойства (не менее 5 МПа), не уступающие прототипу в пределах погрешности при солесодержании исходных ЖРО до 300 г/дм3;

- в 2-4 раза меньшие сроки схватывания;

- участки упорядоченной микроструктуры (фиг.1. а, б), способствующие достижению требуемых прочностных свойств.

Замена отделяемых ферромагнитных стержней на наночастицы оксида железа позволяет, в соответствии с задачей изобретения, повысить экономичность процесса за счет сокращения вторичных ЖРО, образующихся от промывки разделительной решетки и ферромагнитных тел вращения.

Электромагнитная обработка в «вихревом слое» не всего цементного раствора, как в прототипе, а только водной фазы (ЖРО) позволяет, в соответствии с задачей изобретения, без потери качества конечного продукта упростить способ за счет уменьшения времени осуществления радиационно опасной и энергоемкой технологической операции обработки материала в «вихревом слое».

Пример 3

Борсодержащие ЖРО Калининской АЭС (удельная активность 7,6·106 Бк/дм3) с солесодержанием 517 г/дм3 (до 90 г/дм3 боратов) в количестве 100 см3 помещают в металлический стакан с мелкодисперсным порошком оксида железа Fe2O3 (30-50 мкм) в количестве не менее 5% от массы ЖРО. Стакан герметично закрывают металлической крышкой и помещают в активную зону камеры лабораторного вихревого аппарата марки ВА-100. Электромагнитную обработку в «вихревом слое» ведут не менее 30 секунд. Обработанные ЖРО с мелкодисперсным порошком оксида железа Fe2O3 (30-50 мкм) выгружают из металлического стакана и смешивают с портландцементом марки не ниже М400 при раствороцементном отношении Р/Ц=0,7 до получения однородного по консистенции цементного раствора.

Цементный раствор помещают в разборные формы с ячейками размером 2·2·2 см, выдерживают в воздушно-влажных условиях до отверждения. У застывших образцов-кубиков измеряют предел прочности при сжатии в соответствии с ГОСТ 310.4-86.

Пример 4

Аналогично примеру 3 проводят эксперимент с борсодержащими ЖРО Калининской АЭС того же состава с использованием наночастиц оксида железа Fe2O3 (30-80 нм) в количестве не менее 5% от массы ЖРО. Цементные растворы помещают в разборные форы размером 2·2·2 см, выдерживают в воздушно-влажных условиях до отверждения. У застывших образцов-кубиков измеряют предел прочности при сжатии в соответствии с ГОСТ 310.4-86.

Пример 5

Для сравнения, по способу, используемому в прототипе, подвергают электромагнитной обработке в «вихревом слое» борсодержащих ЖРО, не используя нейтрализующих добавок. Электромагнитной обработке подвергают весь цементный раствор, используя традиционные рабочие тела вращения в виде ферромагнитных стержней. Используют ЖРО Калининской АЭС состава примера 4 в количестве 100 см3 сначала смешивают вручную с портландцементом марки не ниже М400 при раствороцементном отношении Р/Ц=0,7. Цементный борсодержащий радиоактивный раствор переносят в металлический стакан, туда же помещают ферромагнитные стержни размером 0,8-1,5 см. Стакан герметично закрывают металлической крышкой и помещают в активную зону камеры лабораторного вихревого аппарата марки ВА-100. Электромагнитную обработку в «вихревом слое» ведут не менее 30 секунд. После обработки цементный раствор выгружают из металлического стакана, ферромагнитные стержни отделяют от цементного раствора с помощью сита. Цементный раствор помещают в разборные формы с ячейками размером 2·2·2 см, выдерживают в воздушно-влажных условиях до отверждения. У застывших образцов-кубиков измеряют предел прочности при сжатии в соответствии с ГОСТ 310.4-86. Результаты эксперимента приведены в табл.2.

Пример 6

Для сравнения готовят борсодержащий радиоактивный цементный раствор без электромагнитной обработки, перемешивая те же компоненты при Р/Ц=0,7 вручную. Цементный раствор помещают в разборные формы с ячейками размером 2·2·2 см, выдерживают в воздушно-влажных условиях до отверждения. У застывших образцов-кубиков измеряют предел прочности при сжатии в соответствии с ГОСТ 310.4-86.

Свойства цементных компаундов, полученных согласно примерам 3-6, приведены в табл.2.

Таблица 2
№ примера Срок схватывания, сут Предел прочности при сжатии, МПа/сут
7 14 28 56
6 >20 - - 4,6 16,8
5 7 0,6 1,5 6,0 17,5
3 3-5 4,3 15,9 16,7 20,2
4 2-4 5,3 16,0 18,2 19,4

Из данных табл.2 следует, что:

- без электромагнитной обработки в «вихревом слое» (пример 6) и нейтрализующих добавок цементирование борсодержащих ЖРО невозможно: компаунд не затвердевает до 20 суток, что создает технологические трудности; прочность компаунда на 28 сут. твердения не удовлетворяет регламентированным требованиям ГОСТ Р 51883-2002;

- согласно предлагаемому способу возможно проводить цементирование борсодержащих ЖРО с сокращением сроков схватывания в 1,4-1,75 раз, достижением прочности в ранние сроки твердения за счет упорядоченной структуры гидроалюмоферритов кальция в 7,2-8,8 раз выше, достижением прочности на 28 сутки твердения в 2,8-3 раза выше;

- реализация предлагаемого способа позволяет цементировать ЖРО с солесодержанием, в 1,7 раза большем, чем в прототипе, с более сложным химическим составом (наличием боратов с кислой реакцией), чем в прототипе, с упрощением технологического процесса - сокращением удельных энергозатрат и продолжительности радиационно опасных операций, а также при отсутствии вторичных ЖРО от дезактивации.

Таким образом, технический результат, достигаемый предлагаемым способом, заключается в следующем:

1 - сокращении сроков схватывания до 2-5 суток, в частности, у цементного раствора на основе борсодержащих ЖРО с солесодержанием до 500 г/дм3;

2 - улучшении прочностных свойств, морозо- и водостойкости конечного цементного компаунда, в частности, на основе борсодержащих ЖРО, благодаря кристаллизации в цементной матрице упорядоченных структур гидроалюмоферритов кальция с участием мелкодисперсных или нанодисперсных частиц оксидов железа после электромагнитной обработки в «вихревом слое»;

3 - возможности цементирования ЖРО, в том числе борсодержащих, с исходным солесодержанием в 1,7 раза выше (до 500 г/дм3), что ведет к экономии объемов хранилищ отвержденных радиоактивных отходов; возможность цементирования более концентрированных ЖРО достигается за счет повышения прочностных свойств под влиянием электромагнитной обработки;

4 - сокращении в 2,4-2,6 раза времени осуществления радиационно опасной операции обработки в «вихревом слое»;

5 - сокращении удельных энергозатрат за счет обработки в «вихревом слое» только жидкой фазы цементного раствора (ЖРО);

6 - упрощении технологического процесса (исключения операции отделения и дезактивации ферромагнитных рабочих тел и разделительной решетки);

7 - обеспечении возможности цементирования борсодержащих ЖРО без применения химических нейтрализующих добавок;

8 - предотвращении образования вторичных ЖРО за счет использования мелкодисперсных или нанодисперсных ферромагнитных рабочих тел - порошков оксидов железа, остающихся в составе конечного цементного компаунда.

1. Способ кондиционирования жидких радиоактивных отходов цементированием с использованием электромагнитной обработки в вихревом слое с ферромагнитными телами вращения и последующим отверждением продукта обработки, отличающийся тем, что в качестве ферромагнитных тел вращения используют мелкодисперсные или нанодисперсные порошки оксидов железа, которые вносят в исходные жидкие радиоактивные отходы в количестве не менее 5% (мас.), после чего радиоактивные отходы последовательно подвергают электромагнитной обработке в вихревом слое и смешиванию с портландцементом при раствороцементном отношении не менее 0,6.

2. Способ по п.1, отличающийся тем, что в качестве ферромагнитных тел вращения используют мелкодисперсные или нанодисперсные порошки оксидов железа размером соответственно 30-50 мкм и 30-80 нм

3. Способ по п.1, отличающийся тем, что в качестве жидких радиоактивных отходов используют жидкие борсодержащие радиоактивные отходы с общим солесодержанием до 500 г/дм3.

4. Способ по п.1, отличающийся тем, что электромагнитную обработку проводят в ″вихревом слое″ не менее 30 секунд.



 

Похожие патенты:
Изобретение относится к радиохимической технологии переработки жидких высокоактивных отходов. Способ иммобилизации ВАО в пористую стеклокерамическую матрицу, получаемую путем вспенивания расплава утилизированного лампового стекла.
Изобретение относится к области атомной техники и касается технологии переработки высокосолевых жидких радиоактивных отходов низкого и среднего уровня активности, содержащих до 30% органических веществ, путем включения их в магнезиальный цемент.

Изобретение относится к отверждению радиоактивных отходов, преимущественно жидких (ЖРО), в контейнерах для их хранения, транспортирования и захоронения. .

Изобретение относится к области охраны окружающей среды и может быть использовано при обезвреживании радиоактивных отходов, а именно выработавших свой ресурс радиоактивных масел и твердых радиоактивных отходов органического происхождения, относящихся к классу сжигаемых целлюлозных материалов.
Изобретение относится к способу остекловывания продуктов деления, получаемых при переработке облученного топлива. .
Изобретение относится к способу иммобилизации ядерных отходов матрицей на базе минеральной композиции, полученной приготовлением основы, содержащей определенное количество минерального материала, синтезированного по меньшей мере частью живой структуры, выбранной из растительного, животного царства и/или из числа микроорганизмов.

Изобретение относится к области ядерной энергетики, в частности к способам переработки радионуклидов щелочноземельных и редкоземельных элементов из отработанного ядерного топлива.

Изобретение относится к переработке жидких радиоактивных отходов (РАО), преимущественно азотнокислых, содержащих щелочные и щелочно-земельные элементы, в том числе соли натрия, радиоизотопы 137Cs и 90Sr.
Изобретение относится к области радиохимической технологии и может быть использовано для иммобилизации радиоактивных отходов. .
Изобретение относится к способам иммобилизации жидких радиоактивных отходов предприятий атомной промышленности методами остекловывания. .
Изобретение относится к области охраны окружающей среды, а именно к области переработки жидких радиоактивных или химических отходов и их изоляции от окружающей среды, и может быть использовано на стадии вывода АЭС из эксплуатации. В заявленном способе отверждение ЖРО осуществляется путем их смешения с полимерным материалом и последующего высушивания. При этом предусмотрено многократное добавление радиоактивных растворов к отвержденному материалу. Техническим результатом является иммобилизация самых разнообразных по составу растворов без какой либо подготовки и при этом происходит значительное сокращение объема отходов, направляемых на хранение, а также сокращение числа технологических стадий по сравнению с традиционными технологиями и возможность срочной локализации отходов в случае возникновения аварийных ситуаций на объектах атомной и химической промышленности.1 з.п. ф-лы.
Изобретение относится к алюмоборосиликатным стеклам для изоляции радиоактивных жидких эфлюентов средней активности. Предложен качественный и количественный состав алюмосиликатного стекла, стеклообразующая добавка для его получения и способ обработки радиоактивного жидкого эфлюента средней активности с использованием предложенной стеклообразующей добавки, приводящий к получению указанного алюмоборосиликатного стекла. Технический результат - предложен способ изоляции радиоактивных жидких эфлюентов средней активности, получаемых при операциях окончательной остановки заводов по переработке ядерного топлива, позволяющий получить материал, обладающий высокой стойкостью к облучению, отличной механической прочностью и высоким сопротивлением к химическим воздействиям. 3 н. и 15 з.п. ф-лы, 3 пр.

Изобретение относится к области кондиционирования жидких радиоактивных отходов методом цементирования, а именно к составу для отверждения жидких радиоактивных отходов, состоящему из портландцемента и природной минеральной добавки. При этом в качестве природной минеральной добавки используют высококремнеземистый природный материал с содержанием диоксида кремния не менее 80% при следующем соотношении компонентов (масс.%): портландцемент 90-95; природная минеральная добавка 5-10. Как правило, в качестве высококремнеземистого природного материала используют диатомит, кварцевую муку, биокремнезем. Изобретение позволяет повысить прочность и надежность фиксации радионуклидов в цементной матрице, а также сократить сроки схватывания цементной матрицы при отверждении жидких борсодержащих радиоактивных отходов. 1 з.п. ф-лы, 1 ил., 4 табл., 16 пр.

Изобретение относится средствам охраны окружающей среды, а именно к способам переработки жидких радиоактивных отходов (ЖРО), предусматривающим их иммобилизацию в кристаллический материал, и может быть использовано на предприятиях атомной энергетики и химико-металлургических производств. Способ включает синтез нерастворимых соединений, иммобилизирующих долгоживущие радионуклиды, и последующее отделение осадка. Используют ЖРО, содержащие комплексы Со с этилендиаминтетрауксусной кислотой (ЭДТА), при этом осуществляют электрохимический синтез нерастворимых соединений кобальта. Для этого к электродам, размещаемым в емкости с ЖРО, подводят электрический ток с параметрами, соответствующими режиму микродугового оксидирования. Процесс осуществляют при нормальных условиях. Техническим результатом является обеспечение возможности очистки ЖРО, содержащих растворимые комплексы металлов с ЭДТА при упрощении аппаратного комплекса, обеспечивающего очистку ЖРО. 1 з. п. ф-лы, 7 ил.
Изобретение относится к способу переработки жидких органических радиоактивных отходов и их изоляции от окружающей среды. В заявленном способе отверждение жидких органических отходов осуществляется путем их смешения с полимерным материалом и последующей обработкой. Добавление полимеров в емкость с жидкими органическими отходами проводят при перемешивании или полимерный материал просто пропитывается раствором. Отвержденная композиция выдерживается на воздухе при комнатной или повышенной температуре. После сушки к отвержденному материалу добавляется следующая порция отходов. Если помимо органических жидкостей, отходы содержат водную фазу, то используется комбинация различных полимерных материалов. После проведения одного или нескольких циклов отверждения жидких отходов проводится операция термической деструкции в замкнутом объеме, затем на зольный остаток наносится защитное покрытие. Техническим результатом является иммобилизация разнообразных по составу органических радиоактивных растворов без предварительной подготовки, а также сокращение объема отвержденных отходов, поступающих в хранилище. 1 табл., 3 з.п. ф-лы.

Заявленная группа изобретений относится к средствам переработки жидких радиоактивных отходов. В заявленном способе в загрязненную жидкость частично погружают один конец капиллярно-пористого элемента, на другом конце которого путем пропускания электрического тока создают зону выпаривания, с транспортировкой в нее загрязненной жидкости за счет капиллярных свойств пористого материала. Компактирование загрязнений в капиллярно-пористом элементе осуществляют путем нагрева жидкости до кипения в зоне выпаривания, пар конденсируют с получением очищенной жидкости. Способ реализуется при помощи устройства, включающего емкость для загрязненной жидкости (1), в которую погружена нижняя часть капиллярно-пористого элемента (5),верхняя часть которого размещена между электродами(6) с обеспечением контакта. Емкость для загрязненной жидкости герметизирована верхней (3) и нижней (2) крышками и оборудована в нижней части подводящим и в верхней крышке отводящим патрубками. Подводящий и отводящий патрубки соединены соответственно с трубопроводом для подвода загрязненной жидкости (4) и паропроводом (7). Техническим результатом является повышение эффективности очистки жидкости от радионуклидов при минимальных энергетических затратах на наиболее энергоемкие операции. 2 н. и 5 з.п. ф-лы, 1 ил.

Изобретение относится к атомной энергетике, а именно к обезвреживанию жидких радиоактивных отходов, и может быть реализовано при утилизации радиоактивных отходов методом отверждения в стабильные твердые матрицы. Способ иммобилизации радионуклидов из жидких радиоактивных отходов заключается в том, что в жидкие радиоактивные отходы добавляют сорбент, в качестве которого используют слоистый титанат гидразина и/или синтетический титаносиликат иванюкит, перемешивают, отстаивают до образования стабильного осадка и прозрачного раствора, фильтруют или декантируют, контролируют гамма- и/или бета-активность полученного раствора, проводят термическую обработку осадка, насыщенного радионуклидами, с получением керамической матрицы, при этом сорбенты применяют в следующем соотношении: от 40 до 100 г титаната на 1 л отходов, от 10 до 20 г титаносиликата на 1 л отходов. Изобретение обеспечивает эффективную иммобилизацию радионуклидов, позволяет производить комплексную очистку жидких радиоактивных отходов и дальнейшее долговременное захоронение продуктов очистки. 5 з.п. ф-лы, 6 табл., 8 пр.

Изобретение относится к области иммобилизации и хранения ядерных отходов. Предложена композиция содопированного оксидами самария и гадолиния алюмоборосиликатного стекла с повышенной радиационной стойкостью для иммобилизации и хранения радиоактивных отходов, состоящая из (молярные проценты): SiO2 62-65, В2О3 16-17, Al2O3 4-5, Na2O 12-13, ZrO2 1,7-1,9 и оксидов самария и гадолиния в концентрациях (молярные проценты): Sm2O3 0,15 и Gd2O3 0,15. Технический результат - увеличение радиационной стойкости алюмоборосиликатных стекол. 1 ил., 2 табл., 5 пр.

Изобретение относится к способу локализации радиоактивных загрязнений, например, в зоне захоронения радиоактивных отходов, и может быть использовано для очистки грунтовых вод от растворенного в них радиоактивного радия-226 (226Ra). В заявленном способе предусмотрена постановка на путях миграции радиоактивных грунтовых вод геохимического барьера из твердых наполнителя, оксида железа и рабочих компонентов, при растворении которых выделяются сульфат-ион SO4 -2 и катион Ва+2. При этом радий-226 фиксируют в кристаллической решетке образующегося радиобарита (Ba, Ra)SO4. В качестве вещества, содержащего сульфат-ион, используют гипс, в качестве вещества содержащего катион Ва+2 , используют витерит при мольном соотношении 1:1-1,15 в виде фракции 1-3 мм. В качестве оксидов железа используют гетит и/или гематит фракции 2-5 мм. В качестве наполнителя используют щебень из бескарбонатных магматических пород: гранит, или диорит, или дунит, или диабаз фракции 1-5 см. В качестве вещества, содержащего катион Ва+2, дополнительно можно использовать барит в виде фракции 2-5 см, при этом соотношение компонент, помещенных в сетчатые ящики, устанавливаемые в дренах, вес.%, составляет: наполнитель 60-70; гипс 10-15; витерит 10-15; барит 1-2; гетит и/или гематит 5-10. Техническим результатом является снижение радиоактивности грунтовых вод за счет фиксации в твердом виде радиоактивного радия непосредственно в водоносном слое. 9 з.п. ф-лы, 2 ил.
Заявленное изобретение относится к способу отверждения тритийсодержащих нефтяных масел, из которых невозможно выделить радиоактивные вещества методом фильтрования. Способ заключается в соединении масла с отвердителем, в качестве которого используют парафин. Приготавливают смесь тритийсодержащего масла и твердого парафина с содержанием масла не более 30% вес., нагревают смесь до температуры 65-70°C, выдерживают до перехода парафина в жидкое состояние и растворения в нем масла, охлаждают полученную смесь. Техническим результатом является исключение необходимости хранения жидких радиоактивных отходов на местах их образования и транспортировки их к месту переработки и/или захоронения, повышение радиационной безопасности производства, возможность получения смеси, которая является твердой, гидрофобной, стойкой к температурным колебаниям, не разрушается под воздействием радиационного излучения от содержащегося в ней трития, не склона к расслоению и маслоотделению в процессе хранения, а также исключение образования тритиевой воды. 1 з.п. ф-лы, 1 пр.
Наверх