Способ получения изделий из сложнолегированных порошковых жаропрочных никелевых сплавов

Изобретение относится к порошковой металлургии жаропрочных никелевых сплавов. Может использоваться в газотурбинных двигателях (ГТД) для изготовления тяжелонагруженных деталей, работающих при повышенных температурах. Гранулы крупностью менее 100 мкм получают методом плазменной плавки и центробежного распыления вращающейся литой заготовки при скорости вращения более 15000 об/мин. Дегазацию гранул проводят в движущемся потоке при массовой подаче 10-50 кг/ч с одновременным заполнением, виброуплотнением и герметизацией капсул. Горячее изостатическое прессование и закалку проводят в течение 2-8 часов в однофазной области на 2-30°C выше температуры сольвуса, скорость охлаждения при закалке поддерживают выше 25°C/мин. Старение проводят в две стадии: для высокожаропрочных сплавов - при 850-890°C и 740-780°C, а для высокопрочных - при 800-760°C и 680-720°C. Повышается ресурс и надежность изделий, работающих в условиях жесткого нагружения в ГТД, за счет более высоких характеристик прочности, жаропрочности и трещиностойкости при рабочих температурах. 1 табл.

 

Предлагаемое изобретение относится к области металлургии, в частности к порошковой металлургии жаропрочных никелевых сплавов, и может быть использовано в газотурбинных двигателях для изготовления тяжелонагруженных деталей, работающих при повышенных температурах.

Известны способы (патенты РФ №2371512 и №2285736) получения изделий из сложнолегированных жаропрочных никелевых сплавов, основанные на многостадийных операциях отжига и деформации слитка и последующей термической обработке при температуре ниже температуры полного растворения γ'-фазы (сольвуса).

Общим недостатком этих способов является то, что из-за неоднородности слитка и проведения термической обработки ниже сольвуса изделия имеют низкий и неоднородный по сечению уровень всех механических свойств, особенно длительной прочности (жаропрочности).

Известен способ получения заготовок из порошков сложнолегированных жаропрочных никелевых сплавов. Способ заключается в получении порошков, их последующей классификации, дегазации и герметизации в контейнере, который подвергают горячему изостатическому прессованию (ГИП) и последующей термической обработке (патент WO 9100159 - прототип).

Недостатком этого способа является то, что получение порошков методом газоструйного распыления расплава, дегазация порошков в контейнере и проведение ГИП при высокой температуре, выше солидуса сплава, приводит к формированию остаточной газовой пористости и литой структуры, а также к существенному росту зерна и в результате этого к значительному снижению прочности, жаропрочности и трещиностойкости.

С целью устранения указанных недостатков предлагается способ получения изделия из сложнолегированных жаропрочных никелевых сплавов, включающий получение порошков (гранул), их классификацию, дегазацию, герметизацию, ГИП и термическую обработку полученного материала.

Предлагаемый способ отличается от известного тем, что используют гранулы крупностью менее 100 мкм, гранулы получают методом плазменной плавки и центробежного распыления вращающейся литой заготовки при скорости вращения более 15000 об/мин, дегазацию гранул проводят в движущемся потоке при массовой подаче 10-50 кг/ч с одновременным заполнением, виброуплотнением и герметизацией капсул, ГИП и закалку проводят в течение 2-8 часов в однофазной области на 2-30°C выше температуры сольвуса, скорость охлаждения при закалке поддерживают выше 25°C/мин и старение проводят в две стадии: для высокожаропрочных сплавов (типа ВВ750П) при температурах 850-890°C и 740-780°C, а для высокопрочных (типа ВВ751П) при температурах 800-760°C и 680-720°C.

Технический результат - более высокие значения прочности, жаропрочности и трещиностойкости при рабочих температурах, и, как следствие, повышение рабочей температуры, увеличение ресурса и надежности деталей, работающих в условиях жесткого нагружения.

Это достигается тем, что получение гранул распылением вращающейся со скоростью более 15000 об/мин заготовки и дегазация гранул в движущемся потоке с одновременным заполнением и герметизацией капсул исключает образование остаточной газовой пористости, а использование гранул мелкой фракции менее 100 мкм и применение ГИП и закалки в однофазной области на 2-30°C выше температуры сольвуса позволяет сформировать в сложнолегированных сплавах однородное рекристаллизованное зерно размером 15-40 мкм. Кроме того, высокие скорости охлаждения при закалке выше 25°C/мин и две ступени старения формируют мелкие равномерно распределенные частицы упрочняющей γ'-фазы размером 0,15-0,30 мкм.

Отсутствие остаточной газовой пористости, мелкое рекристаллизованное зерно и мелкие выделения упрочняющей γ'-фазы обеспечивают получение высоких характеристик прочности, жаропрочности и трещиностойкости. Все это увеличивает ресурс и надежность детали, позволяет повысить рабочую температуру турбины и тем самым повысить ее КПД.

Предлагаемым способом из гранул двух сложнолегированных жаропрочных никелевых сплавов: ВВ750П (высокожаропрочный) и ВВ751П (высокопрочный) были изготовлены заготовки дисков газотурбинного двигателя.

Для осуществления изобретения гранулы фракции 1000 мкм, полученные методом плазменной плавки и центробежного распыления вращающейся литой заготовки при скорости вращения 17000 об/мин, дегазировали в движущемся потоке при массовой подаче 35 кг/ч с одновременным заполнением, виброуплотнением и герметизацией капсул.

Капсулы с гранулами подвергали горячему изостатическому прессованию по следующим режимам:

для сплава ВВ750П - при температуре 1210°C, что на 5°C выше сольвуса, в течение 4 часов;

для сплава ВВ751П - при температуре 1195°C, что на 10°C выше сольвуса, в течение 2 часов.

Далее компактированные заготовки подвергали термической обработке по следующим режимам:

для сплава ВВ750П - закалка при температуре 1215°C, что на 10°C выше сольвуса, выдержка 8 часов, охлаждение со скоростью 30°C/мин и две стадии старения при температурах 870°C и 760°C в течение 16 часов;

для сплава ВВ751П - закалка при температуре 1190°C, что на 5°C выше сольвуса, выдержка 4 часа, охлаждение со скоростью 37°C/мин и две стадии старения при температурах 760°C и 700°C в течение 16 часов.

По способу-прототипу также были изготовлены аналогичные заготовки дисков из гранул сплава ВВ750П и ВВ751П.

Результаты испытаний механических свойств заготовок при температуре 650°C, изготовленных предлагаемым способом и способом-прототипом, проведенных по стандартным методикам испытания, представлены в таблице 1.

Таблица 1
Сплав Способ Механические свойства при 650°C
Предел Предел Длительная Скорость
прочности, теку- прочность на распространения
σB чести, базе 100 усталостной
σ0,2 ч., (жаро- трещины (СРТУ)
прочность), при
σ100 ΔK=31 МПа·м1/2
МПа м/цикл
ВВ750П предла- 1390 1021 1098 1,6·10-7
гаемый
прототип 1276 911 971 6,3·10-7
ВВ751П предла- 1525 1092 1084 3·10-7
гаемый
прототип 1320 963 957 1,1·10-6

Таким образом, предлагаемый способ обеспечивает на заготовках дисков из сложнолегированных сплавов при рабочей температуре 650°C получение предела прочности и предела текучести на 9-15%, а жаропрочности на 12-14% выше по сравнению с прототипом при более низкой в 3-4 раза скорости распространения усталостной трещины.

В результате этого применение предлагаемого способа для изготовления дисков, валов и других деталей газотурбинных двигателей позволит повысить ресурс в 1,2-1,4 раза и рабочую температуру не менее чем на 40°C, что обеспечит более высокий КПД турбины.

Способ получения изделий из сложнолегированных жаропрочных никелевых сплавов, включающий получение гранул, их классификацию, дегазацию, герметизацию, горячее изостатическое прессование (ГИП) и термическую обработку, отличающийся тем, что гранулы крупностью менее 100 мкм получают методом плазменной плавки и центробежного распыления вращающейся литой заготовки при скорости вращения более 15000 об/мин, дегазацию гранул проводят в движущемся потоке при массовой подаче 10-50 кг/ч с одновременным заполнением, виброуплотнением и герметизацией капсул, ГИП и закалку проводят в течение 2-8 часов в однофазной области на 2-30°C выше температуры сольвуса, скорость охлаждения при закалке поддерживают выше 25°C/мин, а старение проводят в две стадии, причем для высокожаропрочных сплавов - при температурах 850-890°C и 740-780°C, а для высокопрочных - при температурах 800-760°C и 680-720°C.



 

Похожие патенты:
Изобретение относится к порошковой металлургии, в частности к получению металлокерамических электроконтактных материалов Cu-Cd/Nb. Из порошков меди и ниобия готовят шихту, проводят холодное прессование и спекание.
Изобретение относится к области металлургии, в частности к способу получения сплавов на основе титана, плавка и разливка которых проводится в вакуумных дуговых гарнисажных печах.
Изобретение относится к металлургии и литейному производству, в частности к способу модифицирования легированного чугуна с шаровидным графитом для изготовления быстроизнашивающихся деталей, например мелющих элементов рудо- и угольных размольных мельниц.
Изобретение относится к получению наноструктур. Содержащую карбид наноструктуру получают осаждением на основу нанослоя металла или неметалла, или их окислов и последующей карбидизацией путем обработки в угарном газе в присутствии угля или сажи при температуре 1400-1500°С.

Изобретение относится к металлургии, в частности к получению карбидочугуна с отсутствием пор в объеме сплава, и может быть использовано для изготовления рабочих частей выглаживателей.
Изобретение относится к области металлургии, в частности к волокнистым композиционным материалам, армированным непрерывными волокнами оксида алюминия, и может быть использовано в качестве конструкционного материала в авиационной технике.

Изобретение относится к углеродсодержащим медным сплавам и может быть использовано в электротехнике для изготовления электрических проводов. Медный сплав получают добавлением графита гексагональной системы в высокотемпературную среду с температурой в диапазоне от 1200°С до 1250°С в количестве, необходимом для получения медного сплава с содержанием углерода в диапазоне от 0,01% до 0,6% по весу.

Изобретение относится к порошковой металлургии, в частности к получению композиционных материалов с металлической матрицей из алюминия или его сплавов, армированных керамическим наполнителем из нитридов или карбидов бора и вольфрамом.

Изобретение относится к области порошковой металлургии, в частности к композиционным материалам на основе алюминия, и может быть использовано в качестве конструкционного материала для деталей, работающих в условиях высоких механических и тепловых нагрузок, например для поршней форсированных двигателей внутреннего сгорания, работающих при температурах их нагрева 350°C и выше.
Изобретение относится к области металлургии, в частности к способам получения сплавов на основе кобальта, предназначенных для каркасов металлокерамических и бюгельных зубных протезов.

Изобретение относится к порошковой металлургии, в частности к получению износостойкого антифрикционного самосмазывающегося сплава с большим содержанием олова. Распыленные порошки состава Al-40Sn прессуют в брикет и спекают в инертной атмосфере при температуре 590-615°C в течение 90-30 минут.

Изобретение относится к порошковой металлургии, в частности к получению деталей из низколегированных порошковых материалов на основе железа с повышенными физико-механическими и эксплуатационными свойствами.

Изобретение относится к порошковой металлургии, в частности к получению изделий из жаропрочных никелевых сплавов. .
Изобретение относится к порошковой металлургии, в частности термической обработке спеченных изделий с открытой пористостью в электролите. .

Изобретение относится к области термической обработки режущего инструмента. .

Изобретение относится к области упрочняющей обработки твердых сплавов инструментального назначения. .

Изобретение относится к обработке металлов давлением и предназначено для получения круглых в плане изделий с мелкозернистой структурой. .
Изобретение относится к порошковой металлургии жаропрочных никелевых сплавов. .

Изобретение относится к области машиностроения, в частности к обработке лазером при изготовлении и ремонте различных машин и механизмов. Для повышения физико-механических свойств инструментальных и конструкционных материалов осуществляют лазерную обработку изделий с использованием лазера импульсного действия при полезной энергии импульса 60-500 Дж, плотности мощности импульса 1,2·1010-4,3·1011 Вт/м2, длине волны 1,064·10-6 м, продолжительности импульса 0,8·10-3 с, диаметре луча 1,2·10-3-2,5·10-3 м и расстоянии от места облучения до упрочняемой поверхности 12-30 мм. 7 ил.
Наверх