Способ определения состояния продуктивного пласта импульсным нейтронным методом

Использование: для определения состояния продуктивного пласта импульсным нейтронным методом. Сущность изобретения заключается в том, что перемещают каротажный прибор по стволу скважины, генерируют импульсно-периодический поток быстрых нейтронов в скважине, осуществляют временной анализ плотности потока тепловых нейтронов на каждом кванте глубины, на которые разбивается пласт, определяют значения фоновых декрементов спада плотности тепловых нейтронов, при этом закачивают в скважину под давлением раствор-реагент, содержащий соединения элементов с аномально высоким макросечением радиационного захвата нейтронов, вторично определяют значения декрементов спада плотности тепловых нейтронов, генерируют в скважине ультразвуковое излучение, воздействуют этим излучением на пласт, после чего снова определяют значения декрементов спада плотности тепловых нейтронов по выполнению соответствующей системы неравенств, содержащих значения декрементов, полученные на трех этапах измерений. По выполнению этих неравенств судят о возможности поддержания дебита скважины на эксплуатационном уровне при периодическом воздействии на пласт продольной акустической волной давления. Технический результат: обеспечение возможности выделения продуктивных пластов, в которых применение метода акустического воздействия на пласт для поддержания дебита скважины на эксплуатационном уровне дает положительный результат. 1 ил.

 

Изобретение относится к ядерным методам контроля состояния скважин в процессе разработки и эксплуатации нефтяных месторождений с использованием нейтронных полей, генерируемых в малогабаритных ускорительных трубках.

Известны импульсные нейтронные методы исследования разрезов скважин, в которых дифференциация элементного состава пластов осуществляется по измеренным значениям декремента спада плотности тепловых нейтронов в пласте, определяемым макросечением радиационного захвата нейтронов [1-3].

Наиболее близким к предлагаемому техническому решению является импульсный нейтронный метод, описанный в работе [3], который может быть взят за прототип.

Согласно способу-прототипу перемещают каротажный прибор по стволу скважины, генерируют импульсно-периодический поток быстрых нейтронов в скважине, осуществляют временной анализ плотности потока тепловых нейтронов в пласте, на каждом кванте глубины с номером n=(1÷N), на которые разбивается пласт с мощностью Н, определяют значения декрементов спада плотности тепловых нейтронов-λ в точках . Этот способ позволяет устанавливать местонахождение пласта, содержащего продуктивный углеводород.

В процессе работы действующей скважины ее состояние изменяется в сторону уменьшения дебита, в результате засорения зоны извлечения продуктивного флюида различными загрязняющими примесями. Для восстановления дебита и поддержания его на эксплуатационном уровне можно осуществлять акустическое воздействие на пласт продольной ультразвуковой волной давления, очищая, таким образом, зону извлечения флюида от указанных выше загрязнений [4]. Следует отметить, что такой способ восстановления и поддержания дебита не всегда может приводить к положительному результату. Существуют нефтяные коллекторы с такими физико-химическими свойствами и структурой, при которых акустическое воздействие не может оказывать существенного влияния на проницаемость пласта и возможность очистки зоны, прилегающей к скважине.

Недостатком способа-прототипа является невозможность выделения продуктивных пластов, в которых применение метода акустического воздействия на пласт для поддержания дебита скважины на эксплуатационном уровне дает положительный результат. Таким образом, воздействие на значительное число объектов оказывается не эффективным. При этом существенно повышается стоимость профилактических работ по очистке скважин в данном регионе.

Техническим результатом предлагаемого способа является уменьшение стоимости профилактических работ по повышению дебита скважин.

Этот результат достигается тем, что в известном способе [3], включающем генерацию импульсно-периодического потока быстрых нейтронов в скважине, временной анализ плотности потока тепловых нейтронов в пласте на каждом кванте глубины с номером n=(1÷N), на которые разбивается пласт с мощностью Н, определение значений фоновых декрементов - λф в точках пласта, согласно предлагаемому способу, закачивают в скважину под давлением раствор-реагент, содержащий соединения элементов с аномально высоким макросечением радиационного захвата нейтронов (Cl, В, Cd, Gd, Sm, Eu, Dy), вторично определяют значения декрементов спада плотности тепловых нейтронов - λ1 в точках xn, генерируют в скважине ультразвуковое излучение с частотой f=(10÷25) кГц, воздействуют этим излучением на пласт, после чего снова определяют значения декремента спада плотности тепловых нейтронов - λ2 в точках хn и по выполнению неравенств

,

где

- статистическая погрешность определения декремента спада плотности тепловых нейтронов на n-м кванте глубины в пласте,

ΔλФn), Δλ1n), Δλ2n) - статистические погрешности определения λФ, λ1и λ2 на каждом этапе измерений, судят о возможности поддержания дебита скважины на эксплуатационном уровне при периодическом воздействии на пласт продольной акустической волной давления.

Первое неравенство было установлено в процессе обработки данных эксперимента по опробованию предлагаемой методики на различных действующих нефтяных скважинах Западной Сибири, полученных сотрудниками Института геофизических и радиационных технологий Международной академии наук высшей школы. Нарушение неравенства (1) означает в случае нефтяного коллектора наличие у него таких физико-химических свойств и структуры, при которых акустическое воздействие не может оказывать существенное влияние на его проницаемость и возможность очистки. Доля таких скважин в Западной Сибири по результатам проведенных исследований составляет примерно 30%.

Значения декрементов и погрешности ΔλФn), Δλ1n), Δλ2n) должны определяться в процессе обработки сигналов импульсного нейтронного каротажа по специальной компьютерной программе при минимальной доверительной вероятности 0.95 [5].

Рассмотрим пример реализации способа при анализе состояния одного из пластов действующей нефтяной скважины на Талинском месторождении (Западная Сибирь).

В проведенном эксперименте был использован стандартный аппаратурно-методический комплекс импульсного нейтронного каротажа на базе серийной ускорительной трубки, генерирующей поток быстрых нейтронов в результате ядерной реакции T(d,n)4He [6] и скважинный ультразвуковой излучатель с частотой колебаний 20 кГц. Рассматривался участок разреза скважины мощностью Н=3м, содержащей N=10 квантов глубины. В процессе работы осуществлялся импульсный нейтронный каротаж до и после закачки раствора-реагента и в результате компьютерной обработки результатов определялись значения λФn), λ1n) на каждом кванте глубины. Затем производился запуск ультразвукового излучателя. При этом в скважине возбуждалось акустическое поле с интенсивностью до 10 кВт/м2. Этому значению соответствует интенсивность ультразвуковой волны в пласте, на расстоянии 1 м от стенки скважины до 0.2 кВт/м2. После прекращения работы излучателя снова проводился импульсный нейтронный каротаж и определялись значения λ2n). Далее осуществлялась проверка неравенств (1) и делалось заключение о возможности поддержания дебита скважины на эксплуатационном уровне при периодическом воздействии на пласт продольной акустической волной давления. На рисунке представлены зависимости λФ(х) - нижний график, λ1(х) - верхний график и λ2(х) - средний график, построенные путем сплайновой интерполяции значений λФn), λ1n), λ2n). По оси абсцисс откладывалось расстояние по стволу скважины в м. Координата х=0, соответствовала началу исследуемого участка. По оси ординат откладывались значения декрементов в относительных единицах. Статистическая погрешность определения декремента спада плотности тепловых нейтронов на n-м кванте глубины в пласте определялась по формуле (2) с использованием программы [5].

Этот пример иллюстрирует ситуацию, когда неравенства (1) выполняются и для поддержания дебита скважины может эффективно использоваться метод акустического воздействия.

Таким образом, предлагаемый способ позволяет заранее исключить из рассмотрения нефтеносные скважины, для которых метод акустического воздействия не может дать положительный результат, и тем самым уменьшить непроизводительные затраты на проведение работ по поддержанию дебита скважин.

Источники информации

1. Физические основы импульсных нейтронных методов исследования скважин / Шимелевич Ю.С., Кантор С.А., Школьников А.С. и др. // М., Недра, 1976, 161 с.

2. Импульсный нейтронный каротаж / Басин Я.Н., Мартьянов И.А., Цейтлин В.Г. и др. // М., ВНИИЯГГ, 1984, 65 с.

3. Дистанционный радиационный контроль с линейными ускорителями. Т.2. Комплексы радиационного контроля / Богданович Б.Ю., Нестерович А.В., Шиканов А.Е. и др. // М., Машиностроение, 2012, 284 с.

4. Экологическая безопасность и акустическое воздействие / Атаманов В.В., Жуйков Ю.Ф., Зилонов М.О., Попова А.В. // Материалы Международной научно-практической конференции “Проблемы экологии и безопасности жизнедеятельности” под редакцией проф. В.Н. Пряхина, в.3, М., 2002, с.218-222.

5. Программа обработки данных ИНК на базе двухкомпонентной модели сигнала / Мартьянов И.А., Старцев А.А., Федына Е.А. и др. // Научно-технический вестник «Каротажник», №52, Тверь, 1998, с.68-72.

6. Аппаратура импульсного нейтрон-нейтронного каротажа для применения в современных технологиях исследования скважин/ Амурский А.Г., Курдюмов И.Г., Титов И.А. и др. // Сб. материалов Международной научно-технической конференции «Портативные генераторы нейтронов и технологии на их основе», М., ВНИИА им. Н.Л. Духова, 2005, с.253-255.

Способ определения состояния продуктивного пласта импульсным нейтронным методом, при котором перемещают каротажный прибор по стволу скважины, генерируют импульсно-периодический поток быстрых нейтронов в скважине, осуществляют временной анализ плотности потока тепловых нейтронов на каждом кванте глубины с номером n=(1÷N), на которые разбивается пласт с мощностью Н, определяют значения фоновых декрементов спада плотности тепловых нейтронов - λФ в точках пласта, отличающийся тем, что закачивают в скважину под давлением раствор-реагент, содержащий соединения элементов с аномально высоким макросечением радиационного захвата нейтронов, вторично определяют значения декрементов спада плотности тепловых нейтронов - λ1 в точках хn, генерируют в скважине ультразвуковое излучение с частотой в диапазоне f=(10÷25) кГц, воздействуют этим излучением на пласт, после чего снова определяют значения декрементов спада плотности тепловых нейтронов - λ2 в точках хn и по выполнению неравенств
, ,
где

- статистическая погрешность определения декремента спада плотности тепловых нейтронов на n-м кванте глубины в пласте, ΔλФn), Δλ1n), Δλ2n) - статистические погрешности определения λФ, λ1 и λ2 на каждом этапе измерений, судят о возможности поддержания дебита скважины на эксплуатационном уровне при периодическом воздействии на пласт продольной акустической волной давления.



 

Похожие патенты:

Использование: для измерения пористости. Сущность изобретения заключается в том, что нейтронный скважинный прибор для определения пористости включает источник нейтронов, устройство контроля нейтронов, детектор нейтронов и схему обработки данных.

Изобретение относится к области геофизики и может быть использовано для определения насыщения флюидом порового пространства пород исследуемых пластов. Способ определения насыщения водой в подземном пласте включает в себя определение глубины проникновения в пласт на основании множества измерений, выполняемых в стволе скважины, пробуренном сквозь пласт.

Использование: для определения коэффициента нефтегазонасыщенности. Сущность: заключается в том, что выполняют измерения методом ИНК и расчет макроскопического сечения поглощения тепловых нейтронов горной породы, определяют по комплексу ГИС макрокомпонентный состав пород, включая пористость, при этом для расчета макроскопического сечения поглощения тепловых нейтронов пластовой водой и углеводородами используют их элементный состав и плотность, а сам расчет углеводородонасыщенности осуществляют по определенной зависимости, при этом для расчета макроскопических сечений поглощений тепловых нейтронов макрокомпонентами, образующими твердую фазу пород, дополнительно подготавливают коллекцию образцов керна из опорных скважин, на которой проводят измерения минерального, элементного состава образцов и потери веса образца при нагревании, формируют минерально-компонентную модель породы и рассчитывают макроскопические сечения поглощения тепловых нейтронов для каждой макрокомпоненты, образующей твердую фазу породы.

Использование: для каротажа скважины с помощью нейтронно-индуцируемого гамма-излучения. Сущность: заключается в том, что скважинный инструмент содержит источник нейтронов, сконфигурированный для излучения нейтронов согласно схеме формирования импульсов, причем схема формирования импульсов включает в себя задержку между двумя импульсами, причем задержка является достаточной, чтобы, по существу, все события захвата нейтронов, обусловленные излученными нейтронами, могли прекратиться, и причем задержка больше или равна приблизительно 1 с, детектор гамма-излучения, сконфигурированный для регистрации гамма-излучения активации, вырабатываемого, когда элементы, активированные излученными нейтронами, распадаются до нерадиоактивного состояния.

Использование: для определения абсолютных концентраций элементов из нейтронной гамма-спектроскопии. Сущность: заключается в том, что система для нейтронной гамма-спектроскопии содержит скважинный инструмент, содержащий источник нейтронов, сконфигурированный испускать нейтроны в подземную формацию, чтобы вызвать события неупругого рассеяния и события поглощения нейтронов; монитор нейтронов, сконфигурированный обнаруживать скорость счета испущенных нейтронов; и детектор гамма-излучения, сконфигурированный принимать спектр гамма-излучения, полученный, по меньшей мере, частично, из неупругого гамма-излучения, полученного вследствие событий неупругого рассеяния и гамма-излучения захвата нейтронов, полученных вследствие событий захвата нейтронов; и схему обработки данных, сконфигурированную определять относительные вклады элементов из спектра гамма-излучения и определять абсолютный вклад элементов на основании, по меньшей мере, частично, нормализации относительных вкладов элементов по скорости счета испущенных нейтронов.

Изобретение относится к области исследования или анализа материалов радиационными методами с измерением вторичной эмиссии с использованием нейтронов, в частности для неразрушающего дистанционного контроля различных скрытых веществ.

Использование: для измерения пористости методом нейтронного каротажа. Сущность изобретения заключается в том, что представлены система, способ и прибор для определения значений пористости подземного пласта, скорректированных с учетом влияния скважины. Скважинный прибор, опускаемый в скважину подземного пласта, включает источник нейтронов, два или более детектора нейтронов и схему обработки данных. Источник нейтронов испускает нейтроны в подземный пласт. Два или более детектора нейтронов размещаются в двух или более азимутальных ориентациях в скважинном приборе и детектируют нейтроны, рассеянные подземным пластом или скважинным флюидом в скважине или ими обоими. Основываясь на нейтронах, детектированных детекторами нейтронов, электронная схема обработки данных определяет значение пористости подземного пласта, скорректированное с учетом влияния скважины. Технический результат: повышение точности измерений. 4 н. и 25 з.п. ф-лы, 37 ил.

Использование: для определения плотности подземных пластов. Сущность изобретения заключается в том, что определение плотности подземного пласта, окружающего буровую скважину, производят на основании измерения гамма-излучения, возникающего в результате облучения пласта ядерным источником в корпусе прибора, расположенного в буровой скважине, и измерения потока гамма-излучения в корпусе прибора при двух различных расстояниях детекторов от источника, при этом способ содержит определение по существу прямолинейного соотношения между измерениями потоков гамма-излучения при каждом отличающемся расстоянии детекторов применительно к плотности пласта в случае отсутствия отклонения корпуса прибора; определение соотношения, устанавливающего девиацию плотности за счет отклонения прибора, определяемой на основании измерений измеряемого потока гамма-излучения при двух различных расстояниях детекторов, по плотности, вычисляемой на основании прямолинейных соотношений; и для данной пары измерений потока гамма-излучения при различных расстояниях детекторов определение пересечения соотношения, устанавливающего девиацию, с прямолинейным соотношением с тем, чтобы обозначить плотность пласта, окружающего буровую скважину; при этом источник представляет собой нейтронный источник, а гамма-излучение, измеряемое в корпусе прибора, представляет собой наведенное нейтронами гамма-излучение, являющееся результатом нейтронного облучения пласта. Технический результат: повышение точности определения плотности подземных пластов. 2 н. и 23 з.п. ф-лы, 5 ил.

Использование: для определения текущей нефтенасыщенности пластов-коллекторов, пересеченных скважиной. Сущность изобретения заключается в том, что согласно способу выполняют периодическое облучение горных пород импульсами генератора быстрых нейтронов, регистрацию гамма-излучения неупругого рассеяния (ГИНР) нейтронов и гамма-излучения радиационного захвата (ГИРЗ) тепловых нейтронов детектором гамма-излучения в реальном режиме времени при непрерывном перемещении скважинного прибора и заданном шаге квантования по глубине характеризуется тем, что перед процессом измерений дополнительно определяют оптимальную длительность импульса. Заявлено также устройство импульсного нейтронного гамма-каротажа, содержащее размещенные в охранном кожухе импульсный генератор быстрых нейтронов, сцинтилляционный детектор гамма-излучения, оптически соединенный с фотоэлектронным умножителем, экран, расположенный между импульсным генератором быстрых нейтронов и сцинтилляционным детектором, блок преобразования “аналог-код”, блок центрального процессора, блок приемопередатчика, первый и второй блоки памяти, программно-управляемый блок высокого напряжения, характеризующееся тем, что дополнительно содержит блок управления временным режимом импульсного нейтронного генератора. Технический результат: повышение точности при проведении импульсного нейтронного каротажа. 2 н.п. ф-лы, 7 ил.

Изобретение относится к ядерной геофизики и служит для оценки плотности цементного камня скважин подземных хранилищ газа (ПХГ) в процессе их эксплуатации без подъема насосно-компрессорных труб (НКТ). Заявленный способ включает измерение текущих значений A как отношений Ca/Si в скважинах аппаратурой типа широкодиапазонного спектрометрического нейтронного гамма-каротажа (СНГК-Ш), выбор Amin и Amax (минимальное и максимальное значение отношения Ca/Si), определение по результатам измерений двойного разностного параметра (ДРП(Ca/Si) по формуле: Д Р П ( C a / S i ) = A − A min A max − A ш т . Калибровка спектрометра осуществляется статическим методом, основанным на соотношениях двойного разностного параметра (ДРПca/si) к величинам границ плотности нормального цементного камня, которые выбирают из условия: максимальному значению 1 ДРПca/si соответствует значение плотности цементного камня -1,95 г/см3 - верхняя граница плотности нормального цементного камня, а среднему значению 0,57 ДРПca/si соответствует текущее значение плотности цементного камня -1,65 г/см3 - нижняя граница плотности цементного камня. Плотность гамма-излучения (γснгк) рассчитывают по формуле: γснгк=1,25+0,7 ДРПca/si. Технический результат - повышение точности получаемых данных. 3 ил.

Изобретение относится к области регистрации ионизирующих излучений и может быть использовано при создании радиационных детекторов. Цилиндрический позиционно-чувствительный детектор содержит множество сцинтилляторов, разделенных отражающим материалом, помещенным между сцинтилляторами, каждый сцинтиллятор находится в оптическом контакте с фотоприемником, при этом сцинтиллятор состоит из одного или нескольких цилиндрических наборов, составленных из сцинтиллирующих волокон, обеспечивающих регистрацию нейтронного или гамма-излучения, сцинтиллирующие волокна снабжены светоотражающими оболочками и светонепроницаемыми покрытиями, противоположные торцы сцинтиллирующих волокон соединены посредством оптических соединителей с двумя волоконными световодами, находящимися с противоположной стороны в оптическом контакте с двумя матричными фотоприемниками, число фоточувствительных элементов в каждом из которых равно или больше числа сцинтиллирующих волокон. Технический результат - определение направления, под которым излучение приходит на детектор в плоскости, перпендикулярной оси корпуса прибора, т.е. обеспечение азимутального углового разрешения. 1 ил.

Использование: для регистрации нейтронного и гамма-излучений, применяемых для измерения ядерно-физических характеристик породы при каротаже нефтяных и газовых скважин. Сущность изобретения заключается в том, что скважинное устройство с двумя зондами из нескольких детекторов, включающее в себя корпус, внутри которого находится по крайней мере один источник излучения, первый из зондов содержит более одного детектора, расположенных равномерно по углу вдоль окружности в плоскости, перпендикулярной оси скважинного устройства, второй зонд содержит как минимум один детектор, смещенный вдоль оси скважинного устройства относительно первого зонда и повернутый вокруг оси скважинного устройства относительно детекторов первого зонда, число детекторов во втором зонде составляет не менее двух, в каждом зонде детекторы располагаются параллельно оси скважинного устройства, а детекторы в зондах повернуты вокруг оси скважинного устройства по отношению друг к другу так, что минимальное угловое расстояние φ между двумя соседними проекциями детекторов из первого и второго зондов на плоскость, перпендикулярную оси скважинного устройства, составляет: где N1 и N2 - число детекторов в первом и во втором зондах, k - наименьший общий делитель для чисел N1 и N2. Технический результат: уменьшение погрешности измерения интенсивности излучения за счет использования оптимального количества и расположения детекторов в случае асимметричного расположения скважинного устройства в скважине. 3 ил., 1 табл.

Использование: для бесконтактного измерения плотности вещества с помощью нейтронного и гамма-излучения. Сущность изобретения заключается в том, что устройство для радиационного измерения плотности включает в себя источник излучения, находящийся на оси блока радиационной защиты и имеющий возможность менять положение с помощью устройства перемещения, сцинтилляционные детекторы со сцинтилляторами, расположенными в одной плоскости в форме соосных с источником излучения и блоком радиационной защиты вставленных друг в друга колец, при этом в качестве источника излучения используется электронный генератор импульсного излучения быстрых нейтронов, подключенный к блоку управления, сцинтилляторы в кольцах дополнительно разбиты на равные угловые сектора, количество угловых секторов составляет не менее двух, каждый из угловых секторов содержит сцинтилляторы для регистрации одного или нескольких видов излучений: эпитепловых или тепловых нейтронов, а также гамма-излучения, сцинтилляторы в кольцах и угловых секторах расположены по отношению друг к другу с зазором, сцинтилляторы, предназначенные для регистрации разных видов излучения, располагаются в каждом кольце чередующимся образом, сцинтилляторы, предназначенные для регистрации определенного вида излучения, располагаются в смежных кольцах по одному радиусу, фотоприемные устройства сцинтилляционных детекторов эпитепловых и/или тепловых нейтронов подключены к временным анализаторам, а фотоприемные устройства сцинтилляционных детекторов гамма-излучения подключены к амплитудным анализаторам, выходы амплитудных и временных анализаторов, а также блок управления подключены к процессору. Технический результат: обеспечение возможности измерения азимутального распределения плотности исследуемого вещества. 1 ил.

Использование: для измерения плотности и пористости породы с использованием нейтронного излучения. Сущность изобретения заключается в том, что скважинное устройство с двухсторонним расположением измерительных зондов содержит нейтронный источник, расположенный соосно с корпусом скважинного устройства, а также два нейтронных и два гамма-зонда, находящиеся по разные стороны от нейтронного источника, при этом в качестве нейтронного источника применяется нейтронный генератор, каждый нейтронный зонд содержит не менее двух детекторов, которые располагаются между корпусом скважинного устройства и корпусом нейтронного генератора параллельно оси скважинного устройства, одинаково удаленно от оси скважинного устройства и одинаково удаленно от мишени нейтронного генератора, равномерно по углу вокруг оси скважинного устройства, причем детекторы в различных нейтронных зондах повернуты вокруг оси скважинного устройства по отношению друг к другу. Технический результат: уменьшение длины нейтронных измерительных зондов в случае применения в качестве нейтронного источника нейтронного генератора и, как следствие, уменьшение времени измерений. 1 ил.

Использование: для оценки формаций, смежных со стволом скважины. Сущность изобретения заключается в том, что описан прибор нейтронного каротажа с мульти-источником. Прибор каротажа с несколькими источниками содержит выровненные по оси детектор гамма-излучения и детектор тепловых нейтронов, которые расположены с двух сторон от мульти-источника нейтронов. Технический результат: обеспечение возможности регулировки угла интерференционного поля для расположения предпочтительной точки фокусирования нейтронной активности ближе к детектору, чем в случае с одним стандартным источником нейтронов. 6 н. и 13 з.п. ф-лы, 1 табл., 13 ил.

Изобретение относится к нефтяной промышленности и может найти применение при подсчете запасов углеводородов в коллекторах доманиковых отложений. Технический результат - подсчет запасов углеводородов в коллекторах доманиковых отложений на основании проведения геофизических исследований существующих скважин. В способе подсчета запасов углеводородов в коллекторах доманиковых отложений проводят геофизические исследования в существующих скважинах, проходящих через интервалы доманиковых отложений. В качестве метода геофизических исследований используют метод импульсного спектрометрического нейтронного гамма-каротажа. Для базы сравнения при определении продуктивных интервалов используют данные метода импульсного спектрометрического нейтронного гамма-каротажа скважины, перфорированной в интервале доманиковых отложений, в которой проведен гидроразрыв пласта и получен промышленный дебит нефти. Помимо метода импульсного спектрометрического нейтронного гамма-каротажа при обсчете полученных данных дополнительно используют данные прочих методов геофизических исследований. 1 з.п. ф-лы.
Наверх