Способ автоматического контроля крупности частиц в потоке пульпы

Изобретение относится к способам автоматического контроля крупности частиц в потоке пульпы в процессе измельчения материала и может быть использовано в области обогащения руд полезных ископаемых, а также в горно-металлургической, строительной и других областях промышленности. Способ автоматического контроля крупности частиц в потоке пульпы включает периодическое ощупывание частиц материала микрометрическим щупом с преобразованием величины частиц, зафиксированных механизмом ощупывания, в электрический сигнал, пропорциональный их абсолютному размеру. Для чего отбирают пробу пульпы, фильтруют, направляют в кондиционирующую емкость. Затем измеряют плотность пробы в кондиционирующей емкости. При этом разбавляют пробу пульпы водой до состояния, обеспечивающего получение монослоя частичек материала при фиксировании их микрометрическим щупом. Затем производят прокачку разбавленной пробы в режиме циркуляции по контуру, включающему кондиционирующую емкость и камеру измерения. После чего осуществляют измерение крупности частичек материала в циркулирующем потоке, проходящем через камеру измерения, в течение периода времени, длительность которого задается по результатам предварительной калибровки, и производят вычисление содержания контролируемого класса по результатам измерения содержаний промежуточных классов крупности. Техническим результатом является повышение надежности и точности измерений гранулометрического состава материала в потоке пульпы. 4 ил.

 

Изобретение относится к способам автоматического контроля крупности частиц в потоке пульпы в процессе измельчения материала и может быть использовано в области обогащения руд полезных ископаемых, а также в горно-металлургической, строительной и других областях промышленности.

Известны различные способы для определения крупности частиц в потоке пульпы, основанные на ситовом анализе, поглощении ультразвука, дифракции лазерного луча при прохождении через контрольную пробу и многие другие. Основными недостатками большинства известных способов является сложность подготовки пробы к анализу, сложность технической реализации и, как следствие, высокая стоимость, что ограничивает их широкое применение в промышленности.

Одним из немногих способов контроля крупности частиц в потоке, доведенных до стадии промышленного внедрения, является способ контроля, основанный на автоматизации процесса седиментационного анализа (SU, AC №1260759, 1985 г., кл. G01N 15/04.). Автоматический гранулометр, используемый для реализации способа, включает осадительную трубу, сообщающуюся с ней измерительную трубку с датчиком уровня и воронку подачи пробы. Определение крупности в данном устройстве основано на анализе скорости осаждения твердых частиц различной крупности в жидкости под действием гравитационной силы.

Недостатком известного гранулометра является низкая точность измерения, так как скорость осаждения частиц зависит не только от крупности, но и их формы, стесненности движения, плотности жидкости и многих других факторов.

Наиболее близким по технической сущности и достигаемому результату является способ автоматического контроля крупности частиц в потоке пульпы, включающий периодическое ощупывание частиц материала микрометрическим щупом с преобразованием величины частиц, зафиксированных механизмом ощупывания, в электрический сигнал, пропорциональный их абсолютному размеру (RU, патент на полезную модель №20965 2001 г., кл. G01N 15/02).

Недостатком данного способа является низкие надежность и точность измерений, обусловленные рядом причин. Одной из них является то обстоятельство, что при нахождении микрометрического щупа в потоке материала, например в пульпе технологического процесса обогатительных фабрик, он обрастает загрязняющими пульпу включениями, такими, как щепа, ветошь и т.п., что приводит к искажению или полному прекращению измерений. Другая причина заключается в том, что при достаточно высокой плотности потока микрометрический щуп фиксирует (прижимает к измерительной пяте) только самые крупные частички. Эта ситуация иллюстрируется рисунком (фиг.1). Как можно видеть, при определенной плотности материала при возвратно-поступательном движении микрометрического щупа фиксируются и измеряются только наиболее крупные частички. Поэтому пересчет содержания контрольного класса крупности осуществляется по статистической зависимости содержания контролируемого класса от среднего количества наиболее крупных частиц, попавших под измерительный щуп. При стабильной форме кривой распределения расчет по статистической зависимости содержания мелких классов от содержания крупных вполне допустим. Однако на практике форма кривой распределения не остается постоянной, т.к. на ее форму влияет множество факторов, таких, как меняющийся минералогический состав руды, переменные характеристики измельчительно-классификационного оборудования и т.п. В качестве примера на фиг.2 представлена типичная картина деформации формы гранулометрической характеристики. Как можно видеть, одному и тому же значению крупного класса при изменении формы гранулометрической характеристики могут соответствовать различные значения контролируемого класса. Вследствие этого расчет содержания контролируемого класса крупности по полученной при таких условиях зависимости приведет к существенным погрешностям измерения. Гораздо с большей точностью текущую форму гранулометрической характеристики можно аппроксимировать, если есть возможность контролировать некоторые промежуточные классы. Такие условия могут быть созданы, если снизить плотность контролируемой пробы до значения, когда частички твердого будут рассредоточены до такой степени, при которой микрометрический щуп при возвратно-поступательном движении будет фиксировать не только крупные частички, но и отдельные частички других размеров (фиг.3). Используя результаты измерения крупных и промежуточных классов крупности, можно более точно рассчитать содержание контролируемого, существенно более мелкого класса, прямое измерение которого в потоке микрометрическим щупом затруднено.

Технический результат, на достижение которого направлено настоящее изобретение, заключается в повышении надежности и точности измерений гранулометрического состава материала в потоке пульпы за счет устранения влияния на результаты измерений загрязнения пульпы посторонними материалами и нестабильности формы кривой распределения частиц по крупности.

Указанный технический результат достигается тем, что в способе автоматического контроля крупности частиц в потоке пульпы, включающем периодическое ощупывание частиц материала микрометрическим щупом с преобразованием величины частиц, зафиксированных механизмом ощупывания, в электрический сигнал, пропорциональный их абсолютному размеру, согласно изобретению, отбирают пробу пульпы для анализа, фильтруют, направляют в кондиционирующую емкость, измеряют плотность пробы в кондиционирующей емкости, при этом разбавляют пробу пульпы водой до состояния, обеспечивающего получение монослоя частичек материала при фиксировании их микрометрическим щупом, затем производят прокачку разбавленной пробы в режиме циркуляции по контуру, включающему кондиционирующую емкость и камеру измерения, и осуществляют измерение крупности частичек материала в циркулирующем потоке, проходящем через камеру измерения, в течение периода времени, длительность которого задается по результатам предварительной калибровки, и производят вычисление содержания контролируемого класса по результатам измерения содержаний промежуточных классов крупности.

Предложенный способ реализуется устройством, представленным на чертеже.

На фиг.4 изображено устройство измерения гранулометрического состава для осуществления способа автоматического контроля крупности частиц в потоке пульпы.

Устройство измерения гранулометрического состава содержит кондиционирующую емкость 1 с датчиком 2 уровня и плотности (например, промышленный сигнализатор уровня СУ 802) материала и датчиком 3 аварийного уровня, пробоотборное устройство 4, фильтрующий элемент 5 на тракте подачи пробы в емкость 1, клапан 6 подачи воды на разбавление, циркуляционный насос 7, клапан 8 сброса материала в дренаж, тракт 9 подачи материала в измерительную камеру 10, датчик 11 крупности частиц (например, гранулометр ПИК - 0,74) с измерительным щупом 12, программируемый контроллер 13, входы которого соединены с выходами X1 датчика 11 крупности частиц, Х2 датчика 2 плотности материала, Х3 датчика 3 аварийного уровня, а выходы соединены с управляющими входами Y1 пробоотборного устройства 4, Y2 клапана 6 подачи воды на разбавление, Y4 циркуляционного насоса 7, Y3 клапана 8 сброса материала в дренаж и Y5 датчика 11 крупности частиц.

Способ автоматического контроля крупности частиц в потоке пульпы осуществляют следующим образом.

По команде Y1 программируемого контроллера 13 пробу пульпы отбирают из технологического потока пробоотборным устройством 4 и через фильтрующий элемент 5 подают в кондиционирующую емкость 1. Датчиком 2 уровня и плотности измеряют уровень заполнения кондиционирующей емкости 1 материалом, и если уровень ниже заданного значения, определяемого глубиной погружения датчика 2, контроллер 13 подает команду Y2 на включение клапана 6 подачи воды. По достижениизаданного уровня заполнения кондиционирующей емкости 1 подача воды прекращается. В случае, если уровень заполнения оказался достаточным или был доведен до необходимого значения в результате процедуры, описанной выше, измеряют плотность X1i материала в кондиционирующей емкости 1 и сравнивают измеренное значение плотности X1i с некоторым заданным значением плотности X1 зад, найденным в процессе предварительных исследований и соответствующем значению плотности, при которой обеспечивается получение монослоя частичек материала под измерительным щупом 12 датчика 11 контроля крупности частиц. В том случае, если выявляется наличие неравенства X1i≤X1зад, контроллер 13 подает команды Y4 на включение циркуляционного насоса 7 и Y5 на включение датчика 11 крупности частиц. Циркуляционным насосом 7 пульпа из кондиционирующей емкости 1 по тракту 9 закачивается в измерительную камеру 10 и далее возвращается в кондиционирующую емкость 1. Датчиком 11 осуществляют измерения размеров частичек различной крупности материала в циркулирующем потоке в течение периода времени, длительность которого задается по результатам предварительной калибровки. Результат каждого измерения с выхода X1 датчика 11 поступает на вход контроллера 13, в котором по окончании цикла измерения производится подсчет количества частичек, относящихся к различным классам крупности, и на основании результатов подсчета рассчитывается содержание контролируемого класса крупности. Если же измеренная плотность X1i оказывается выше заданной X1зад, контроллер 13 подает команду Y2 на открытие клапана 6 подачи воды до момента выполнения условия X1i≤X1зад. В том случае, если при подаче воды на разбавление уровень материала в кондиционирующей емкости 1 повышается выше предельного, срабатывает датчик 3 аварийного уровня, контроллер 13 подает команды Y4 на открытие клапана 8 сброса материала в дренаж, Y2 на открытие клапана 6 подачи воды на промывку и цикл работы устройства прерывается. Если же аварийная ситуация не возникает, то далее работа устройства происходит в той же последовательности, как описано выше. По завершении цикла измерения контроллером 13 подается команда У3 на открытие клапана 8 сброса материала в дренаж, Y2 на открытие клапана 6 подачи воды на разбавление и устройство снова готово к следующему циклу измерения.

Таким образом, осуществление операции фильтрации отобранной для анализа пробы, разбавление ее до значения, обеспечивающего получение монослоя частичек материала при фиксировании их микрометрическим щупом и последующее измерение крупности частичек материала в циркулирующем потоке, проходящем через камеру измерения, в течение периода времени, длительность которого задается по результатам предварительной калибровки, позволяют повысить надежности и точности измерений гранулометрического состава в условиях наличия помех, создаваемых загрязнениями пульпы посторонними материалами и дрейфом формы кривой распределения частиц по крупности.

Способ автоматического контроля крупности частиц в потоке пульпы, включающий периодическое ощупывание частиц материала микрометрическим щупом с преобразованием величины частиц, зафиксированных механизмом ощупывания, в электрический сигнал, пропорциональный их абсолютному размеру, отличающийся тем, что отбирают пробу пульпы для анализа, фильтруют, направляют в кондиционирующую емкость, измеряют плотность пробы в кондиционирующей емкости, при этом разбавляют пробу пульпы водой до состояния, обеспечивающего получение монослоя частичек материала при фиксировании их микрометрическим щупом, затем производят прокачку разбавленной пробы в режиме циркуляции по контуру, включающему кондиционирующую емкость и камеру измерения, и осуществляют измерение крупности частичек материала в циркулирующем потоке, проходящем через камеру измерения, в течение периода времени, длительность которого задается по результатам предварительной калибровки, и производят вычисление содержания контролируемого класса по результатам измерения содержаний промежуточных классов крупности.



 

Похожие патенты:

Изобретение относится к контрольно-измерительной технике, а именно к оптико-электронным способам контроля и регулирования параметров дисперсных сред. По зарегистрированному импульсному световому изображению рассеченной плоской с малой толщиной части факела распыла определяют параметры распыла капель в данной части факела с помощью системы единиц дисперсности на основе формулы объема шара (сферы) капли, для чего в указанном изображении производят сортировку и подсчет количества капель стандартных классов диапазонов микроскопических размеров в их смежной последовательности.

Изобретение относится к технике измерений, может использоваться в автомобильной, сельскохозяйственной, авиационной, нефтеперерабатывающей и других отраслях промышленности, где необходимо проводить оперативный анализ качества моторного масла.

Изобретение относится к измерительной технике, а точнее к оптическим методам регистрации агрегации частиц при проведении иммунохимических реакций, например, с применением частиц микронного размера с иммобилизованными на них реагентами.

Изобретение относится к области ядерной энергетики и может быть использовано при изготовлении тепловыделяющих элементов для ядерных реакторов. Согласно способу производят сканирование изображения сферических частиц круговым оптическим пятном и определяют площадь их проекций.

Группа изобретений относится к системе и к способу охарактеризовывания частиц в потоке продуктов помола зерна в установке для его помола, где охарактеризовывание включает в себя охарактеризовывание частиц зерна по размеру.

Способ включает преобразование импульсного напряжения в световой поток, зондирование области исследуемой среды световым пучком. Используют измерительный канал, содержащий исследуемую среду, зондируемую световым пучком, и дополнительный канал, который заполнен очищенной от пыли газовой смесью.

Предлагаемое техническое решение относится к измерительной технике. Техническим результатом является повышение точности измерения.

Изобретение относится к контрольно-измерительной технике, в частности к оптическим устройствам контроля параметров дисперсных сред, и может найти применение при контроле запыленности газов и загрязнения жидкостей.

Изобретение относится к измерительной технике, а более конкретно - к фотоэлектрическим устройствам, предназначенным для исследования дисперсных систем. Устройство предназначено для калибровки оптической аппаратуры, измеряющей средний диаметр дисперсных частиц, и содержит кювету с прозрачной жидкостью, измерительный канал, состоящий из микроскопа и фоторегистратора, и осветительный канал, содержащий два источника света с различными длинами волн.

Изобретение относится к контрольно-измерительной технике, в частности к оптическим методам контроля параметров дисперсных сред, и может найти применение при контроле запыленности газов и загрязнения жидкостей.

Изобретение относится к области измерения характеристик аэрозольных частиц оптическими методами. Способ заключается в измерении ослабления оптического излучения в видимой и ближней инфракрасной областях спектра. Максимальный размер и концентрацию аэрозольных частиц определяют по формулам , , где Dmax - максимальный диаметр частиц, мкм; Cm - массовая концентрация частиц, кг/м3; ρ - плотность материала частиц, кг/м3; l - оптическая длина пути, м; λ∗, - координаты точки выхода на асимптоту функции , мкм; τ(λ) - измеренная спектральная оптическая плотность; α*(λ) - зависимость от длины волны значения параметра дифракции α=νπD/λ, соответствующего абсциссе точки начала отклонения функции Q(α) от функции Qp(α); Q(α) - фактор эффективности ослабления, рассчитанный по точным формулам теории Ми для заданных зависимостей показателя преломления n(λ) и показателя поглощения æ(λ) материала аэрозольных частиц; - фактор эффективности ослабления для релеевского рассеяния. Техническим результатом является повышение точности определения характеристик субмикронных частиц. 4 ил.

Изобретение относится к нефтедобывающей промышленности и может быть использовано для определения параметров мелкодисперсной водогазовой смеси перед закачкой в пласт. Техническим результатом является обеспечение проведения измерения дисперсности водогазовой смеси как для прозрачной, так и для непрозрачной дисперсионной среды. Способ включает получение водогазовой смеси под повышенным давлением, отбор пробы водогазовой смеси и перевод ее в измерительную емкость при том же давлении. Перед проведением измерения определяется объем измерительной емкости, а в процессе измерения непрерывно регистрируется изменение давления свободного газа внутри измерительной емкости и объем свободного газа, соответствующее ему приращение объема свободного газа, определятся общее количество газа, содержащегося в отобранной пробе, затем определяется зависимость ΔР от объема свободного газа в емкости, которая затем пересчитывается в зависимость изменения давления (ΔР) от относительной доли текущего значения массы свободного газа miг/mг, где mг - общее количество газа mг, содержащегося в отобранной пробе, miг - текущее значение массы свободного газа, далее определятся радиус газовых пузырьков, содержащихся в доле текущего значения массы свободного газа по формуле: r i = 2 σ Δ P i ,  где σ - межфазное натяжение, и вычисляется функция распределения радиуса пузырьков. 3 з.п. ф-лы, 1 пр., 1 табл.

Изобретение относится к океанологическим исследованиям. Устройство включает в себя средство для генерации параллельного потока импульсов оптического излучения, средство для формирования оптическим путем реперного объема прямоугольного сечения, средство для перемещения реперного объема, средство для приема и преобразования оптического излучения в электрические сигналы и средство для регистрации изменения амплитуды электрических импульсов, снабженное средством для определения разности между сигналом в отсутствие импульсов и сигналом, полученным во время действия импульсов, и средством, формирующим временной интервал на время регистрации частиц. При этом отношение размеров сторон прямоугольного сечения реперного объема равно отношению максимальной и минимальной границ размерного диапазона регистрируемых частиц. В устройство введен гидроакустический канал оценки, состоящий из многолучевого эхолота, антенны накачки параметрического профилографа, низкочастотной приемной антенны параметрического профилографа, генератора зондирующих импульсов, приемника эхосигналов, блока обработки акустических сигналов, пульта управления и индикации с интерфейсным блоком и сетевым концентратором, двух гидролокаторов бокового обзора, антенны которых установлены соответственно по правому и левому бортам. Технический результат - расширение функционалных возможностей. 1 ил.

Изобретение может быть использовано для определения замеров параметров отработавших газов (ОГ) ДВС. Способ заключается в отборе газов в пробоотборник и последующем анализе материала пробы. Пробоотборник изолируют от окружающей среды и размещают в нем порцию дистиллированной воды, при этом формируют суспензию твердых частиц ОГ, для чего их выпускают в названную порцию воды. Формирование суспензии начинают после удаления из выхлопной трубы посторонних частиц пыли и сажи, осевших туда за время простоя ДВС. В процессе отбора пробы суспензию перемешивают и стерильным шприцем отбирают объем жидкости около 40 мл, который исследуют на лазерном анализаторе частиц для определения распределения в нем частиц по размерам и по форме. Проводят также вещественный анализ взвесей на световом микроскопе и электронном микроскопе с энергодисперсионным спектрометром для определения вещественного состава твердых частиц и распределения этих частиц по размерам и по форме. Технический результат заключается в выявлении содержания нанодисперсных и микродисперсных твердых частиц в ОГ. 3 ил.

Изобретение относится к области оптической диагностики физических сред и может быть использовано в приборах, предназначенных для измерения распределения концентрации и размеров микро- и наночастиц в жидкостях и газах. Способ включает измерение флуктуации мощности излучения, рассеянного на исследуемых частицах под относительно большими углами, измерение распределения интенсивности рассеянного излучения под малыми углами рассеяния и математическую обработку полученных данных путем решения интегрального уравнения обратной задачи рассеяния. Устройство содержит зондирующий лазер, рабочую кювету с исследуемой средой, помещенные в плоскости рассеяния лазерного луча одноэлементные фотоприемники, расположенные к нему под относительно большими углами для регистрации флуктуации мощности рассеянного на частицах излучения, матричный фотоприемник для регистрации малоугловой диаграммы рассеянного излучения и объектив, собирающий прошедший через рабочую кювету световой пучок, причем указанный матричный фотоприемник расположен в фокальной плоскости указанного объектива. Изобретение обеспечивает повышение точности измерений. 2 н.п. ф-лы, 2 ил.

Изобретение относится к способам автоматического контроля крупности дробленой руды в потоке и может быть использовано в области обогащения руд полезных ископаемых, в горно-металлургической, строительной и других областях промышленности. Способ автоматического контроля крупности дробленой руды в потоке включает определение гранулометрического состава в потоке материала на основе показаний датчика, выходной сигнал которого подают на анализатор спектра и затем преобразуют в сигнал, пропорциональный содержанию отдельных фракций крупности материала. В качестве датчика применяют уровнемер 3. Лучом уровнемера 3 осуществляют сканирование поверхностного слоя потока материала 6, определяют линию, огибающую поверхностный слой материала, вычисляют скользящее среднее значение сигнала уровнемера, вычисляют абсолютные значения площадей фигур, образованных пересечением линии, огибающей поверхностный слой материала, с линией скользящего среднего значения сигнала уровнемера. Вычисляют статистическое распределение относительных частот наблюдения равных по величине вычисленных абсолютных значений площадей фигур на интервале измерения и по полученной заранее градуировочной зависимости крупности отдельных фракций от величины абсолютных значений площадей фигур, образованных пересечением линии, огибающей поверхностный слой материала, с линией скользящего среднего значения сигнала уровнемера, вычисляют распределение фракций крупности дробленой руды в потоке, также измеряют скорость движения потока материала и абсолютные значения площадей фигур, образованных пересечением линии, огибающей поверхностный слой материала, с линией скользящего среднего значения сигнала уровнемера, умножают на коэффициент, равный отношению измеренной скорости к скорости, соответствовавшей условиям градуировки. Технический результат - повышение надежности и точности контроля крупности дробленой руды в потоке за счет устранения влияния на результаты измерения колебаний величины и скорости движения потока материала. 1 з.п. ф-лы, 5 ил.

Изобретение относится к технике автоматизации измерений и может быть использовано при анализе взвешенных частиц произвольной формы. Согласно способу производят освещение потока частиц световым пучком и регистрацию параметров световых сигналов, формируемых частицами при их пролете через выделенную область потока частиц. Световой пучок после прохождения потока с использованием отражающих зеркал разворачивают по отношению к исходному пучку и вновь пропускают через поток, где регистрация изображения частиц при помощи ПЗС матрицы происходит с трех равномерных углов. Полученные изображения частиц передаются на компьютер для цифровой обработки. Для получения окончательного вывода о форме частицы сложного строения происходит сравнение коэффициентов форм для каждой из проекций. Технический результат - автоматизация процесса анализа частиц произвольной формы. 3 ил.

Изобретение относится к способам автоматического контроля крупности частиц в потоке пульпы в процессе измельчения материала и может быть использовано в области обогащения руд полезных ископаемых, а также в горно-металлургической, строительной и других областях промышленности. Способ автоматического контроля крупности частиц в потоке пульпы включает периодическое ощупывание частиц материала микрометрическим щупом с преобразованием величины частиц, зафиксированных механизмом ощупывания, в электрический сигнал, пропорциональный их абсолютному размеру. Причем осуществляют программное управление приводом механизма ощупывания для обеспечения стабилизации длительности цикла возвратно-поступательного движения механизма ощупывания и синхронизации положения микрометрического щупа в момент измерения с циклом опроса вычислительным устройством величины электрического сигнала. При этом ощупывание частиц материала осуществляют мультиэлементным микрометрическим щупом, содержащим "n" независимых чувствительных элементов, обеспечивающих одновременное ощупывание "n" частиц и преобразование измеренных величин частиц в "n" электрических сигналов, пропорциональных их абсолютным размерам. Техническим результатом является повышение надежности и точности измерений гранулометрического состава материала в потоке пульпы за счет устранения влияния на результаты измерений колебаний параметров питающей сети и ускорения процесса измерений. 3 ил.

Изобретение относится к способу и устройству для определения локальной величины зерна минерала для минерала ценного материала в породе месторождения или залежи, причем порода включает в себя по меньшей мере один другой минерал, и при этом минерал ценного материала имеет более высокую плотность, чем по меньшей мере один другой минерал. Способ характеризуется следующими этапами: выполнение процесса бурения посредством буровой установки в породе, при этом создается буровая мелочь, образование аэрозоля, включающего в себя буровую мелочь и газовый поток, перенос аэрозоля от буровой установки к по меньшей мере одному воздушному сепаратору, выполнение классификации в потоке, причем образуются по меньшей мере две фракции, включающие в себя частицы соответствующей равнопадаемости буровой мелочи, и определение свойства по меньшей мере одной из фракций, которая применяется как мера для локальной величины зерна минерала для минерала ценного материала в породе. 2 н. и 18 з.п. ф-лы, 3 ил.

Изобретение относится к области техники, а именно автоматизации измерений при анализе взвешенных наночастиц в газах. Для этого используют устройство для определения спектра размеров взвешенных наночастиц в газах, содержащее размещенные по ходу анализируемого потока газа входное сопло с каналами подачи; диффузионные батареи сетчатого типа для пропускания аэрозольных частиц определенного размера; укрупняющее устройство конденсаторного роста; счетный объем; вакуумный насос; температурные датчики, нагреватель, охладитель и микроконтроллер для управления процессами нагревания и охлаждения в укрупняющем устройстве конденсаторного роста; оптическую систему, включающую импульсный источник излучения, осветитель и объективы для фокусировки оптического излучения в области счетного объема потока частиц и формирования изображений на матрице ПЗС; аналогово-цифровой преобразователь и ЭВМ для управления микроконтроллером термостатирования, ваккумным насосом и обработки шести изображений укрупненных частиц для анализа спектра их размеров. Устройство позволяет проводить обработку на ЭВМ одновременно шести изображений укрупненных частиц, характеризующих разные размерные диапазоны наночастиц. Изобретение позволяет уменьшить время измерений и повысить их точность. 3 ил.
Наверх