Способ подогрева воздуха в шахтах

Изобретение относится к способам подогрева различных объектов и предназначено преимущественно для использования при подогреве воздуха, подаваемого в шахту. Техническим результатом изобретения является повышение эффективности способа подогрева воздуха в шахтах. Сущность изобретения заключается в том, что в качестве источника тепла для подогрева воздуха используют горючий газ, сжигаемый в стволе в потоке поступающего в шахту воздуха, причем внутреннюю поверхность ствола на протяжении горения газа покрывают теплоизоляционным несгораемым теплоотражающим покрытием, а также измеряют расход и температуру поступающего в шахту воздуха для расчета расхода горючего газа. Применение предложенного способа позволяет повысить эффективность подогрева воздуха, подаваемого в шахту, и снизить затраты на создание благоприятного микроклимата на рабочих местах. 1 з.п. ф-лы.

 

Изобретение относится к способам подогрева различных объектов и предназначено преимущественно для использования при подогреве воздуха, подаваемого в шахту.

Известен способ подогрева воздуха (патент РФ 2277205, МПК F24F 3/147), согласно которому воздух периодически подают вентиляторами из помещения на улицу и с улицы в помещение через устройство теплоаккумулирующей насадки со слоем сорбента со стороны вентиляционного объекта. Недостатком этого способа является сложность регулирования температуры входящего воздуха и невозможность использования в шахтах и тоннелях из-за недолговечности теплоаккумулирующего слоя.

Известен также способ нагрева воздуха с использованием электронагревательного элемента и послойной взаимовстречной подачей к нему воздуха (патент РФ 2280821, F24H 3/04). Недостатком этого способа является большое потребление электроэнергии и низкая экономичность.

Наиболее близким техническим решением является способ подогрева воздуха, подаваемого в шахту, предусматривающий подачу воздуха в ствол шахты через источник тепла, состоящий из парового калорифера (А.с. 907359, кл. F24H 3/02).

Недостатком известного способа является низкая эффективность из-за потерь тепла, значительные затраты на получение пара и низкая надежность. Использование в известном способе калориферной установки требует устройств для сжигания топлива, подогрева в нем воды до парообразного состояния и подачу его по трубопроводам к калориферу, установленному в стволе. В результате стоимость подогрева воздуха существенно возрастает, происходят потери тепла в трубопроводах. Кроме того, резко снижается возможность управления количеством тепла, передаваемого воздуху. Поэтому при резких перепадах температуры атмосферного воздуха в шахте могут создаваться некомфортные по метеорологическим параметрам условия.

Техническим результатом заявляемого изобретения является повышение эффективности способа подогрева воздуха в шахтах.

Технический результат достигается тем, что в способе подогрева воздуха в шахтах, включающем подачу воздуха через источник тепла, согласно изобретению в качестве источника тепла используют горючий газ, сжигаемый в стволе в потоке поступающего в шахту воздуха, причем дополнительно внутреннюю поверхность ствола на протяжении горения горючего газа покрывают теплоизоляционным несгораемым теплоотражающим покрытием, а также измеряют расход и температуру поступающего в шахту воздуха, а расход горючего газа определяют по формуле

G = G V c ρ ( t 2 t 1 ) Q ,

где G - расход горючего газа для сжигания в потоке воздуха, м3/с;

GV - расход воздуха, подаваемого в шахту, м3/с;

с - удельная теплоемкость подаваемого в шахту воздуха, Дж/(кг·К);

ρ - плотность подаваемого в шахту воздуха, кг/м3;

Q - теплота сгорания горючего газа, Дж/м3;

t1 - температура воздуха, поступающего в шахту, К;

t2 - температура воздуха после подогрева, К.

Указанный технический результат достигается также тем, что в качестве горючего газа используют метан, получаемый при дегазации угольных пластов, вмещающих пород и выработанного пространства.

Сжигание горючего газа, например метана, водорода и других предельных и непредельных углеводородов непосредственно в потоке подаваемого в шахту воздуха позволит отказаться от котельных, трубопроводов для подвода пара или горячей воды. Одновременно предотвращается потеря тепла при транспортировке теплоносителя, так как все выделяемое при сжигании газа тепло отдается поступающему в шахту воздуху. Появляется возможность быстро изменять температуру воздуха, управляя расходом сжигаемого горючего газа.

Проведенный анализ показал, что сжигание горючих газов, например метана, происходит следующим образом

СН4+2(O2+3,76N2)=СO2+2Н2O+2·3,76N2.

В результате этой реакции на сгорание 1 м3 метана требуется 9,52 м3 воздуха, а образуется 1 м3 углекислого газа, 2 м3 водяного пара и 7,52 м3 азота.

Теплота сгорания метана равна 36000 кДж/м3. Выделяемое при сжигании газа тепло расходуется на подогрев воздуха. Параметры воздуха после подогрева можно описать уравнением

Q = c ρ V ( t 2 t 1 ) ,                                                                (1)

где Q - теплота сгорания горючего газа, Дж/м3;

с - удельная теплоемкость подаваемого в шахту воздуха, Дж/(кг·К);

ρ - плотность подаваемого в шахту воздуха, кг/м3;

V - объем воздуха, м3;

t1 - температура воздуха, поступающего в шахту, К;

t2 - температура воздуха после подогрева, К.

Принимая, что плотность воздуха равна 1,2 кг/м3, удельная теплоемкость воздуха равна 1 кДж/(кг·К), а теплота сгорания метана равна 36000 кДж/м3, подсчитаем количество подогретого воздуха при условии, что температура поступающего воздуха равна -40°С, а подогрев его осуществляется до +20°С. Подставляя исходные данные в уравнение (1), получаем, что сжигание 1 м3 метана достаточно для подогрева 500 м3 воздуха на 60 градусов (от температуры -40°С до +20°С).

Количество кислорода в образующейся смеси равно

С к = V в C к в / V c ,                                                                          (2)

где Ск - количество кислорода в смеси воздуха и продуктов горения, %;

Vв - объем подаваемого воздуха, м3;

Скв - концентрация кислорода в атмосферном воздухе, % (21%);

Vс - объем подогретого воздуха (смесь подаваемого воздуха и продуктов сгорания), м3.

Подставляя исходные данные в формулу (2), получаем, что концентрация кислорода в подогретом воздухе при самых неблагоприятных метеорологических условиях равна 20,6%, что соответствует требованиям правил безопасности.

Для расчета расхода горючего газа, необходимого для подогрева подаваемого воздуха, составим уравнение теплового баланса

Q G = c ρ G v ( t 2 t 1 ) ,                                                                 (3)

где G - расход горючего газа для сжигания в потоке воздуха, м3/с;

GV - расход воздуха, подаваемого в шахту, м3/с;

с - удельная теплоемкость подаваемого в шахту воздуха, Дж/(кг·К);

ρ - плотность подаваемого в шахту воздуха, кг/м3;

Q - теплота сгорания горючего газа, Дж/м3;

t1 - температура воздуха, поступающего в шахту, К;

t2 - температура воздуха после подогрева, К.

Расход горючего газа, необходимого для подогрева атмосферного воздуха, получаем из уравнения (3):

G = G V c ρ ( t 2 t 1 ) Q .                                                               (4)

Для повышения эффективности способа в качестве горючего газа для подогрева воздуха используют метан, получаемый при дегазации угольных пластов, вмещающих пород и выработанного пространства.

Способ осуществляют следующим образом. Для подогрева атмосферного воздуха, подаваемого в шахту в зимний период, в вентиляционный ствол подводят, например, трубопровод с метаном, откачиваемым из угольных пластов, вмещающих пород и выработанного пространства, снабженный источником зажигания газа. Концентрация метана в подаваемом газе должна превышать верхний концентрационный предел взрываемости. Внутреннюю поверхность вентиляционного ствола на всем протяжении горения подаваемого газа покрывают теплоизоляционным несгораемым теплоотражающим покрытием для снижения потерь выделяемого тепла и предотвращения пожара. Для расчета расхода горючего газа измеряют расход и температуру поступающего в шахту воздуха.

Пример применения способа. В результате сезонного похолодания температура подаваемого в шахту воздуха снизилась до -20°С. Для поддержания требуемых метеорологических условий в шахте возникла необходимость подогревать поступающий воздух до температуры +20°С. Нагрев воздуха осуществлялся за счет сжигания метана, получаемого при дегазации угольного пласта и вмещающих пород, в потоке воздуха, поступающего в шахту. Расход подаваемого в шахту воздуха равен 6000 м3/мин. Теплота сгорания метана 36000 кДж/м3. Принимая, что плотность воздуха равна 1,2 кг/м3, удельная теплоемкость воздуха равна 1 кДж/(кг·К), подсчитывают расход горючего газа по формуле

G = G V c ρ ( t 2 t 1 ) Q ,

где G - расход горючего газа для сжигания в потоке воздуха, м3/с;

GV - расход воздуха, подаваемого в шахту, м3/с;

с - удельная теплоемкость подаваемого в шахту воздуха, Дж/(кг·К);

ρ - плотность подаваемого в шахту воздуха, кг/м3;

Q - теплота сгорания горючего газа, Дж/м3;

t1 - температура воздуха, поступающего в шахту, К;

t2 - температура воздуха после подогрева, К.

Расчет показал, что для подогрева подаваемого воздуха до температуры +20°С необходимо сжигать в потоке воздуха метан с расходом 8 м3/мин. Для безопасного сжигания метана внутреннюю поверхность ствола на протяжении горения горючего газа покрывают теплоизоляционным несгораемым теплоотражающим покрытием. Расчеты и последующие замеры показали, что температура воздуха после нагрева равнялась 20°С, а концентрация кислорода в нагретом воздухе равнялась 20,7%, что соответствовало требованиям правил безопасности. Таким образом, применение предложенного изобретения позволило повысить эффективность подогрева воздуха за счет снижения расхода на вспомогательное оборудование (котельная, калорифер) и уменьшения потерь тепла в окружающее пространство.

Применение предложенного способа позволяет повысить эффективность подогрева воздуха, подаваемого в шахту, и снизить затраты на создание благоприятного микроклимата на рабочих местах.

1. Способ подогрева воздуха в шахтах, включающий подачу воздуха через источник тепла, отличающийся тем, что в качестве источника тепла используют горючий газ, сжигаемый в стволе в потоке поступающего в шахту воздуха, причем дополнительно внутреннюю поверхность ствола на протяжении горения горючего газа покрывают теплоизоляционным несгораемым теплоотражающим покрытием, а также измеряют расход и температуру поступающего в шахту воздуха, а расход горючего газа определяют по формуле
G = G V c ρ ( t 2 t 1 ) Q ,
где G - расход горючего газа для сжигания в потоке воздуха, м3/с;
GV - расход воздуха, подаваемого в шахту, м3/с;
с - удельная теплоемкость подаваемого в шахту воздуха, Дж/(кг·К);
ρ - плотность подаваемого в шахту воздуха, кг/м3;
Q - теплота сгорания горючего газа, Дж/м3;
t1 - температура воздуха, поступающего в шахту, К;
t2 - температура воздуха после подогрева, К.

2. Способ по п.1, отличающийся тем, что в качестве горючего газа используют метан, получаемый при дегазации угольных пластов, вмещающих пород и выработанного пространства.



 

Похожие патенты:

Изобретение относится к теплоэнергетике, в частности к устройствам для создания микроклимата в помещении. .

Изобретение относится к способам обогрева специализированных объектов - плавательных бассейнов, бань, химчисток, саун, сушилок в межотопительный период. .
Отопитель // 2396489
Изобретение относится к отопительной технике. .

Изобретение относится к теплотехнике и может применяться для очистки газов тепловых электростанций, отопительных установок, производственных котельных и утилизации тепла этих газов.

Изобретение относится к области теплотехники и предназначено для автономного отопления и горячего водоснабжения зданий индивидуального пользования (коттеджей, отдельно стоящих жилых домов), а также к турбинам для привода электрогенераторов и другого.

Изобретение относится к теплотехнике и может использоваться в системах отопления любых зданий, коттеджей и сооружений различного типа. .

Изобретение относится к системам лучистого отопления и может быть использовано для отопления высоких и большепролетных помещений производственных и общественных объектов, например помещений цехов, ангаров, спортивных сооружений, а также для обогрева открытых обслуживаемых площадок.

Изобретение относится к области отопительной техники и систем охлаждения помещений и может быть использовано для поддержания температурного режима в жилых и производственных помещениях как в зимний, так и в летний период.

Изобретение относится к области теплоэнергетики и предназначен для рационального обогрева помещения котельной для теплоснабжения промышленных предприятий и жилых массивов.

Изобретение предназначено для поддержания комфортных параметров воздуха в малоэтажных зданиях, преимущественно на животноводческих фермах. Система гелиотеплохладоснабжения и качественного воздухообмена в зданиях содержит южный, выполненный из поглощающего солнечную радиацию материала, и северный воздухопроводы, расположенные на соответствующих сторонах здания, тепловой аккумулятор, образующий с полом здания подпольный воздухопровод, сообщенный с южным воздухопроводом, а также расположенные под тепловым аккумулятором один над другим теплообменный и грунтовый воздухопроводы, первый из которых сообщен с северным, а второй снабжен грунтовыми теплопроводящими трубами, при этом система снабжена размещенной в тепловом аккумуляторе вихревой трубой, а теплообменный воздухопровод снабжен всасывающим фильтром, который установлен в помещении и выполнен в виде узла очистки внутреннего воздуха, состоит из диффузора с винтообразными продольно размещенными канавками, входящими в круговую канавку, соединенную со сборником загрязнений, в котором размещено осушивающее устройство в виде емкости с адсорбирующим веществом. Изобретение должно обеспечить очистку выбрасываемого воздуха и устранение специфических для животноводческих ферм запахов. 3 ил.

Изобретение относится к системам обогрева различных объектов и предназначено преимущественно для использования при подогреве воздуха, подаваемого в шахту. Установка для подогрева воздуха, подаваемого в шахту, содержит камеру сгорания, воздухоподогреватель, вентилятор, дымосос и трубопроводы. Установка снабжена воздухораспределительным устройством горячего воздуха и камерой смешения холодного и горячего воздуха, размещенными в воздухоподающем стволе перед шахтным вентилятором, при этом дымосос размещен на выходе газов и установлен с вентилятором с возможностью создания разрежения в потоке газа и давления в потоке воздуха, причем воздухораспределительное устройство горячего воздуха выполнено в виде кольца из трубы, имеющей щель, направленную поперек потока холодного воздуха, и присоединенной к трубопроводу горячего воздуха. Установка позволяет снизить расходы на подогрев воздуха и исключить попадание топочных газов в воздух, подаваемый в шахту. 3 ил.

Заявленное изобретение относится к области использования тепловой энергии для обогрева зданий с индивидуальным котлом. Система отопления с энергонезависимым режимом, в два, три, четыре этажа, с подключением теплого пола, с использованием многослойных потоков воды для осуществления циркуляции содержит котел, установленный на первом этаже, соединенный с подающим розливом, расположенным над полом или в полу второго этажа, подающий розлив закольцовывается стояком с обратным розливом, расширительный бак, стояки и приборы отопления, а также контуры теплого пола. Конструктивные особенности заявленной системы отопления позволяют осуществлять циркуляцию теплоносителя в отопительной системе одновременно во всех ее контурах, кроме того, циркулируемый объем воды в системе отопления меняется автоматически. 1 з.п. ф-лы, 18 ил.

Заявленное изобретение относится к области использования тепловой энергии для обогрева зданий с индивидуальным котлом. Система отопления с энергонезависимым режимом в два, три, четыре этажа с использованием многослойных потоков воды для осуществления циркуляции содержит котел, установленный на первом этаже, соединенный с подающим розливом, расположенным над полом или в полу второго этажа, подающий розлив закольцовывается стояком с обратным розливом, расширительный бак, стояки и приборы отопления. Конструктивные особенности заявленной системы отопления позволяют осуществлять циркуляцию теплоносителя в отопительной системе одновременно во всех ее контурах, кроме того, циркулируемый объем воды в системе отопления меняется автоматически. 1 з.п. ф-лы, 10 ил.

Изобретение относится к области устройств дистанционного контроля и управления отопительными системами. Достигаемый технический результат - возможность заблаговременной диагностики состояния отопительной системы, предупреждающего технического обслуживания, обеспечение безопасности процесса контроля. Устройство дистанционного контроля и управления для отопительной системы с использованием приложения для смартфона включает в себя комнатный контроллер (100), выполненный с возможностью получения индивидуальных данных для аутентификации сервера, содержащий модуль Wi-Fi для передачи и получения данных через беспроводной роутер (100) и осуществления контроля группы устройств, связанных с работой отопительной системы (300); приложение (210), выполненное с возможностью установки на смартфон пользователя (200) и соединения с комнатным контроллером через сервер централизованного управления (120). Сервер предназначен, в частности, для сбора и хранения информации о состоянии отопительной системы в базе данных (130), обработки указанной информации с использованием программы демона, осуществления дистанционного контроля и управления отопительной системой, подтверждения состояния отопительной системы клиентским сервисным центром. 2 н.п. ф-лы, 2 ил.

Предлагаемое изобретение относится к системе отопления домов, а также может использоваться для нагрева котлов с подачей пара на турбины и пр. Целью изобретения является расширение применения способа разгона газа и устройства для его осуществления. Способ нагрева теплообменника газодинамическим потоком характеризуется тем, что газодинамический поток разгоняется в сопле и за счет эжекции вакуумирует полость, волны разрежения которого увеличивают перепад давления в сопле, что приводит к дополнительному разгону газодинамического потока, который тормозят, и температурой, получаемой торможением газодинамического потока, нагревают теплообменник. Устройство для реализации способа нагрева теплообменника, состоящего из насадка, содержащего сопла, герметично соединенные между собой с образованием между ними эжекторно вакуумируемой полости, и теплообменник, при этом не менее чем однократно или сужающаяся часть сопла снабжена теплообменником, или не менее чем за одним соплом установлен теплообменник, или имеется и то и другое одновременно. 2 н.п. ф-лы, 2 ил.

Изобретение относится к теплоэнергетике и предназначено для поддержания комфортных параметров воздуха в малоэтажных зданиях, преимущественно на животноводческих фермах.Система гелиотеплохладоснабжения содержит южный и северный воздухопроводы, расположенные на соответствующих сторонах здания, тепловой аккумулятор, образующий с полом здания подпольный воздухопровод, сообщенный с южным, а также расположенные под тепловым аккумулятором один над другим теплообменный и грунтовый воздухопроводы, система снабжена размещенной в тепловом аккумуляторе вихревой трубой, входом сообщенной с подпольным воздухопроводом, «холодным» каналом - с помещением, а «горячим» - через тепловой аккумулятор с грунтовым воздухопроводом, а на внешней поверхности вихревой трубы выполнены ребра с уменьшающимися расстояниями между ними по направлению движения «горячего» потока. Изобретение должно обеспечить комфортные параметры воздуха в помещении животноводческой фермы. 3 ил.

Изобретение относится к системам отопления с тепловыми насосами, использующими тепло низкотемпературных источников для получения воды, пригодной для автономного отопления и горячего водоснабжения. Задачей предложенного изобретения является повышение эффективности автономной системы отопления и горячего водоснабжения помещений с тепловым насосом компрессионного типа, работающим по схеме грунт-вода, за счет более полного восстановления теплового потенциала грунта в зоне расположения наружного контура теплового насоса. Система отопления и горячего водоснабжения помещений, включающая компрессионный тепловой насос типа грунт-вода, внутренний контур теплового насоса с высокотемпературным теплоносителем, внешний контур теплового насоса с теплообменником с низкотемпературным теплоносителем, а также солнечный коллектор, емкость для горячего водоснабжения, блок управления тепловыми потоками системы, жидкостные насосы для перекачивания теплоносителей и воды горячего водоснабжения, при этом в грунте в непосредственной близости от теплообменника внешнего контура расположен постоянно действующий аккумулятор тепловой энергии, связанный трубопроводами с внешним контуром теплового насоса и с солнечным коллектором. 10 з.п. ф-лы, 4 ил.
Наверх