Способ экспресс-диагностики поверхностного слоя материалов

Изобретение относится к области контроля и диагностики структуры материалов и деталей, применяемых в машиностроении, судостроении и других отраслях, а также находящихся в условиях гидродинамического нагружения, в частности узлов судостроительной техники, эксплуатируемых в условиях севера, где присутствует многофазная твердо-жидкофазная шугообразная среда. Изобретение связано, прежде всего, с эрозионной стойкостью поверхности деталей и узлов судостроения. Способ экспресс-диагностики поверхностного слоя материалов включает воздействие на поверхность материала кавитирующей струи смеси воды и частиц льда под давлением не ниже 50 МПа при скорости 100 - 850 м/с и оценку результатов этого воздействия. Промежуток времени гидроструйного воздействия эмпирически определяют в диапазоне 10-60 с исходя из физико-механических характеристик материала и толщины диагностируемого образца. Число ледяных частиц в гидроструе может варьироваться в широких пределах за счет увеличения или уменьшения расхода подаваемого в камеру смешивания жидкого азота. Техническим результатом является расширение технологических возможностей воздействия струи на объект и применение его для процедуры диагностики материалов и деталей машиностроения, авиастроения, судостроения и гидротехнических сооружений различного назначения. 2 з.п. ф-лы, 3 ил., 1 табл.

 

Изобретение относится к области контроля и диагностики структуры материалов и деталей, применяемых в машиностроении, судостроении и других отраслях, а также находящихся в условиях гидродинамического нагружения, в частности узлов судостроительной техники, эксплуатируемых в условиях Севера, где присутствует многофазная твердо-жидкофазная шугообразная среда. Изобретение связано, прежде всего, с эрозионной стойкостью поверхности деталей и узлов судостроения.

Наиболее близким способом того же назначения к заявленному изобретению по совокупности признаков является способ для определения эрозии материалов, таких как почвы и грунты сельхозугодий. Согласно способу направленную струю жидкости или воздуха подают на поверхность материала в воздушной среде при фиксированном расстоянии от объекта. При постоянном давлении или в диапазоне давлений оценивают влияние этого воздействия на испытываемый материал (патент СА1150530 (А1), 1983-07-26, CARTWRIGHT FREDERICK D). Данный способ принят за прототип.

Недостатком известного способа является то, что способ имеет ограниченные возможности применения, используется только для оценки эрозии почв и грунтов вследствие того, что струя жидкости не является кавитационной, а ее энергии не достаточно для воздействия на металлы.

Признаки прототипа, совпадающие с существенными признаками заявляемого способа, - воздействие на поверхность материала струи жидкости; оценка результатов этого воздействия.

Задача предлагаемого способа - расширение технологических возможностей воздействия струи на объект и применение его для процедуры диагностики материалов и деталей машиностроения, авиастроения, судостроения и гидротехнических сооружений различного назначения.

Поставленная задача была решена за счет того, что в известном способе, включающем воздействие на поверхность материала струи жидкости и оценку результатов этого воздействия, согласно изобретению воздействие осуществляют кавитирующей струей смеси воды и частиц льда под давлением не ниже 50 МПа при скорости 100 - 850 м/с.

Целесообразно промежуток времени гидроструйного воздействия эмпирически определять в диапазоне 10-60 с, исходя из физико-механических характеристик материала и толщины диагностируемого образца.

Кроме того, число ледяных частиц в гидроструе может варьироваться в широких пределах за счет увеличения или уменьшения расхода подаваемого в камеру смешивания жидкого азота.

Оценка результатов воздействия включает: относительный унос массы материала детали в результате эрозии поверхности, вызванной воздействием гидростатического давления гидроструи, кавитационными эффектами и абразивным износом в месте ее контакта с материалом, а также сравнение полученных результатов с исходными значениями массовых характеристик образцов с точностью до 0,001 грамма. По разнице результатов этого воздействия судят о физико-механическом состоянии поверхностного слоя образца и его эрозионной стойкости при комбинированном воздействии жидкости, кавитации и абразива (льда) в условиях эксплуатации.

Признаки заявляемого технического решения, отличительные от прототипа, осуществляют воздействие кавитирующей струей смеси воды и частиц льда под давлением не ниже 50 МПа при скорости 100 - 850 м/с; определяют промежуток времени гидроструйного воздействия эмпирически в диапазоне 10-60 с исходя из физико-механических характеристик материала и толщины диагностируемого образца; число ледяных частиц в гидроструе может варьироваться в широких пределах за счет увеличения или уменьшения расхода подаваемого в камеру смешивания жидкого азота.

Благодаря модификации свойств воды путем подачи в нее жидкого азота полученная смесь приобретает абразивные свойства.

Воздействие на поверхность испытуемого материала кавитирующей струей смеси воды и частиц льда под давлением не ниже 50 МПа при скорости 100 - 850 м/с позволит обеспечить для любого исследуемого материала получение гидроструйных надрезов, по величинам которых можно исследовать свойства любых материалов практически любой твердости, тем самым гарантируя эффективную диагностику.

Определение промежутка времени гидроструйного воздействия эмпирически в диапазоне 10- 60 с исходя из физико-механических характеристик материала и толщины диагностируемого образца обеспечит получение необходимого количества уноса материала для определения потери массы образца.

На фиг.1 показана схема установки для осуществления способа.

На схеме обозначены: 1 - фокусирующее гидросопло; 2 -высокоскоростная кавитирующая водно-ледяная струя; 3 - образец (материал или деталь); 4 - эродированная поверхность (гидрокаверна); 5 - емкость с жидким азотом для захолаживания гидроструи; 6 - высоконапорное гидросопло малого диаметра; 7 - камера смешивания; 8 - высокоэнергетическая струя жидкости; L - расстояние между гидросоплом и поверхностью образца; S - рабочая подача. Тогда время воздействия гидроструи определяют по формуле τ=L/S.

На фиг.2 изображены гидроструйные надрезы (гидроэрозионные следы) на образцах из различных материалов.

Способ экспресс-диагностики поверхностного слоя материалов осуществляют следующим образом.

Проводят взвешивание диагностируемого образца с точностью до 0,001 г, его фиксацию в приспособлении (тисках) на рабочем столе установки для гидроструйной диагностики (фиг.1). Процедуре гидроструйной кавитационной водно-ледяной экспресс-диагностики могут подвергаться образцы из различных материалов, включая покрытия деталей и узлов, обладающие разными селективными физико-механическими свойствами, сформированными благодаря реализации различных технологических процессов изготовления и нанесения, использованию различных по составу сплавов.

Воду под давлением нагнетают через высоконапорное гидросопло малого диаметра 6. Из высоконапорного гидросопла 6 под давлением не ниже 50 МПа подают высокоскоростную (~100... 850 м/с) жидкостную струю 2, предварительно смешивая высокоэнергетическую струю 8 в камере смешения 7 с подаваемым жидким азотом из емкости 5. Образующуюся кавитационную водно-ледяную струю формируют в фокусирующем гидросопле 1 и воздействуют на диагностируемую поверхность образца 3, вызывая абразивный износ из-за ударов частиц льда и кавитационную эрозию его поверхности 4 в направлении подачи S.

Промежуток времени гидроструйного воздействия эмпирически определяют в диапазоне 10-60 с, исходя из физико-механических характеристик материала и толщины диагностируемого образца.

Число ледяных частиц в гидроструе может варьироваться в широких пределах за счет увеличения или уменьшения расхода подаваемого в камеру смешивания 7 жидкого азота.

Вследствие комбинации факторов (гидроэрозия - действие гидростатического давления жидкости, кавитация - схлопывание пузырьков вблизи поверхности диагностируемого материала, абразивный износ - удар ледяных частиц о поверхность) осуществляется унос массы образца. Производят его повторное взвешивание, определяют значение массового уноса материала. Сравнивают относительные значения массового уноса материала либо с эталонным образцом, либо с имеющимися значениями (базой данных) ранее диагностированных данным способом образцов.

Пример конкретного исполнения.

Производили кавитационную водно-ледяную экспресс-диагностику поверхностного слоя материалов двух образцов различных сплавов (АМГ6, В95) при следующих параметрах: давление воды 350 МПа, скорость подачи 500 м/с, расстояние между гидросоплом и поверхностью детали - 3 мм.

Результаты проведенных исследований предлагаемым способом приведены в таблице и на фиг.2.

Результаты кавитационной водно-ледяной экспресс-диагностики поверхностного слоя материалов
№ образца Сплав Масса, теряемая образцом при гидроструйной обработке, на 1 мм длины воздействия струи m,г/мм
1 В95 0,0079
2 АМГ6 0,0089

Качественный анализ результатов кавитационной водно-ледяной диагностики поверхностного слоя материалов деталей показывает, что образец №1 обладает лучшими эксплуатационными характеристиками, так как унос массы для этого материала являлся меньшим.

Таким образом, предложенный способ экспресс-диагностики поверхностного слоя материалов позволяет расширить технологические возможности воздействия струи на объект и применить его для процедуры диагностики материалов и деталей машиностроения, авиастроения, судостроения и гидротехнических сооружений различного назначения, а также в узлах конструкций, где велика вероятность воздействия одновременно нескольких неблагоприятных факторов: кавитации, гидроэрозии, абразивного износа.

1. Способ экспресс-диагностики поверхностного слоя материалов, включающий воздействие на поверхность материала струи жидкости и оценку результатов этого воздействия, отличающийся тем, что воздействие осуществляют кавитирующей струей смеси воды и частиц льда под давлением не ниже 50 МПа при скорости 100-850 м/с.

2. Способ по п.1,отличающийся тем, что промежуток времени гидроструйного воздействия эмпирически определяют в диапазоне 10-60 с, исходя из физико-механических характеристик материала и толщины диагностируемого образца.

3. Способ по п.1, отличающийся тем, что число ледяных частиц в гидроструе может варьироваться в широких пределах за счет увеличения или уменьшения расхода подаваемого в камеру смешивания жидкого азота.



 

Похожие патенты:

Изобретение относится к области контроля и диагностики структуры материалов и деталей, применяемых в машиностроении, судостроении и других отраслях, а также находящихся в условиях гидродинамического нагружения, в частности узлов судостроительной техники, гидроэлектростанций и т.д., связанных, прежде всего, с эрозионной стойкостью поверхности.

Изобретение относится к испытательной технике, а именно к способам оценки качества металлических заготовок, преимущественно полупродукта металлургического производства, и может быть использовано на металлургических предприятиях, производящих и использующих в дальнейшем производстве металлические заготовки, полученные прокаткой на непрерывно-заготовочном стане или непрерывной разливкой на машинах непрерывного литья заготовок.

Изобретение относится к дорожно му строительству и промьшшенности строительных материалов, в частности к приборам и устройствам для испытаte „ А ния асфальтобетона на износ.

Изобретение относится к области контроля и диагностики конструкционных материалов, в частности совокупности баллистических свойств конструкционной керамики, входящей в состав средств индивидуальной бронезащиты, связанных, прежде всего, с твердостью, прочностью и трещиностойкостью, и может быть использовано на предварительных этапах технологического процесса изготовления изделий индивидуальной бронезащиты с целью оперативного экспресс-подбора материалов из предлагаемых на рынке и производимых различными предприятиями - изготовителями. Способ диагностики качества конструкционных материалов включает воздействие на испытуемый образец струей жидкости под давлением 350-380 МПа при скорости 800-850 м/с. При этом на испытуемый образец устанавливают один или несколько датчиков акустической эмиссии и регистрируют параметры акустической эмиссии в течение времени воздействия струи жидкости. Оценку качества конструкционного материала образца осуществляют путем сравнения относительных значений массового уноса материала и параметров акустической эмиссии с соответствующими характеристиками эталонного образца, либо с имеющимися значениями ранее продиагностированных образцов. Техническим результатом изобретения является снижение трудоемкости испытаний, повышение достоверности экспресс-оценки эрозионных свойств материалов, расширение возможностей воздействия высокоэнергетической струи для процедуры диагностики конструкционных материалов, входящих, в частности, в состав средств индивидуальной бронезащиты. 1 табл., 2 ил.

Изобретение относится к области машиностроения и предназначено для определения остаточных технологических напряжений в поверхностных слоях детали, полученных при механической обработке. Сущность: осуществляют вырезку образца в форме стержня прямоугольного сечения. С образца снимают тонкие слои материала, начиная со слоя минимальной толщины 8-12 мкм и увеличивая толщины последующих слоев до значения не более 35 мкм последнего слоя. Определяют толщину каждого снятого тонкого слоя и приращение прогиба образца, вызванное каждым снятым тонким слоем, затем рассчитывают остаточные напряжения в тонких слоях материала по формуле. Технический результат: упрощение способа, снижение трудоемкости и повышение точности определения остаточных напряжений в поверхностных слоях детали. 1 таб., 4 ил.

Изобретение относится к исследованиям остаточных напряжений в детали. Сущность: осуществляют закрепление детали в первой точке и во второй точке на расстоянии от первой точки, выполнение первой операции съема материала в третьей точке, расположенной между первой и второй точками, освобождение детали во второй точке, измерение первой деформации детали, определение остаточных напряжений в детали на основе измерения первой деформации. Устройство содержит первый зажим, второй зажим, расположенный на расстоянии от первого зажима, металлорежущий инструмент, сконфигурированный с возможностью выполнения операции съема материала с детали, закрепленной в зажимах, в точке, расположенной между зажимами, устройство для измерения прогиба, расположенное между первым и вторым зажимами. Технический результат: упрощение измерения остаточных напряжений в детали. 2 н. и 6 з.п. ф-лы, 5 ил.
Наверх