Способ определения укрупненных первичных параметров трехпроводной линии электропередачи

Изобретение относится к области систем обработки информации и может быть использовано при функциональном контроле и диагностировании трехфазных линий электропередачи (ЛЭП) трехпроводного исполнения на основе ее Г-образной схемы замещения полнофазного исполнения. Способ заключается в замещении всей трехпроводной линии электропередачи, включающей в свой состав несколько однородных участков, опоры, линейную арматуру и прочие сопутствующие устройства. Экспериментально определяют изображения действующих значений входных и выходных фазных напряжений и токов на комплексной плоскости и в последующем вычислении первичных параметров однородного участка трехпроводной линии электропередачи. Входные и выходные напряжения и токи определяются из серии экспериментов из четырех опытов и являются исходными данными для вычисления укрупненных активных сопротивлений и индуктивностей линейных проводов, укрупненных активных проводимостей и емкостей между проводами, а также между проводами и «землей». Технический результат заключается в повышении точности определения параметров линии электропередачи. 2 ил.

 

Изобретение относится к области систем обработки информации и может быть использовано при функциональном контроле и диагностировании трехфазных линий электропередачи (ЛЭП) трехпроводного исполнения на основе ее Г-образной схемы замещения полнофазного исполнения.

Известен способ определения текущих первичных и вторичных параметров линии электропередачи для построения ее прямой Г-образной адаптивной модели [1], выбранный в качестве прототипа, заключающийся в том, что проводят измерения мгновенных значений сигналов напряжений и токов. Эти массивы отсчетов мгновенных значений тока и напряжения в начале и в конце ЛЭП, полученные в одни и те же моменты времени, с определенным шагом дискретизации, передают с конца линии в ее начало по каналу связи. Далее по измеренным массивам отсчетов тока и напряжения сохраняют пары цифровых отсчетов токов и напряжений. Затем определяют потери активной мощности на активном сопротивлении продольной ветви ЛЭП, одновременно определяя действующее значение сигнала тока в ней и потери реактивной мощности на реактивном сопротивлении этой ветви. Далее определяют значения активного и реактивного сопротивлений продольной ветви ЛЭП. Затем определяют потери активной мощности на активном сопротивлении поперечной ветви ЛЭП, одновременно определяя действующие значения сигнала тока в ней и потери реактивной мощности на реактивном сопротивлении этой ветви. Далее определяют величины активного и реактивного сопротивлений поперечной ветви ЛЭП. Затем определяют численные значения коэффициентов затухания тока и напряжения и численные значения коэффициента сдвига фазы тока и сдвига фазы напряжения. Далее определяют численные значения активных и реактивных сопротивлений продольных и поперечных ветвей ЛЭП, а также коэффициентов затухания и сдвига фаз напряжений и токов на единицу длины линии электропередачи.

Известен способ определения текущих параметров линии электропередачи для построения ее П-образной адаптивной модели (варианты) [2], заключающийся в измерении мгновенных значений сигналов тока и напряжения. Массивы отсчетов мгновенных значений тока и напряжения в начале и в конце линии электропередачи, полученные в одни и те же моменты времени, с определенным шагом дискретизации, передают в начало линии по каналу связи. По измеренным массивам сохраняют пары цифровых отсчетов токов и напряжений как текущие, определяют разность фаз текущих цифровых отсчетов токов и напряжений, изменяют разности значений сигналов токов пропорционально коэффициенту k=0; 0,1; …; 1 для определения распределения значений токов в поперечных сопротивлениях одной и другой поперечных ветвей. Затем определяют ток в продольной ветви или как разность значений тока в начале линии и тока в одной поперечной ветви, или как сумму тока в конце линии и тока в другой поперечной ветви. Далее определяют значение потери активной мощности на активном сопротивлении двух поперечных ветвей ЛЭП, одновременно определяя действующее значение сигнала тока в ней и значение потери реактивной мощности на реактивном сопротивлении этой ветви. Затем определяют значения активного и реактивного сопротивлений поперечной ветви ЛЭП как область возможных решений в зависимости от k. Далее определяют значение активной мощности на активном сопротивлении продольной ветви ЛЭП, одновременно определяя действующее значение сигнала тока в ней и значение реактивной мощности на реактивном сопротивлении этой ветви. Затем определяют значения активного и реактивного сопротивлений продольной ветви ЛЭП как область возможных решений в зависимости от k. Далее по полученным значениям сопротивлений продольной и поперечной ветвей для режима нагрузки/холостого хода определяют значения сопротивлений продольной и поперечной ветвей П-образной адаптивной модели как равенство полных сопротивлений одной и другой поперечных ветвей. В способе определения текущих параметров по второму варианту определяют значения сопротивлений продольной и поперечной ветвей П-образной адаптивной модели или как равенство полного сопротивления первой поперечной ветви и полного сопротивления второй поперечной ветви первого и второго режимов, или как равенство полного сопротивления второй поперечной ветви и полного сопротивления первой поперечной ветви первого и второго режимов.

Достоверность полученных по обоим патентам результатов возможна лишь при абсолютной синхронизации измерений мгновенных значений напряжений и токов в начале и в конце линии. Технически это пока трудно осуществимо.

Кроме того, представленный в прототипе алгоритм пригоден лишь для определения параметров однопроводной ЛЭП или симметричной многопроводной. При нарушении симметрии ЛЭП ее работа может иллюстрироваться лишь полнофазной схемой замещения [3].

Известны математические формулировки для определения первичных параметров ЛЭП, сформулированные на основании теории электромагнитного поля. Например, [4]. Но это несколько формализованный подход к задаче оперативного и достоверного определения первичных параметров ЛЭП, не обеспечивающий учета в полном объеме всех факторов, оказывающих влияние на величины этих параметров, а именно: изменение химического состава материала линейных проводов, поверхностного эффекта, эффекта близости, климатических условий, рельефа местности, модификации опор, влияния различного рода линейной арматуры и т.п. Это вполне может быть использовано для определения первичных параметров однородного участка ЛЭП.

Задачей изобретения является формирование простого, информативного и достоверного способа определения укрупненных первичных параметров трехпроводной линии электропередачи, а именно: укрупненных активных сопротивлений и индуктивностей линейных проводов, активных проводимостей и емкостей между проводами, а также между проводами и «землей».

Технический результат заключается в достоверном определении укрупненных первичных параметров трехпроводной линии электропередачи, а именно: активных сопротивлений и индуктивностей линейных проводов, активных проводимостей и емкостей между проводами, а также между проводами и «землей».

Технический результат достигается тем, что после замещения всей трехпроводной линии электропередачи, включающей в свой состав несколько однородных участков, опоры, линейную арматуру и прочие сопутствующие устройства, в результате выполнения серии экспериментов из четырех опытов определяются изображения на комплексной плоскости действующих значений входных и выходных фазных напряжений и токов, которые являются исходными данными для определения укрупненных первичных параметров трехпроводной линии электропередачи, вычислением на основании полученных таким образом экспериментальных данных укрупненных активных сопротивлений и индуктивностей линейных проводов, укрупненных активных проводимостей и емкостей между проводами, а также между проводами и «землей».

Вычислению и выполнению серии экспериментов предшествует представление всей трехпроводной ЛЭП, включающей в свой состав в общем случае несколько однородных участков, линейную арматуру, опоры и прочие сопутствующие устройства, полнофазной Г-образной схемой замещения. В дальнейшем предлагается определять параметры именно этой укрупненной схемы замещения ЛЭП. Поэтому они и называются укрупненными.

Полученные таким образом численные значения укрупненных первичных параметров трехпроводной ЛЭП являются ожидаемыми результатами реализации этого изобретения.

Простота и достоверность предлагаемого способа достигается в результате непосредственного измерения электрических величин, позволяющих получить сведения об изображениях действующих значений входных и выходных напряжений и токов на комплексной плоскости, которые являются исходными данными для определения укрупненных первичных параметров трехпроводной ЛЭП.

Предлагаемый способ является информативным за счет того, что при необходимости позволяет определить укрупненные первичные параметры трехпроводной ЛЭП на единицу длины линии.

На фиг.1 представлена структурная схема алгоритма способа определения первичных параметров однородного участка трехпроводной ЛЭП.

На фиг.2 показана полнофазная Г-образная схема замещения всей трехпроводной ЛЭП с набором коммутирующих устройств, которые обеспечат выполнение серии экспериментов по определению входных и выходных токов и напряжений, являющихся в данном случае исходными данными для вычисления первичных параметров трехпроводной ЛЭП.

В блоке 1 (фиг.1) выполняется представление исследуемой ЛЭП в виде полнофазной Г-образной схемой замещения так, как показано на фиг.2.

В блоках 2, 4, 5 и 6 (фиг.1) выполняется серия экспериментов по определению исходных данных для вычисления укрупненных первичных параметров трехпроводной ЛЭП. Здесь символами RA, RB и RC обозначены активные сопротивления линейных проводов, символами LA, LB и LC - индуктивности этих проводов. Символами GA, GB, GC и СА, СВ, СC на фиг.2 обозначены активные проводимости и емкости между линейными проводами и «землей», а символами GAB, GBC, GCA и САВ, СBC, ССА - активные проводимости и емкости между проводами.

Для выполнения серии экспериментов по определению исходных данных для вычисления укрупненных первичных параметров трехпроводной ЛЭП во избежание аварийных ситуаций рекомендуется использовать автономный источник трехфазной ЭДС или три равных по величине однофазных синусоидальных ЭДС промышленной частоты, начальные фазы которых могут быть сдвинуты относительно друг друга на треть периода, пониженного напряжения. Кроме того, в экспериментах используются показанные на схеме, изображенной на фиг.2, шесть коммутирующих устройств, в качестве которых могут быть использованы обычные выключатели или рубильники. К входу и выходу анализируемого однородного участка трехпроводной ЛЭП необходимо подключить электроизмерительные приборы, например вольтметры, амперметры и фазометры, которые обеспечат регистрацию изображений на комплексной плоскости действующих значений входных и выходных фазных напряжений и линейных токов.

Первый опыт, опыт короткого замыкания выполняется в блоке 2 (фиг.1) и позволяет определить укрупненные продольные параметры исследуемой ЛЭП. Для этого замыкаются ключи S4-S6 (фиг.2) и S7-S9. При этом во избежание аварийной ситуации напряжение источника электрической энергии должно быть понижено.

При выполнении этого опыта напряжение на выходе анализируемой ЛЭП будет отсутствовать:

U ˙ 2 A 11 = U ˙ 2 B 11 = U ˙ 2 C 11 = 0 .

Изображения на комплексной плоскости входных линейных токов İ1A11, İ1B11 и İ1C11 определяются из показаний соответствующих электроизмерительных приборов, а именно амперметров и фазометров.

В таком случае будут справедливы реализуемые в блоке 3 (фиг.1) равенства:

Z _ A = U ˙ 1 A 11 I ˙ 1 A 11 ; Z _ B = U ˙ 1 B 11 I ˙ 1 B 11 ; Z _ C = U ˙ 1 C 11 I ˙ 1 C 11 ,

где Z _ A , Z _ B и Z _ C - укрупненные полные сопротивления линейных проводов.

Эти равенства позволяют определить фактические укрупненные продольные параметры трехпроводной ЛЭП.

Активные сопротивления линейных проводов определяют вещественные части их полных сопротивлений:

R A = Re ( Z _ A ) ; R B = Re ( Z _ B ) ; R C = Re ( Z _ C ) .

Индуктивность каждого линейного провода анализируемой ЛЭП определяется так:

L A = Im ( Z _ A ) 2 π f ; L B = Im ( Z _ B ) 2 π f ; L C = Im ( Z _ C ) 2 π f .

В индуктивностях, найденных при выполнении опыта короткого замыкания, учтены явления самоиндукции и взаимоиндукции, то есть учтены собственные и взаимные индуктивности. Так, в величине LA учтены укрупненная собственная индуктивность линейного провода А и электромагнитное влияние индуктивностей соседних проводов В и С; в величине LB учтены укрупненная собственная индуктивность линейного провода В и электромагнитное влияние индуктивностей соседних проводов А и С; в величине LC учтены укрупненная собственная индуктивность линейного провода С и электромагнитное влияние индуктивностей соседних проводов А и В. Иначе говоря, в каждой индуктивности из последних трех равенств учтены укрупненные собственные индуктивности каждого линейного провода и взаимные индуктивности между соответствующими проводами.

Трехфазное короткое замыкание - достаточно тяжелый режим работы ЛЭП. Его выполнение может быть связано с техническими сложностями, связанными с техникой безопасности или другими техническими ограничениями. В таком случае этот режим (опыт) можно избежать, а продольные параметры ЛЭП можно определить и из опыта холостого хода или опыта с полной или частичной нагрузкой.

Для выполнения опыта холостого хода необходимо разомкнуть ключи S4-S6, а ключи S1-S3 оставить в разомкнутом состоянии, для выполнения опыта с нагрузкой ключи S1-S3 следует замкнуть (фиг.2). Эти действия должны выполняться в блоке 2 (фиг.1). В результате таких мероприятий будут справедливы уравнения:

U ˙ 1 A 12 + I ˙ 1 A 12 Z _ A + U ˙ 2 A 12 ; U ˙ 1 B 12 + I ˙ 1 B 12 Z _ B + U ˙ 2 B 12 ; U ˙ 1 C 12 + I ˙ 1 C 12 Z _ C + U ˙ 2 C 12 ; }

где U ˙ 1 A 12 , U ˙ 1 B 12 , İ1A12, İ1B12, İ1C12, и U ˙ 2 A 12 , U ˙ 2 B 12 , U ˙ 2 C 12 - изображения на комплексной плоскости фазных напряжений и линейных токов на входе и на выходе исследуемой трехпроводной ЛЭП, определяемых из показаний электроизмерительных приборов.

Из этих уравнений получаются равенства, позволяющие определить в блоке 3 (фиг.1) укрупненные продольные параметры линии:

Z _ A = U ˙ 1 A 12 U ˙ 2 A 12 I ˙ 1 A 12 ; Z _ B = U ˙ 1 B 12 U ˙ 2 B 12 I ˙ 1 B 12 ; Z _ C = U ˙ 1 C 12 U ˙ 2 C 12 I ˙ 1 C 12 .

Затем из этих равенств определяются активные сопротивления и индуктивности каждого линейного провода.

Для определения укрупненных поперечных параметров ЛЭП, в состав которой входит несколько однородных участков, следует продолжить выполнение экспериментов.

Второй опыт выполняется в блоке 4 (фиг.1) при разомкнутых ключах S1-S3. Кроме того, должен быть разомкнут ключ S4 и должны быть замкнуты ключи S5 и S6. В таком случае будут отсутствовать выходные фазные напряжения U ˙ 2 B 2 и U ˙ 2 C 2 , а также токи İ2A2, dİB2, dİC2 и dİBC2:

U ˙ 2 B 2 = U ˙ 2 C 2 = 0 ;

I ˙ 2 A 2 = d I ˙ B 2 = d I ˙ C 2 = d I ˙ B C 2 = 0 .

При таких условиях справедливы уравнения:

I ˙ 1 A 2 d I ˙ A B 2 + d I ˙ C A 2 d I ˙ A 2 = 0 ; I ˙ 1 B 2 + d I ˙ A B 2 I ˙ 2 B 2 = 0 ; I ˙ 1 C 2 d I ˙ C A 2 I ˙ 2 C 2 = 0. }                             (1)

Входные линейные токи İ1A2, İ1B2, İ1C2, выходные токи İ2B2, İ2C2 и выходное фазное напряжение U ˙ 2 A 2 определятся из показаний электроизмерительных приборов.

Из второго уравнения системы уравнений (1) определяется ток dİАВ2:

AB12B21B2.

А из третьего уравнения этой же системы уравнений определится ток dİCA2:

CA21C22С2.

При известных токах dİАВ2 и dİCA2 из первого уравнения системы уравнений (1) определится ток dİА2:

А21A2-dİАВ2+dİCA2.

Теперь появилась возможность определить ряд укрупненных поперечных параметров в виде полных проводимостей:

Y _ A B = d I ˙ A B 2 U ˙ 2 A 2 ; Y _ C A = d I ˙ C A 2 U ˙ 2 A 2 ; Y _ A = d I ˙ A 2 U ˙ 2 A 2

Условия выполнения третьего опыта от второго отличаются тем, что ключ S5 разомкнут, а ключ S4 замкнут. Вследствие этих переключений линии А и С в конце анализируемой ЛЭП оказываются замкнутыми на «землю». В этом случае будут отсутствовать напряжения U ˙ 2 A 3 и U ˙ 2 C 3 , а также будут отсутствовать токи İ2B3, dİА3, dİC3 и dİCA3:

U ˙ 2 A 3 = U ˙ 2 C 3 = 0 ;

I ˙ 2 B 3 = d I ˙ A 3 = d I ˙ C 3 = d I ˙ C A 3 = 0 .

Входные линейные токи İ1A3, İ1B3, İ1C3, выходные токи İ2A3, İ2C3 и выходное фазное напряжения U ˙ 2 B 3 определятся из показаний электроизмерительных приборов.

При таких условиях справедливы уравнения:

I ˙ 1 A 3 d I ˙ A B 3 I ˙ 2 A 3 = 0 ; I ˙ 1 B 3 d I ˙ B C 3 d I ˙ A B 3 d I ˙ B 3 = 0 ; I ˙ 1 C 3 + d I ˙ B C 3 I ˙ 2 C 3 = 0. }                                (2)

Из первого и третьего уравнений системы уравнений (2) определятся токи dİAB3 и dİBC3:

AB31A32A3;

BC32C31C3.

Из второго уравнения этой же системы уравнений определится ток dİB3:

B31B3-dİBC3+dİAB3.

Рассчитанные таким образом токи дают возможность определения еще двух укрупненных поперечных параметров в виде полных проводимостей:

Y _ B C = d I ˙ B C 3 U ˙ 2 B 3 ; Y _ B = d I ˙ B 3 U ˙ 2 B 3 .

Цель четвертого опыта заключается в определении полной проводимости Y _ C . Он выполняется в блоке 6 (фиг.1). Для этого необходимо разомкнуть ключ S6 и замкнуть ключ S5. Состояние прочей коммутационной аппаратуры следует оставить без изменения. В результате этих действий линейные провода А и В окажутся замкнутыми на «землю»; напряжения U ˙ 2 A 4 и U ˙ 2 B 4 , а также токи İ2C4, dİA4, dİB4 и dİAB4 будут отсутствовать:

;

İ2C4=dİA4=dİВ4=dİАВ4=0.

Входные линейные токи İ1A4, İ1В4, İ1С4, выходные токи İ2А4, İ2В4 и выходное фазное напряжения U ˙ 2 C 4 определятся из показаний электроизмерительных приборов.

В таком случае будут справедливы уравнения:

I ˙ 1 A 4 + d I ˙ C A 4 I ˙ 2 A 4 = 0 ; I ˙ 1 B 4 d I ˙ B C 4 I ˙ 2 B 4 = 0 ; I ˙ 1 C 4 d I ˙ C A 4 + d I ˙ B C 4 d I ˙ 2 C 4 = 0. }                               (3)

Из первого и второго уравнения системы уравнений (3) определятся токи dİCA4 и dİBC4:

CA42A41A4;

BC41B42B4.

А из третьего уравнения этой же системы уравнений определится ток dİ2C3:

2C41C4-dİCA4+dİBC4.

Искомая полная проводимость определится так:

Y _ C = d I ˙ C 4 U ˙ 2 C 4 .

Таким образом, определены все полные проводимости, иллюстрирующие укрупненные поперечные параметры исследуемой трехпроводной линии электропередачи.

Вещественные части найденных полных проводимостей в блоке 7 (фиг.1) определят активные проводимости между линейными проводами, а также между проводами и «землей»:

G A = Re ( Y _ A ) ; G B = Re ( Y _ B ) ; G C = Re ( Y _ C ) ;

G A B = Re ( Y _ A B ) ; G B C = Re ( Y _ B C ) ; G C A = Re ( Y _ C A ) .

Мнимая часть полных проводимостей в блоке 7 (фиг.1) определит емкостную проводимость между линейными проводами, а также между проводами и «землей». Поэтому величины соответствующих емкостей определятся из равенств:

C A = Im ( Y _ A ) 2 π f ; C B = Im ( Y _ A ) 2 π f ; C C = Im ( Y _ C ) 2 π f ;

C A B = Im ( Y _ A B ) 2 π f ; C B C = Im ( Y _ B C ) 2 π f ; C C A = Im ( Y _ C A ) 2 π f .

Так определяются численные значения укрупненных первичных параметров трехпроводной ЛЭП, содержащей в своем составе несколько однородных участков.

Конкретизированные таким образом укрупненные параметры реальных ЛЭП создают возможность прогнозирования в первом приближении результатов передачи по ней электрической энергии на частоте каждой гармонической составляющей. Такой прогноз может оказаться достаточным для оценки эффективности той или иной передачи электрической энергии.

Источники информации

1. Способ определения текущих первичных и вторичных параметров линии электропередачи для построения ее прямой Г-образной адаптивной модели. / Д.В.Джумик, Е.И.Гольдштейн. Патент №2334990, Россия. МКИ G01R 25/00. - Томский политехнический университет. №2007117275/28; 08.05.2007.

2. Способ определения текущих параметров линии электропередачи для построения ее прямой П-образной адаптивной модели (варианты). / Е.И.Гольдштейн, Д.В.Джумик. Патент №2328004, Россия. МКИ G01R 25/00. - Томский политехнический университет. №200710206/38; 19.02.2007.

3. Большанин Г.А. Распределение электрической энергии по участкам электроэнергетических систем. В 2-х кн. - Братск: БрГУ, 2006. - 807 с.

4. Электротехнический справочник. В 4-х т.Т. 3. Производство, передача и распределение электрической энергии. Под общ. ред. Профессоров МЭИ В.Г.Герасимов и др. (гл. ред. А.И.Попов). - 9-е изд. стер. - М.: Издательство МЭИ, 2004. - 964 с.

Способ определения укрупненных первичных параметров трехпроводной линии электропередачи, заключающийся в косвенном измерении первичных параметров однородного участка линии электропередачи на основе Г-образной схемы замещения полнофазного исполнения, отличающийся тем, что после замещения всей трехпроводной линии электропередачи, включающей в свой состав несколько однородных участков, опоры, линейную арматуру и прочие сопутствующие устройства, в результате выполнения серии экспериментов из четырех опытов определяются изображения на комплексной плоскости действующих значений входных и выходных фазных напряжений и токов, которые являются исходными данными для определения укрупненных первичных параметров трехпроводной линии электропередачи, вычислением на основании полученных таким образом экспериментальных данных укрупненных активных сопротивлений и индуктивностей линейных проводов, укрупненных активных проводимостей и емкостей между проводами, а также между проводами и «землей».



 

Похожие патенты:

Изобретение относится к электронной технике и может быть использовано для высокоэффективного контроля объектов, в качестве информативного параметра которых используют электрический импеданс. Способ включает определение глубины пропитки объекта расположением измерительных электродов в виде овальной формы с числом 2n на участке объекта, измерение импедансов между всеми ближайшими соседними измерительными электродами в первой серии, импедансов между всеми измерительными электродами во второй серии с отличием на единицу, сравнение результатов, по которым судят о глубине пропитки.

Изобретение относится к измерительной технике. Способ заключается в возбуждении кратковременным электрическим импульсом в LC-контурах измерительного и опорного плеч датчика колебательных сигналов и аналого-цифровом преобразовании их в числовые массивы данных, временной инверсии путем переиндексации элементов массивов, осуществлении Фурье-преобразования полученных в результате инверсии сигналов и определении действительных Re U(f) и мнимых Im U(f) трансформантов сигналов на частоте, наиболее близкой к частоте основной гармоники, что позволяет вычислить начальные фазы колебаний сигналов для измерительного и опорного плеч датчика, разность которых однозначно связана с изменением параметров датчика.

Изобретение относится к измерительной технике, в частности к устройствам для измерения активного сопротивления, и может быть использовано в средствах для измерения и контроля неэлектрических величин резистивными датчиками.

Изобретение относится к технике электрических измерений и предназначено для профилактических испытаний изоляции крупных электрических машин и аппаратов, имеющих большую постоянную времени.

Изобретение относится к измерительной технике и, в частности, к области измерения параметров объектов, имеющих схемы замещения в виде многоэлементных пассивных двухполюсников.

Изобретение относится к измерительной технике, в частности к устройствам для измерения активного сопротивления, и может быть использовано в средствах для измерения и контроля неэлектрических величин резистивными датчиками.

Изобретение относится к технике электрических измерений и предназначено для профилактических испытаний изоляции крупных электрических машин и аппаратов, имеющих большую постоянную времени.

Изобретение относится к технике электрических измерений и предназначено для профилактических испытаний изоляции электрических машин и аппаратов. .

Изобретение относится к электронной технике и может быть использовано для эффективного контроля напыления тонких металлических пленок. .

Изобретение относится к измерительной технике и может быть использовано в авиационной промышленности, машиностроении, строительстве и т.д. .

Изобретение относится к измерительной технике. Цифровой измерительный преобразователь индуктивного типа, включающий в себя микроконтроллер, подключенный к блоку формирования импульсов, выход которого подключен к входам усилителей тока измерительного и опорного плеч преобразователя, выходы усилителей подключены к LC-контурам измерительного и опорного плеч преобразователя. При этом LC-контуры измерительного и опорного плеч преобразователя подключены к первым входам компараторов обоих плеч соответственно, вторые входы которых соединены с общей шиной, выходы компараторов подключены к цифровым входам микроконтроллера. Технический результат заключается в повышении быстродействия измерительного преобразователя. 2 ил.

Способ относится к области функционального контроля и диагностики трехфазных линий электропередачи трехпроводного исполнения на основании теории многополюсников. Способ заключается в замещении трехпроводной линии электропередачи восьмиполюсником, в экспериментальном определении его коэффициентов, в вычислении укрупненных вторичных параметров этой линии электропередачи. Коэффициенты восьмиполюсника определяются в результате выполнения шести опытов. В результате аналитической обработки экспериментальных данных определяются постоянные распространения результирующих падающих и отраженных волн электромагнитного поля в каждом линейном проводе, укрупненные собственные и взаимные волновые сопротивления, фазовые скорости падающих и отраженных волн электромагнитного поля в каждом линейном проводе. Технический результат заключается в повышении точности контроля и диагностики трехфазных линий электропередачи трехпроводного исполнения. 3 ил.

Способ определения первичных и обобщенных вторичных параметров однородного участка трехпроводной линии электропередачи методом восьмиполюсника относится к области контроля и диагностики трехфазных линий электропередачи трехпроводного исполнения на основании многополюсников. Способ заключается в замещении однородного участка трехпроводной линии электропередачи восьмиполюсником, в экспериментальном определении его коэффициентов, в вычислении первичных и вторичных параметров этого участка. Коэффициенты восьмиполюсника определяются в результате выполнения двух опытов холостого хода и двух опытов короткого замыкания в полнофазном и неполнофазном режимах. В результате аналитической обработки экспериментальных данных определяются постоянная распространения результирующей волны электромагнитного поля, обобщенные собственные и взаимные волновые сопротивления, фазовая скорость, активные сопротивления, собственные и взаимные индуктивности линейных проводов. Технический результат заключается в повышении точности определения первичных и обобщенных вторичных параметров однородного участка трехпроводной линии электропередачи. 3 ил.

Способ определения первичных параметров однородного участка трехпроводной линии электропередачи относится к области функционального контроля и диагностики трехфазных линий электропередачи трехпроводного исполнения на основе ее Г-образной схемы замещения полнофазного исполнения. Способ заключается в экспериментальном определении изображений действующих значений входных и выходных фазных напряжений и токов на комплексной плоскости и в последующем вычислении первичных параметров однородного участка трехпроводной линии электропередачи. Входные и выходные напряжения и токи определяются из серии экспериментов из четырех опытов и являются исходными данными для вычисления активных сопротивлений и индуктивностей линейных проводов, активных проводимостей и емкостей между проводами, а также между проводами и «землей». Технический результат заключается в повышении точности определения первичных параметров однородного участка трехпроводной линии электропередачи. 2 ил.

Изобретение относится к области электроизмерительной техники и может быть использовано для контроля и определения динамических метрологических характеристик при производстве и эксплуатации токовых шунтов. Устройство содержит источник импульсного тока, в котором к первому выводу вторичной обмотки повышающего сетевого трансформатора (ПСТ) подключен однополупериодный выпрямитель, к которому через резисторный ограничитель тока заряда подключен накопитель энергии, соединенный со вторым выводом вторичной обмотки ПСТ. К резисторному ограничителю тока заряда подключен первый электрод коммутатора. Первичная обмотка ПСТ подключена к промышленному источнику напряжения переменного тока. Через контактные клеммы тестируемый шунт подключен ко второму электроду коммутатора и второму выводу вторичной обмотки ПСТ. Эталонный трансформатор тока (ЭТТ) размещен между тестируемым шунтом и контактными клеммами. Блок регистрации и обработки сигнала содержит первый АЦП, к которому подключен первый блок быстрого преобразования Фурье (ББПФ). Второй АЦП соединен со вторым ББПФ. Вычислительное устройство, первый ББПФ, блок функционального преобразования и дисплей связаны через общую шину данных. Первый АЦП подключен к выходу тестируемого шунта, а второй АЦП соединен с выходом ЭТТ. В блоке регистрации и обработки сигнала к первому ББПФ подключен первый блок умножения, а ко второму ББПФ подключен второй блок умножения, соединенный с первым блоком функционального преобразования. В первом блоке определения идеализированных коэффициентов обратной передачи аналого-цифровых преобразователей третий ББПФ соединен с третьим блоком умножения. Четвертый ББПФ соединен со вторым блоком функционального преобразования, который соединен с третьим блоком умножения, который соединен с первым блоком умножения. Во втором блоке определения идеализированных коэффициентов обратной передачи аналого-цифровых преобразователей пятый ББПФ соединен с четвертым блоком умножения. Шестой ББПФ соединен с третьим блоком функционального преобразования, который соединен с четвертым блоком умножения, который соединен со вторым блоком умножения. Первый блок функционального преобразования сигнала, первый блок умножения, второй, третий, четвертый, пятый и шестой ББПФ связаны через общую шину данных. Технический результат заключается в снижении влияния погрешности квантования АЦП при определении АЧХ И ФЧХ токовых шунтов. 2 ил.

Изобретение относится к измерительной технике и, в частности, к контролю выходного напряжения и сопротивления изоляции аккумуляторных батарей. Устройство контроля аккумуляторной батареи содержит аккумуляторную батарею, преобразователь постоянного напряжения, выполненный по схеме автогенератора с трансформаторной обратной связью, источник тока, сдвоенный транзисторный оптрон, операционный усилитель, два резистора и дополнительный индикатор, причем величина сопротивления R первого резистора установлена равной R=E/2J, где E - номинальное напряжение аккумуляторной батареи J - величина тока, вырабатываемого источником тока. Технический результат заключается в расширении функциональных возможностей устройства путем контроля изоляции шин питания аккумулятора на корпус, измерения выходного напряжения аккумулятора и полной гальванической развязкой индикаторов от шин питания и корпуса аккумулятора. 2 з.п. ф-лы, 1 ил.

Изобретение относится к электроизмерительной технике, в частности к измерениям внутреннего сопротивления аккумуляторной батареи. Устройство измерения внутреннего сопротивления для пакетированной батареи включает в себя компонент источника питания переменного тока для подачи переменного тока на батарею, состоящую из множества пакетированных элементов генерирования энергии, посредством подключения к объекту измерения. Компонент регулирования переменного тока для регулирования переменного тока таким образом, чтобы разность потенциалов переменного тока положительного электрода, которая представляет собой разность потенциалов, полученную посредством вычитания потенциала на среднем участке из потенциала на участке, подключенном к нагрузочному устройству на положительной стороне объекта измерения, совпадала с разностью потенциалов переменного тока отрицательного электрода, которая представляет собой разность потенциалов, полученную посредством вычитания потенциала на среднем участке из потенциала на участке, подключенном к нагрузочному устройству на отрицательной стороне объекта измерения. Компонент вычисления сопротивления для вычисления сопротивления батареи на основе регулируемого переменного тока и разности потенциалов переменного тока. Технический результат заключается в возможности измерения внутреннего сопротивления батареи без нагрузки. 5 н. и 11 з.п. ф-лы, 21 ил.

Изобретение относится к метрологии. Измеритель содержит генератор, мост, нуль-детектор. Генератор содержит формирователи импульсов, синхронизатор, коммутатор, усилитель мощности. Первая ветвь моста содержит объект измерения и одиночный резистор, общий вывод которых образует первый выход моста. Вторая ветвь моста ветвь моста содержит одиночный резистор и многоэлементный уравновешивающий двухполюсник. В измеритель введен дополнительный конденсатор и изменено включение элементов мостовой цепи. Во второй ветви мостовой цепи дополнительный конденсатор включен параллельно имеющейся индуктивной катушке, параллельно этой же индуктивной катушке включен имеющийся третий резистор, свободный вывод первого резистора подключен к первому выходу генератора импульсов, общий вывод первого резистора и индуктивной катушки образует второй вывод выхода мостовой цепи, который соединяется со вторым выводом первого (дифференциального) входа нуль-индикатора, в двухполюснике объекта измерения первой ветви мостовой цепи свободный вывод второго резистора соединен с общим выводом имеющейся индуктивной катушки и первого резистора. Технический результат - повышение точности. 1 ил.

Изобретение относится к области энергетики, а именно к измерению параметров обмоток трансформаторов. Сущность заявляемого изобретения состоит в том, что измерение параметров трехфазных двухобмоточных трансформаторов при коротком замыкании производится вначале при схеме соединения первичной обмотки в треугольник, а затем - в звезду. Далее по измеренным значениям мощности трех фаз, средних линейных значениях напряжения и тока короткого замыкания определяют по формулам полное сопротивление короткого замыкания, а также значения активного и реактивного сопротивления к.з., кроме того фазные значения сопротивления первичной обмотки трансформаторов определяют также по формулам. Техническим результатом заявляемого изобретения является повышение надежности работы трансформаторов путем получения информации о их состоянии. 2 ил.

Изобретение относится к технике измерения электрических параметров нелинейных элементов цепей с температурозависимой вольт-амперной характеристикой, в частности полупроводниковых приборов, и может быть использовано на выходном и входном контроле их качества. Подают на контролируемый двухполюсник последовательность коротких импульсов тока большой скважности с изменяющейся амплитудой и измеряют амплитуды импульсов напряжения на контролируемом двухполюснике. При этом амплитуду импульсов тока изменяют по гармоническому закону с заданной частотой Ω со средней амплитудой Iи и глубиной модуляции М. На частоте модуляции Ω измеряют амплитуду Um огибающей импульсного напряжения на контролируемом двухполюснике и дифференциальное сопротивление рассчитывают по формуле R д и ф | I и = U m / M I и . Технический результат заключается в повышении точности измерения дифференциального сопротивления нелинейного двухполюсника с температурозависимой вольт-амперной характеристикой. 3 ил.
Наверх