Способ получения активного угля на основе антрацита

Изобретение относится к области адсорбционной техники, в частности к способам получения активных углей на основе каменноугольного сырья. Предложен способ получения активного угля на основе антрацита. Способ включает дробление кусков, рассев зерен, термообработку в инертной среде и активацию при 850-900°С. Термообработку ведут при температуре 760-820°С со скоростью подъема температуры 12-20°С/мин. Активацию осуществляют смесью водяного пара и диоксида углерода, подаваемой со скоростью 0,7-1,2 см/с. Способ позволяет повысить емкость активного угля по ионам тяжелых металлов. 1 з.п.ф-лы, 2 пр.

 

Изобретение относится к области адсорбционной техники, в частности способам получения активных углей на основе каменноугольного сырья.

В тоже время становятся чрезвычайно актуальными вопросы применения активных углей на каменноугольной основе (как наиболее дешевых адсорбентов) в процессах очистки промышленных сточных вод от ионов тяжелых металлов, в процессах обезжелезивания стоков, гидрометаллургии золота и т.д.

Известен способ получения активного угля на основе полукокса длиннопламенного каменного угля марки Д, включающий дробление кусков, высев фракции 0,5-2,8 мм, сушку зерен при 140-180°С в течение 40-60 мин и активацию их при температуре 900-1000°С смесью водяного пара и дымовых газов до соотношения объемов микро- и мезопор, равного 1:(1,0-1,1) (см. патент РФ №2164217, кл. С01В 31/08, 31/10, опубл. 10.03.2001 г.).

Недостатком известного способа является невысокая прочность получаемого активного угля 60-65% и его низкий выход.

Наиболее близким к предложенному способу по технической сущности и количеству совпадающих признаков является способ получения дробленого активного угля на основе каменноугольного сырья высокой степени метаморфизма (каменные угли марок СС и Т, антрацит), включающий дробление кусков, высев фракции 1,0-7,0 мм, карбонизацию зерен при 550-650°С со скоростью нагрева 5-15°С/мин в потоке топочных газов, охлаждение полупродукта на воздухе со скоростью 10-40°С/мин до 50-80°С, последующую термообработку без доступа воздуха при 700-750°С со скоростью нагрева 2,0-2,5°С/мин и активацию водяным паром при температуре 850-900°С (см. патент РФ №2171778, кл. С01В 31/08, опубл. 10.08.2001 г.)

Недостатком прототипа является низкая емкость по поглощению из водных растворов ионов тяжелых металлов, а также сложность осуществления способа.

Техническим результатом (целью изобретения) является повышение емкости по поглощению из водных растворов ионов тяжелых металлов.

Поставленная цель достигается поставленным способом, включающим дробление кусков антрацита, рассев зерен, их термообработку в инертной среде и активацию при 850-900°С. Причем термообработку ведут при температуре 760-820°С со скоростью нагрева 12-20°С/мин, а активацию осуществляют смесью водяного пара и диоксида углерода, подаваемой со скоростью 0,7-1,2 л/мин, а соотношение в смеси водяного пара и диоксида углерода составляет (3-5):1.

Отличие предложенного способа от известного заключается в том, что термообработку ведут при температуре 760-820°С со скоростью ее подъема 12-20°С/мин, а активацию осуществляют смесью водяного пара и диоксида углерода, подаваемой со скоростью 0,7-1,2 см/с при соотношении в смеси водяного пара и углекислого газа (3-5):1.

Из научно-технической литературы авторам неизвестен способ получения активного угля, при котором термообработку ведут при температуре 760-820°С со скоростью ее подъема 12-20°С/мин, а активацию осуществляют смесью водяного пара и диоксида углерода, подаваемой со скоростью 0,7-1,2 см/с при соотношении в смеси водяного пара и углекислого газа (3-5):1.

В случае использования сырья высокой степени метаморфизма, к которому относится антрацит, параметры термообработки играют важную роль в формировании оптимальной пористой структуры. Именно на этой стадии в неупорядоченной массе антрацита формируются кристаллиты - структурные элементы микропор. От скорости разложения органической массы антрацита зависит концентрация их образования в массе зерна, а конечная температура термообработки характеризует степень уплотнения макромолекул и, соответственно, характер микропористой структуры.

Для эффективного поглощения ионов тяжелых металлов из водных растворов необходимо такое соотношение сорбирующих (микро-) и транспортных (мезо- и макропор), чтобы обеспечить как высокое значение адсорбционной способности, так и хорошую кинетику.

Конкретные технологические режимы термообработки, обеспечивающие оптимальное развитие пористой структуры, могут быть установлены только экспериментально.

Важность параметров технологического режима активации (температура, тип и соотношение активирующих агентов, а также скорость их подачи в зону активации печи) состоит в том, что они определяют условия выгорания макромолекул и аморфного углерода, заполняющего промежутки между кристаллитами, то есть процесса формирования транспортных пор, обеспечивающих кинетику поглощения ионов тяжелых металлов из водных растворов.

Способ осуществляется следующим образом: берут антрацит с размером кусков 20-50 мм и дробят их с высевом целевой фракции 0,5-2,8 мм. Затем зерна антрацита подвергают термообработке во вращающейся или шахтной печи при скорости подъема температуры 12-20°С/мин и изотермической выдержке при температуре 760-820°С в течение 15-25 мин. Затем термообработанный продукт направляют в печь активации и ведут процесс при температуре 850-900°С c использованием активирующего агента - смеси водяного пара и диоксида углерода в соотношении (3-5):1, подаваемой в зону реакции со скоростью 0,7-1,2 см/с.

Процесс ведут до снижения насыпного веса исходного термообработанного угля на 20-25%, что соответствует обгару угля на эту величину. Затем продукт выгружают в герметичный приемный бункер и охлаждают без доступа воздуха до комнатной температуры.

Полученный активный уголь проверяется на адсорбционную способность по ионам тяжелых металлов.

Адсорбционная способность полученных активных углей из антрацита составила при исходной концентрации в растворе 10 мг/л и температуре раствора 20-25°С по меди 20-25 мг/г, по свинцу 15-18 мг/г и по золоту 18-22 мг/г.

Пример 1.

Берут 5 кг антрацита по ГОСТ 21489-86 (стадия VII-VIII) и после дробления высевают целевую фракцию 0,5-2,8 мм. Полученные зерна подвергают термообработке во вращающейся электропечи при температуре 760°С со скоростью подъема температуры 12°С/мин и осуществляют изотермическую выдержку в течение 15-20 минут. Насыпной вес полученного продукта составляет 880 г/см3. Затем термообработанный продукт направляют в ретортную электропечь активации и ведут процесс при 850-900°С c использованием активирующего агента - смеси водяного пара и диоксида углерода в соотношении (3-5)/1, подаваемой в зону реакции со скоростью 0,7 см/с. Процесс ведут до снижения насыпного веса на 12% и достижения его величины 775 г/см3. Продукт выгружают в герметичный приемный бункер и охлаждают без доступа воздуха до комнатной температуры.

Полученный активный уголь имел адсорбционную способность по меди 20 мг/г, по свинцу 15 мг/г, по золоту 18 мг/г, при их исходной концентрации в растворе 10 мг/л.

Пример 2.

Проведение процесса как в примере 1, за исключением того, что термообработку ведут со скоростью подъема температуры 20°С/мин до конечной температуры 820°С и осуществляют изотермическую выдержку в течение 15-20 минут. Активирующий агент подается в зону реакции со скоростью 1,2 см/с.

Полученный активный уголь имел адсорбционную способность по меди 22 мг/г, по свинцу 16 мг/г и по золоту 20 мг/г, при их исходной концентрации в растворе 10 мг/л.

Пример 3.

Проведение процесса как в примере 1, за исключением того, что термообработку ведут со скоростью подъема температуры 16°С/мин до конечной температуры 800°С и осуществляют изотермическую выдержку в течение 15-20 мин. Активирующий агент подается в зону реакции со скоростью 1,0 см/с.

Полученный активный уголь имел адсорбционную способность по меди 25 мг/г, по свинцу 18 мг/г и по золоту 22 мг/г, при их исходной концентрации в растворе 10 мг/л.

Исследование адсорбционной способности прототипа по ионам тяжелых металлов (Пат. РФ 2171778) показало, что он имел адсорбционную способность по меди 14 мг/г, по свинцу 12 мг/г и по золоту 14 мг/г, при их исходной концентрации в растворе 10 мг/г.

Разработка предлагаемого способа позволила выявить следующие технологические особенности: если скорость подъема температуры была ниже 12°С/мин, имело место преимущественно развитие тонких микропор (менее 0,6 нм), что снижало адсорбционную способность по ионам исследуемых металлов за счет ситового эффекта. С другой стороны, если скорость нагрева превышала 20°С/мин, то шло преимущественно развитие транспортных макро- и мезопор, что также снижало адсорбционную способность.

При температуре термообработки выше 820°С наблюдался поверхностный обгар, а не развитие пористой структуры, что снижало адсорбцию исследуемых ионов металлов. А при температуре термообработки ниже 760°С в зернах угля оставалось значительное количество аморфного углерода, который при выгорании не давал развития микропор.

Исследование относительно скорости подаваемой смеси водяного пара и диоксида углерода на стадии активации показало, что при скорости ниже 0,7 см/с имеет место недостаточный подвод активирующих агентов к зернам угля, что влечет за собой недостаточное развитие объема микропор. С другой стороны, увеличение скорости подачи активирующей смеси выше 1,2 см/с приводит к более глубокой степени активирования за счет выгорания стенок соседних микропор и перехода их в разряд транспортных, несорбирующих пор. В обоих случаях снижается величина сорбционной способности по ионам тяжелых металлов.

Соотношение в активирующей смеси водяного пара и диоксида углерода, хотя и является косвенной величиной, тем не менее оптимизирует процесс активации. Если соотношение выше 5:1, то в результате интенсивной реакции взаимодействия углеродсодержащего материала с водяным паром снижается прочность готового продукта. В то же время, при уменьшении этого соотношения ниже чем 3:1 за счет высокой концентрации диоксида углерода преимущественно развитие получают тонкие микропоры (менее 0,6 нм), недоступные для ионов тяжелых металлов.

Таким образом, из изложенного следует, что каждый из признаков заявленной совокупности в большей или меньшей степени влияет на достижение поставленной цели, а вся совокупность является достаточной для характеристики заявленного технического решения.

1. Способ получения активного угля на основе антрацита, включающий дробление кусков, рассев зерен, их термообработку в инертной среде и активацию при 850-900°С, отличающийся тем, что термообработку ведут при температуре 760-820°С со скоростью ее подъема 12-20°С/мин, а активацию осуществляют смесью водяного пара и диоксида углерода, подаваемой со скоростью 0,7-1,2 см/с.

2. Способ по п.1 отличающийся тем, что соотношение в смеси водяного пара и углекислого газа равно (3-5):1.



 

Похожие патенты:

Изобретение относится к области получения углеродных сорбентов на основе растительного сырья. Способ получения углеродного адсорбента включает карбонизацию измельченной древесины березы при 300-800°C в инертной среде.
Изобретение относится к магнитоуправляемому сорбенту для удаления эндо- и экзотоксинов из организма человека, приготовленному из наночастиц магнетита Fe3O4. Поверхность магнетита модифицирована соединением, образующим прочную связь с частицей-носителем за счет поверхностно-активных групп, придающих свойства селективности и выполненных в виде оболочки из нормальных углеводородных цепей C12H25, присоединенных к ядру посредством сульфидной связи Fe-S, причем в качестве упомянутого соединения, обеспечивающего связывание железа с углеродной цепочкой, выбран додецилмеркаптан.

Изобретение относится к обработке питьевой воды с использованием сорбционной очистки. Способ дообработки питьевой воды включает механическую фильтрацию воды через древесную активированную угольную сорбционную загрузку и введение в исходную фильтруемую воду гипохлорита натрия.
Изобретение относится к области получения хемосорбентов, используемых для средств защиты органов дыхания и для очистки отходящих газов. Способ получения хемосорбента включает пропитку гранул активного угля модифицирующим раствором, вылеживание гранул и их термообработку.
Изобретение относится к способу получения активного угля. Способ включает выделение фракции 1-3 мм из шихты для слоевого высокотемпературного коксования и следующие стадии: окисление кислородом воздуха при температуре 250°C со скоростью подъема температуры от комнатной до заданной 15-20°C/мин, с выдержкой при конечной температуре в течение 2,5 часов, карбонизация окисленного сырья при подъеме температуры со скоростью 5°C/мин до температуры карбонизации 550-650°C, с выдержкой при температуре карбонизации в течение 60 минут и активирование полученных продуктов водяным паром до обгара 35-40% при температуре 950°C.
Изобретение может быть использовано для очистки технологических стоков предприятий химической промышленности. Способ очистки водных растворов от пиридина адсорбцией активным углем включает обработку активного угля хлоридом аммония с концентрацией 5 мг/дм3 в течение 3 часов.

Изобретение относится к получению активированного угля. Уголь получают путем карбонизации и последующей активации полимерных органических, сульфонированных исходных веществ.
Изобретение относится к технологическим процессам получения активного угля на основе древесины. .

Изобретение относится к пористому углеродному композиционному материалу. Пористый углеродный композиционный материал образуется из (А) пористого углеродного материала, получаемого из материала растительного происхождения, имеющего содержание кремния (Si), составляющее 5 мас.% или выше, в качестве исходного материала, причем указанный пористый углеродный материал имеет содержание кремния, составляющее 1 мас.% или меньше, и (В) функционального материала, закрепленного на пористом углеродном материале, и имеет удельную площадь поверхности 10 м2/г или больше, которую определяют по адсорбции азота методом BET, и объем пор 0,1 см3/г или больше, который определяют методом BJH и методом МР. Полученный углеродный материал можно использовать, например, в качестве медицинского адсорбента, композиционного фотокаталитического материала, носителя для лекарственного препарата, агента, поддерживающего выделение лекарственного препарата, для селективной адсорбции нежелательных веществ в организме, насадки для колонн очистки крови, водоочищающего адсорбента, адсорбирующего листа. Изобретение обеспечивает получение материала с высокой функциональностью. 6 н. и 13 з.п. ф-лы, 21 ил., 8 табл., 11 пр.
Изобретение относится к способам получения активных углей из сельскохозяйственных растительных отходов. Предложен способ получения активного угля, включающий измельчение соломы рапса на куски 1-10 см, карбонизацию соломы в инертной атмосфере при температуре 450-500°C со скоростью подъема температуры 1-20°C/мин и выдержкой при конечной температуре в течение 30-60 минут. Затем осуществляют активацию водяным паром при температуре 820-850°C, подаваемым с расходом 3-5 кг на 1 кг карбонизованного продукта. Предложенный способ позволяет получить порошковый активный уголь с высокой адсорбционной способностью по полифенолам, ёмкость по резоцину составляет 0,0030-0,0050 мг/г, по гидрохинону составляет 0,0040-0,0050 мг/г. 3 пр.

Изобретение направлено на получение функционализированных углеродных нанотрубок, обладающих хорошей совместимостью с полимерными матрицами. Углеродные нанотрубки подвергают обработке в парах перекиси водорода при температуре от 80°С до 160°С в течение 1-100 ч. Обработку можно проводить в аппарате с псевдоожиженным слоем углеродного наноматериала. Способ характеризуется высокой эффективностью, отсутствием токсичных продуктов окисления, малым расходом реагентов, легко масштабируется. 1 з.п. ф-лы, 2 ил., 4 табл., 4 пр.
Изобретение относится к модифицированию промышленного активного угля. Процесс модифицирования включает промывание дистиллированной водой, прогрев при температуре 200°C в атмосфере воздуха в течение 2 часов и обработку раствором соляной кислоты с концентрацией 0,1 моль/дм3. Изобретение обеспечивает повышенную сорбционную способность угля по диметитламину. Извлечение диметиламина возрастает в среднем на 35%. 3 табл., 3 пр.
Изобретение относится к способу получения древесноугольного сорбента, которое может быть использовано для получения активных углей и углеродных сорбентов, используемых в сельском хозяйстве (животноводстве, птицеводстве, очистке почв, а также в качестве кормовой добавки). Углеродсодержащее сырье (древесные опилки хвойных и лиственных пород с исходной влажностью 10-30%) карбонизуют при температуре 450-600°С. Проводят последующую активацию карбонизата парогазовой смесью при температуре 650-800°С. Карбонизат охлаждают в тонком слое до 20-30° со скоростью снижения температуры 10°С/мин. Полученный древесноугольный сорбент направляют на дополнительную активацию для окисления кислородом воздуха. Изобретение позволяет получить древесноугольный сорбент с адсорбционной способностью по йоду - 30-41% (что соответствует требованиям ГОСТ на уголь дробленый активный марки ДАК); проводить непрерывный процесс получения совмещенного технологического процесса карбонизации-активации древесных опилок в одном аппарате, управлять формированием пористой структуры полученных древесноугольных сорбентов, а также получать сорбенты с требуемыми параметрами пористой структуры и адсорбционными свойствами. 2 пр.
Изобретение относится к области адсорбционной техники. Способ получения углеродного катионообменника включает обработку активированного угля смесью аммиака и гидразина, взятых в соотношении 1:(2-2,5). Процесс осуществляют при температуре 350-450°C. Технический результат заключается в получении углеродного катионообменника с улучшенными свойствами. 1 табл., 3 пр.

Изобретение относится к области получения гранулированных активных углей. Способ получения гранулированного активного угля включает измельчение каменноугольного сырья, смешение его со смоляным связующим и легирующей добавкой, гранулирование композиции, охлаждение гранул, карбонизацию и парогазовую активацию. В качестве легирующей добавки в угольно-смоляную композицию вводят тристриметилсилоксифенилсилан. Изобретение позволяет получить гранулированный активный уголь с высокой адсорбционной способностью, рекомендованный для извлечения из сточных и оборотных вод флотационных фабрик остатков флотационных агентов, таких как бутиловый ксантогенат калия. 3 пр.

Изобретение относится к способам получения пористых углеродных материалов. Процесс получения гранулированного пористого углеродного материала состоит из двух стадий. На первой стадии сажу смешивают с нефтяным пеком и растворителем, далее полученную смесь гранулируют, гранулы стабилизируют в газовой среде при температуре не более 250°С, подвергают карбонизации при 600-1200°С и охлаждают. Продукт, полученный на первой стадии, обладает узким распределением пор. На второй стадии продукт, полученный на первой стадии, измельчают до размера частиц менее 1 мм, смешивают с нефтяным пеком и растворителем, смесь гранулируют. Полученные гранулы подвергают стабилизации и карбонизации при тех же условиях, как на первой стадии. Техническим результатом является обеспечение возможности получения пористого углеродного материала, характеризующегося бимодальным распределением пор и низким содержанием золы. 1 ил., 1 табл., 5 пр.
Изобретение относится к области получения порошковых активных углей. Предложен способ производства, включающий измельчение сырья, сушку, введение химического активирующего агента, активацию, отмывку и сушку готового продукта. В качестве сырья используют древесину или технический лигнин или торф. В качестве химического активирующего агента используют гидроксид калия или натрия. Сушку проводят при температуре 280-600°C. Активацию осуществляют в атмосфере парогазов при подъёме температуры до 550-800°C. Отмывку проводят в три стадии при температуре 70-90°C. На первой стадии отмывают водой, затем соляной кислотой и на последней стадии водой. Предложенное изобретение позволяет повысить адсорбционную способность активного угля по йоду до 150-240%, по метиленовому голубому до 350-600 мг/г. 3 пр.

Изобретение касается устойчивого к самовоспламенению термически активированного угля на целлюлозной основе и процесса его производства, а также применения такого угля для очистки дымовых газов от вредных веществ. Термическую стабильность термически активированного угля на целлюлозной основе повышают путем воздействия на него галогеном и/или галогенсодержащим веществом, содержащим бром, хлор, фтор, йод, бромид аммония, другие содержащие азот соли галогенов или бромид кальция. Причем этот термически активированный уголь содержит приблизительно от 5 до 20 вес.% галогена по отношению к полному весу термически активированного угля, подвергшегося воздействию галогена и/или галогенсодержащего вещества. Такой обработанный уголь на целлюлозной основе пригоден для использования в процессах снижения содержания вредных веществ в дымовых газах, в частности в дымовых газах, температура которых находится в диапазоне приблизительно от 100°С до 420°С. 3 н. и 2 з.п. ф-лы, 5 ил., 1 табл.
Наверх