Адаптивный датчик идентификации и контроля положения нагретых неметаллических и ненагретых неметаллических изделий

Изобретение относится к области метрологии и предназначено для контроля положения и идентификации изделий. Адаптивный датчик содержит чувствительный элемент, образованный индуктивным чувствительным элементом, емкостным чувствительным элементом и двумя инфракрасными фотоприемниками, логический элемент ИЛИ-НЕ, первый и второй блоки индикации, первый и второй диоды, точка соединения выводов катодов которых и второго входа логического элемента ИЛИ-НЕ является первым выходом адаптивного датчика, счетный триггер, прямой и инверсный выходы которого являются соответственно вторым и третьим выходами адаптивного датчика. При перемещении нагретых неметаллических или ненагретых неметаллических изделий относительно чувствительного элемента адаптивного датчика на его выходах формируются потенциальные информационные сигналы напряжения, несущие информацию о положении и типе контролируемых изделий. Визуальные сигналы контроля положения и идентификации этих изделий снимаются с соответствующих блоков индикации. Адаптивный датчик обеспечивает автоматический контроль изделий без механического контакта с ними и автоматическую адаптацию его к конкретному виду контролируемого изделия. Технический результат - расширение функциональных возможностей. 2 ил.

 

Изобретение относится к области автоматизации в машиностроении и предназначено для контроля положения и идентификации неметаллических изделий с учетом их вида материала и термического состояния в автоматизированных высокопроизводительных производствах по сборке изделий.

Известен адаптивный датчик идентификации и контроля положения изделий, содержащий чувствительную поверхность, логический элемент И, тактовый генератор, блок индикации, первую, вторую и третью выходные клеммы, являющиеся соответственно первым, вторым входом и третьим выходами адаптивного датчика, логический элемент ИЛИ-НЕ, первый вход которого подключен к выходу тактового генератора, второй вход - к первой выходной клемме (см. RU 2458322 С1, МПК G01D 5/12 (2006.01), опубликовано: 2012.08.10, бюл. №22).

Такой датчик позволяет производить идентификацию (распознавание) и контроль положения неметаллических изделий, т.е. позволяет производить контроль изделий только с учетом их вида материала, из которого они изготовлены, и не позволяет производить контроль изделий как с учетом их вида материала, так и с учетом их термического состояния, например, таких как нагретые неметаллические и ненагретые неметаллические изделия. В связи с этим такой датчик имеет ограниченные функциональные возможности при решении задач в части автоматизации производственных процессов, включающих такие технологические операции, как идентификация и (или) контроль положения изделий.

Кроме того, в таком датчике сканирование его программирования функциональных возможностей осуществляется тремя значениями двухразрядного двоичного цифрового кода 00, 10 и 01, т.е. сканирование указанных его входов производится избыточным числом значений двухразрядного двоичного цифрового кода, при котором в процессе программирования функциональных возможностей этого датчика его значение 00 участия не принимает. При значении 00 указанного кода на входах программирования датчика изменения его функциональных возможностей не происходит, так как в этом случае, несмотря на нахождение контролируемого изделия в зоне чувствительности датчика, сигнал о контроле положения изделия на выходе датчика не отрабатывается, и он продолжает находиться в исходном состоянии. Таким образом, наличие избыточного значения 00 двухразрядного двоичного цифрового кода для сканирования входов программирования функциональных возможностей датчика приводит к снижению его быстродействия, что ухудшает его эксплуатационные характеристики.

Наиболее близким по технической сущности к предлагаемому решению является датчик идентификации и контроля положения изделий, содержащий индуктивный чувствительный элемент, выполненный в виде катушки индуктивности, помещенной в кольцевом пазу открытого торца ферритового сердечника с центральным сквозным отверстием, последовательно соединенные генератор электрических колебаний, в цепь колебательного контура которого включен индуктивный чувствительный элемент, первый пороговый элемент, а также первый и второй инфракрасные фотоприемники, формирователь импульсов, к входу которого подключены выходы первого и второго инфракрасных фотоприемников, логический элемент ИЛИ-НЕ, емкостной чувствительный элемент в виде металлической пластины с геометрической формой, повторяющей геометрическую форму центрального сквозного отверстия ферритового сердечника катушки индуктивности, установленный внутри его центрального сквозного отверстия соосно с ним со смещением относительно открытого торца ферритового сердечника катушки индуктивности в сторону его закрытого торца, последовательно соединенные мультивибратор, к входу которого подключен емкостной чувствительный элемент, детектор, второй пороговый элемент, а также первый логический элемент И, первый и второй входы которого подключены соответственно к прямому выходу формирователя импульсов и выходу второго порогового элемента, причем индуктивный чувствительный элемент с емкостным чувствительным элементом и инфракрасные фотоприемники установлены вдоль прямой линии в одной плоскости, проходящей через оси симметрии емкостного и индуктивного чувствительных элементов, при этом первый и второй инфракрасные фотоприемники, расположенные один относительно другого в двух диаметрально противоположных точках со стороны наружной боковой поверхности индуктивного чувствительного элемента, емкостной и индуктивный чувствительные элементы образуют чувствительный элемент адаптивного датчика, а поверхность открытого торца ферритового сердечника катушки индуктивности, одна из плоских поверхностей емкостного чувствительного элемента и поверхности оптических окон инфракрасных фотоприемников ориентированы параллельно друг другу, направлены в одну сторону и образуют чувствительную поверхность адаптивного датчика (см. RU 2340870 С1, МПК G01B 21/00 (2006.01), опубликовано: 2008.12.10, бюл. №34).

Однако такой датчик имеет ограниченные функциональные возможности, так как не позволяет:

- автоматически осуществлять трансформирование его функциональных возможностей, что не обеспечивает автоматизацию процесса контроля изделий на автоматизированном технологическом объекте эксплуатации;

- осуществлять автоматическую адаптацию к нагретым и ненагретым неметаллическим изделиям;

- осуществлять визуальный контроль положения и идентификации нагретых и ненагретых неметаллических изделий, а также определять состояние работоспособности или отказа датчика при ремонте и проведении пусконаладочных работ на его объекте эксплуатации, потому что в нем отсутствует устройство визуализации для контроля положения и идентификации конкретного вида контролируемого им изделия, что наряду с ограничением функциональных возможностей дополнительно ухудшает его эксплуатационные характеристики;

- осуществлять идентификацию и контроль положения изделий при их осевом перемещении, что наряду с ограничением функциональных возможностей адаптивного датчика ухудшает его эксплуатационные характеристики.

Кроме того, такой датчик характеризуется двумя зонами его чувствительности - ближней и дальней зонами чувствительности вдоль оси симметрии индуктивного чувствительного элемента, совпадающей с осью симметрии чашки его ферритового сердечника. В ближней зоне чувствительности датчик обеспечивает идентификацию (распознавание) контролируемых изделий. В дальней зоне чувствительности такой датчик теряет свойство осуществлять идентификацию контролируемых изделий. Это приводит к снижению надежности его работы в режиме идентификации контролируемых изделий, когда такой датчик находится в исходном состоянии, при котором на его выходах установлены напряжения с уровнями логического "0", а контролируемые им изделия находятся за пределами чувствительной поверхности из-за ложных его срабатываний от посторонних источников инфракрасного излучения, которыми могут быть нагретые металлические и неметаллические предметы и технологические источники инфракрасного излучения, случайно попадающие в пределы дальней зоны чувствительности такого датчика. При этом ложные его срабатывания проявляются в виде формирования на его первой выходной клемме ложных импульсов напряжения с уровнем логической "1". Причем из-за ложных срабатываний от нагретых металлических предметов такой датчик не позволяет однозначно производить идентификацию и контроль положения нагретых неметаллических изделий при осевом перемещении их последовательно в дальнюю и ближнюю зоны его чувствительности и обратно в их исходное положение, что наряду со снижением надежности его работы происходит также ограничение его функциональных возможностей.

Решаемая задача изобретением - расширение функциональных возможностей с повышением надежности работы датчика и улучшение его эксплуатационных характеристик.

Решение указанной задачи достигается тем, что в известный датчик, содержащий индуктивный чувствительный элемент, выполненный в виде катушки индуктивности, помещенной в кольцевом пазу открытого торца ферритового сердечника с центральным сквозным отверстием, последовательно соединенные генератор электрических колебаний, в цепь колебательного контура которого включен индуктивный чувствительный элемент, первый пороговый элемент, а также первый и второй инфракрасные фотоприемники, формирователь импульсов, к входу которого подключены выходы первого и второго инфракрасных фотоприемников, логический элемент ИЛИ-НЕ, емкостной чувствительный элемент в виде металлической пластины с геометрической формой, повторяющей геометрическую форму центрального сквозного отверстия ферритового сердечника, последовательно соединенные мультивибратор, к входу которого подключен емкостной чувствительный элемент, установленный внутри центрального сквозного отверстия ферритового сердечника соосно с этим отверстием со смещением относительно открытого торца ферритового сердечника в сторону его закрытого торца, детектор, второй пороговый элемент, а также первый логический элемент И, первый и второй входы которого подключены соответственно к прямому выходу формирователя импульсов и выходу второго порогового элемента, причем индуктивный чувствительный элемент с емкостным чувствительным элементом и инфракрасные фотоприемники установлены вдоль прямой линии в одной плоскости, проходящей через оси симметрии емкостного и индуктивного чувствительных элементов, при этом первый и второй инфракрасные фотоприемники, расположенные один относительно другого в двух диаметрально противоположных точках со стороны наружной боковой поверхности индуктивного чувствительного элемента, емкостной и индуктивный чувствительные элементы образуют чувствительный элемент датчика, а поверхность открытого торца ферритового сердечника, одна из плоских поверхностей емкостного чувствительного элемента и поверхности оптических окон инфракрасных фотоприемников ориентированы параллельно друг другу, направлены в одну сторону и образуют чувствительную поверхность датчика, введены тактовый генератор, выход которого соединен с первым входом логического элемента ИЛИ-НЕ, второй логический элемент И, первый и второй входы которого подключены соответственно к инверсному выходу формирователя импульсов и выходу второго порогового элемента, третий вход, соединенный с третьим входом первого логического элемента И, к выходу первого порогового элемента, первый и второй блоки индикации, входы которых соединены с выходами соответствующих логических элементов И, первый и второй диоды, выводы анодов которых подключены к выходам соответствующих логических элементов И, выводы катодов диодов - к второму входу логического элемента ИЛИ-НЕ, точка соединения второго входа которого и выводов катодов диодов является первым выходом датчика, переменный резистор, включенный в цепь отрицательной обратной связи генератора электрических колебаний и обеспечивающий установку амплитуды генерируемых им электрических колебаний на таком уровне, чтобы дальность действия электромагнитного поля у открытого торца индуктивного чувствительного элемента вдоль его оси симметрии превышала дальность действия электрического поля емкостного чувствительного элемента вдоль его оси симметрии, счетный триггер, вход которого соединен с выходом логического элемента ИЛИ - НЕ, прямой выход, являющийся вторым выходом датчика, - с четвертым входом первого логического элемента И, инверсный выход, являющийся третьим выходом датчика, - с четвертым входом второго логического элемента И, причем логические сигналы прямого и инверсного выходов счетного триггера образуют двухразрядный двоичный цифровой код, значения 10 и 01 которого являются кодами идентификации соответственно нагретых неметаллических и ненагретых неметаллических контролируемых изделий, потенциальные информационные сигналы контроля положения которых отрабатываются на первом выходе датчика, а элементы индикации первого и второго блоков индикации выполнены с разноцветными свечениями.

На фиг.1 представлена функциональная схема адаптивного датчика; на фиг.2 - схема взаимного расположения инфракрасных фотоприемников, индуктивного и емкостного чувствительных элементов и контролируемого изделия.

Адаптивный датчик содержит (см. фиг.1, фиг.2) индуктивный чувствительный элемент 1, выполненный в виде катушки индуктивности 2, помещенной в кольцевом пазу открытого торца чашки ферритового сердечника 3, генератор электрических колебаний 4, в цепь колебательного контура которого подключен индуктивный чувствительный элемент 1, пороговый элемент 5 в виде триггера Шмитта, вход которого подключен к выходу генератора 4, первый и второй инфракрасные фотоприемники 6, 7, формирователь импульсов 8 в виде триггера Шмитта, к входу которого подключены выходы инфракрасных фотоприемников 6 и 7, первый логический элемент И 9, первый вход которого соединен с прямым выходом формирователя импульсов 8, второй логический элемент И 10, первый вход которого подключен к инверсному выходу формирователя импульсов 8, первый блок индикации 11, вход которого соединен с выходом первого логического элемента И 9, второй блок индикации 12, вход которого подключен к выходу второго логического элемента И 10, первый и второй диоды 13 и 14, выводы анодов которых соединены с выходами соответственно первого и второго логических элементов И 9, 10, тактовый генератор 15, логический элемент ИЛИ-НЕ 16, первый вход которого подключен к выходу тактового генератора 15, второй вход - к выводам катодов диодов 13, 14, счетный триггер 17, вход которого соединен с выходом логического элемента ИЛИ-НЕ 16, первую выходную клемму 18, подключенную к точке соединения выводов катодов диодов 13, 14 и второго входа логического элемента ИЛИ-НЕ 16 и являющуюся первым выходом адаптивного датчика, вторую и третью выходные клеммы 19, 20, подключенные соответственно к прямому и инверсному выходам счетного триггера 17 и являющиеся соответственно вторым и третьим выходами адаптивного датчика, емкостной чувствительный элемент 21, последовательно соединенные мультивибратор 22, к входу которого подключен емкостной чувствительный элемент 21, детектор 23, второй пороговый элемент 24, выход которого соединен со вторыми входами логических элементов И 9, 10, третьи входы которых подключены к выходу первого порогового элемента 5, при этом прямой и инверсный выходы счетного триггера 17 соединены с четвертыми входами соответственно первого и второго логических элементов И 9, 10.

Генератор 15, элемент 16, триггер 17 с их соответствующими электрическими связями служат для формирования на прямом и инверсном выходах триггера 17 импульсов напряжений, которые подаются на четвертые входы соответственно элементов 9 и 10. С помощью этих импульсов производится сканирование первых входов соответственно элементов 9 и 10 для трансформирования функциональных возможностей адаптивного датчика переменными значениями двухразрядного двоичного цифрового кода 10, 01, старший и младший разряды которого образуют логические сигналы соответственно прямого и инверсного выходов триггера 17. В результате происходит трансформирование функциональных возможностей адаптивного датчика: при значении этого кода 10 адаптивный датчик трансформируется в датчик идентификации и контроля положения нагретых неметаллических изделий 25, а при значении этого кода 01 - в датчик идентификации и контроля положения ненагретых неметаллических изделий 25. После чего цикл сканирования триггером 17 указанными значениями двухразрядного двоичного цифрового кода четвертых входов элементов 9 и 10 повторяется, что обеспечивает автоматическое трансформирование функциональных возможностей адаптивного датчика. При этом устраняется необходимость вмешательства оператора в процесс работы автоматизированного технологического объекта эксплуатации для смены двухразрядного двоичного цифрового кода вручную, например, с его пульта управления в случаях перехода с одного вида контролируемого изделия на другой его вид.

Наряду с этим в адаптивном датчике реализована автоматическая адаптация его к конкретному виду контролируемого изделия. При этом адаптация к одному или другому виду контролируемого изделия при смене одного его вида на другой вид осуществляется также самим адаптивным датчиком. В результате устраняется необходимость прерывания работы автоматизированного технологического объекта эксплуатации при смене одного вида контролируемого изделия на другой его вид. Это достигается тем, что в нем значениям 10 и 01 двухразрядного двоичного цифрового кода, формируемого соответственно на прямом и инверсном выходах триггера 17, поставлено в однозначное соответствие им нагретое неметаллическое и ненагретое неметаллическое изделия.

Вместе с тем в адаптивном датчике введена обратная электрическая связь с его выходной клеммы 18 на второй вход элемента 16, без которой невозможно было бы в полной мере обеспечить автоматическую адаптацию его к конкретному виду контролируемого изделия.

Так при отсутствии в адаптивном датчике обратной электрической связи с выходной клеммы 18 на второй вход элемента 16 невозможно обеспечить полную его адаптацию к конкретному виду контролируемого изделия, так как на выходной клемме 18 адаптивного датчика в этом случае появляется искаженный сигнал, несущий информацию о контроле положения изделия, и отсутствует блокирование элемента 16 в момент появления потенциального информационного сигнала контроля положения изделия на выходной клемме 18. В этом случае выходной сигнал адаптивного датчика на клемме 18 имеет импульсную форму и состоит из пачки импульсов, длительность которой равна времени нахождения контролируемого изделия в зоне действия электрического поля 26 емкостного чувствительного элемента 21, а количество импульсов в пачке - частному от деления длительности нахождения контролируемого одного (другого) вида изделия в зоне действия электрического поля 26 емкостного чувствительного элемента 21 к периоду следования импульсов напряжения прямого (инверсного) выхода триггера 17.

Такое представление выходного сигнала адаптивного датчика в виде пачки импульсов потребовало бы большего объема программных и аппаратных средств для обработки результатов контроля положения и идентификации конкретного вида контролируемого изделия в микропроцессорных устройствах управления автоматизированным технологическим объектом эксплуатации, а также привело бы к снижению быстродействия адаптивного датчика. Это, в свою очередь, существенно ухудшило бы его эксплуатационные характеристики.

Наличие же в адаптивном датчике указанной обратной электрической связи обеспечивает формирование на его выходной клемме 18 в неискаженном виде потенциального информационного сигнала, несущего информацию о контроле положения изделия. Длительность такого сигнала соответствует времени нахождения контролируемого нагретого неметаллического (ненагретого неметаллического) изделия в зоне действия электрического поля 26 емкостного чувствительного элемента 21, и такой сигнал не требует дополнительной его обработки в микропроцессорных устройствах управления автоматизированным технологическим объектом эксплуатации.

Таким образом, наличие обратной электрической связи с выхода адаптивного датчика на второй вход элемента 16 обеспечивает:

- автоматическую адаптацию адаптивного датчика к нагретому неметаллическому или к ненагретому неметаллическому контролируемому им изделию;

- формирование на выходной клемме 18 адаптивного датчика информационного потенциального сигнала в виде одного сплошного импульса напряжения с уровнем логической "1" и устранение тем самым возможности формирования на его выходе искаженного информационного сигнала в виде пачки импульсов напряжения с уровнем логической "1".

Выходные клеммы 19, 20 адаптивного датчика предназначены для передачи текущих значений двухразрядного двоичного цифрового кода об идентификации нагретых неметаллических или ненагретых неметаллического изделий 25 из зоны их контроля на пульт управления автоматизированного технологического объекта эксплуатации для дальнейшей автоматической обработки результатов контроля изделий в его микропроцессорных устройствах управления и получения визуальной информации о результатах контроля адаптивным датчиком соответствующих видов контролируемых изделий.

При этом использование в составе пульта управления автоматизированного технологического объекта эксплуатации, например, второго комплекта блоков 11, 12 индикации и выходных сигналов клемм 18, 19, 20 (см. фиг.1) позволяет получать дистанционно от адаптивного датчика визуальную информацию о контроле положения или об идентификации им нагретого неметаллического или ненагретого неметаллического изделия и определять состояние работоспособности или отказа адаптивного датчика при ремонте и проведении пусконаладочных работ на автоматизированном технологическом объекте эксплуатации.

Каждый инфракрасный фотоприемник 6, 7 выполнен, например, по схеме, состоящей из усилителя постоянного тока на основе операционного усилителя, инфракрасного фотодиода, включенного в фотодиодном режиме на вход операционного усилителя (см. книгу Аксененко М.Д. и др. Микроэлектронные фотоприемные устройства/ М. Д.Аксененко, М.Л.Бараночников, О.В.Смолин. - М.: Энергоатомиздат, 1984. - 208 с., ил., с.83, рис.4.11, Б), и транзисторного эмиттерного повторителя с открытым эмиттерным выходом, вход которого подключен к выходу усилителя постоянного тока, а его открытый эмиттерный выход является выходом инфракрасного фотоприемника. Спектральная характеристика каждого фотоприемника 6, 7 согласована со спектральным диапазоном инфракрасного излучения контролируемого нагретого неметаллического изделия 25.

Емкостной чувствительный элемент 21, подключенный в цепи отрицательной обратной связи к инвертирующему входу операционного усилителя мультивибратора, является одной из обкладок частотозадающего "раскрытого конденсатора", второй обкладкой которого являются электрические цепи общей "земли" мультивибратора и адаптивного датчика в целом, и служит емкостным чувствительным элементом адаптивного датчика (см. журнал "Радио", №10, 2002, с.38, рис.1; с.39, рис.3). При этом емкостной чувствительный элемент 21 выполнен в виде металлической пластины с геометрической формой, повторяющей геометрическую форму центрального сквозного отверстия, выполненного в ферритовом сердечнике 3 индуктивного чувствительного элемента 1. При этом центральное отверстие в виде сквозного отверстия ферритового сердечника 3 позволяет конструктивно выполнить электрическое соединение емкостного чувствительного элемента 21 с мультивибратором 22 со стороны закрытого торца ферритового сердечника 3 без взаимодействия соединительного проводника с электромагнитным полем 27, т.е. без внесения нежелательного дополнительного затухания в контур генератора 4, приводящего к уменьшению соединительным металлическим проводником его добротности и, как следствие, к нарушению режима работы генератора 4. Причем емкостной чувствительный элемент 21 установлен внутри центрального сквозного отверстия ферритового сердечника 3 соосно с этим отверстием со смещением относительно поверхности его открытого торца вдоль оси симметрии его центрального сквозного отверстия в сторону закрытого торца ферритового сердечника 3. Наличие такого смещения не позволяет магнитному потоку рассеяния электромагнитного поля 27, существующего непосредственно у передней кромки центрального сквозного отверстия со стороны открытого торца ферритового сердечника 3, взаимодействовать с плоской поверхностью емкостного чувствительного элемента 21 и тем самым исключает возможность внесения нежелательного дополнительного затухания в колебательный контур генератора 4. Это, в свою очередь, исключает возможность снижения добротности колебательного контура генератора 4 и нарушения его режима генерации электрических колебаний, приводящего к нарушению работоспособности адаптивного датчика.

Индуктивный чувствительный элемент 1 включает в себя катушку индуктивности 2, ферритовый сердечник 3, выполненный в виде чашки, имеющей открытый и закрытый торцы. Со стороны открытого торца чашки ферритового сердечника 3 установлена в его кольцевом пазу обмотка катушки индуктивности 2. У открытого торца чашки ферритового сердечника 3 при подаче высокочастотного сигнала на катушку индуктивности 2 с генератора 4 образуется в воздушном пространстве высокочастотное электромагнитное поле 27. Магнитный поток этого поля замыкается через воздушное пространство между внутренним кольцевым выступом чашки, установленным внутри центрального отверстия катушки индуктивности 2, и наружным кольцевым выступом чашки, охватывающим своей внутренней боковой поверхностью наружную боковую поверхность катушки индуктивности 2 по ее периметру. При этом перед закрытым торцом чашки в воздушном пространстве высокочастотное электромагнитное поле не возникает, так как его магнитный поток замыкается внутри сердечника через сплошной слой феррита, образующего закрытый торец чашки, т.е. происходит экранирование этим слоем электромагнитного поля со стороны закрытого торца ферритового сердечника 3.

Индуктивный чувствительный элемент 1 с помещенным в его центральном сквозном отверстии емкостным чувствительным элементом 21 и инфракрасные фотоприемники 6, 7 установлены вдоль прямой линии в одной плоскости, проходящей через оси симметрии ферритового сердечника 3 индуктивного чувствительного элемента 1 и емкостного чувствительного элемента 21. При этом инфракрасные фотоприемники 6, 7 расположены один относительно другого в двух диаметрально противоположных точках со стороны наружной боковой поверхности ферритового сердечника 3 индуктивного чувствительного элемента 1 (см. фиг.2), который с инфракрасными фотоприемниками 6, 7 и емкостным чувствительным элементом 21 образует чувствительный элемент адаптивного датчика, а поверхности оптических окон инфракрасных фотоприемников 6, 7, поверхность открытого торца чашки ферритового сердечника 3 индуктивного чувствительного элемента 1 и одна из плоских поверхностей емкостного чувствительного элемента 21, направленные в одну сторону, ориентированы параллельно друг другу и образуют чувствительную поверхность адаптивного датчика.

При таком взаимном расположении элементов чувствительного элемента адаптивного датчика он и, следовательно, адаптивный датчик в целом характеризуется двумя зонами чувствительности - ближней и дальней зонами чувствительности. В ближней зоне чувствительности в пределах стрелки 28, в которой одновременно действуют электромагнитное поле 27 индуктивного чувствительного элемента 1, электрическое поле 26 емкостного элемента 21 и зоны 29, 30 чувствительности фотоприемников 6, 7, осуществляется идентификация (распознавание) контролируемых изделий 25. В дальней зоне чувствительности в пределах стрелки 31, в которой действует только зоны 29, 30 чувствительности фотоприемников 6, 7 и которая ограничена расстоянием предельной чувствительности инфракрасных фотоприемников 6, 7, адаптивный датчик теряет свойство идентификации (распознавания) контролируемых изделий 25. Но в этой зоне адаптивного датчика в условиях производственных технологических процессов могут находиться различные посторонние источники инфракрасного излучения, которыми могут быть нагретые металлические и неметаллические предметы и технологические источники инфракрасного излучения, например, оптические датчики с открытым оптическим каналом или метрологическое оборудование с измерительными генераторами инфракрасного излучения. Такие источники, воздействуя своим инфракрасным излучением на чувствительные элементы фотоприемников 6, 7, могут вызывать ложные срабатывания адаптивного датчика, проявляющиеся в виде формирования на выходной клемме 18 ложных импульсов напряжения с уровнем логической "1", что привело бы к снижению надежности его работы.

Кроме того, в пределах ближней зоны чувствительности адаптивного датчика могут случайно попадать в зоны 29, 30 чувствительности фотоприемников 6, 7, например, посторонние нагретые металлические и неметаллические предметы и вызывать у него ложные срабатывания, которые проявляются также в виде формирования на его первом выходе ложных импульсов напряжения с уровнем логической "1". Поэтому взаимное расположение элементов чувствительного элемента адаптивного датчика, его схемное решение и алгоритм обработки сигналов фотоприемников 6, 7, емкостного 21 и индуктивного 1 чувствительных элементов выбраны с учетом наличия указанных мешающих факторов таким образом, чтобы устранить ложные срабатывания адаптивного датчика.

Такое взаимное расположение в пространстве инфракрасных фотоприемников 6, 7, емкостного чувствительного элемента 21 и индуктивного чувствительного элемента 1 и контролируемого изделия 25 (см. фиг.2) при прохождении им в направлении стрелки 33 (34) относительно чувствительного элемента адаптивного датчика параллельно его чувствительной поверхности в пределах ближней зоны чувствительности адаптивного датчика всегда обеспечивает последовательное взаимодействие контролируемого изделия 25 с зоной 29 (30) фотоприемника 6 (7), электромагнитным и электрическим полями 27, 26 соответственно индуктивного и емкостного чувствительных элементов 1, 21 и зоной 30 (29) фотоприемника 7 (6).

Генератор 4 выполнен, например, на основе транзистора по схеме автогенератора электрических колебаний с индуктивной трехтонкой, в котором индуктивный чувствительный элемент 1 включен в цепь его колебательного контура (см. RU 2383860 С1, МПК G01B 21/00 (2006,01), опубликовано: 2010.03.10, бюл. №7). В цепи отрицательной обратной связи генератора 4 включен переменный резистор 32 для настройки его электрических параметров. Установка амплитуды генерируемых электрических колебаний при настройке генератора 4 переменным резистором 32 производится на таком уровне, чтобы дальность действия электромагнитного поля 27 у открытого торца ферритового сердечника 3 в вдоль осей симметрии индуктивного и емкостного чувствительных элементов 1 и 21, перпендикулярных соответственно поверхности открытого торца ферритового сердечника 3 и плоским поверхностям емкостного чувствительного элемента 21, превышала дальность действия электрического поля 26 емкостного чувствительного элемента 21 вдоль его оси симметрии. Такая настройка резистором 32 амплитуды генерируемых электрических колебаний генератором 4 необходима для обеспечения гарантированной возможности последовательного взаимодействия контролируемого нагретого неметаллического или ненагретого неметаллического изделия 25 сначала с электромагнитным полем 27 индуктивного чувствительного элемента 1, а затем с электрическим полем 26 емкостного чувствительного элемента 21 при перемещении их как в радиальном по стрелке 33 (34), так и в осевом по стреле 35 направлениях, и тем самым реализовать принцип действия адаптивного датчика в режиме идентификации нагретых неметаллических и ненагретых неметаллических изделий при перемещении их в обоих направлениях.

Мультивибратор 22 выполнен, например, по схеме симметричного автогенератора прямоугольных импульсов на основе операционного усилителя (см. книгу Шило В. Л. Линейные интегральные схемы в радиоэлектронной аппаратуре. - М.: Сов. радио, 1974, с.175, рис.4. 42, а).

Детектор 23 выполнен, например, по схеме диодного пассивного преобразователя амплитудных значений переменного напряжения в постоянное с последовательным включением выпрямительного диода с выходной нагрузкой в виде параллельной RC-цепочки (см. книгу Волгин Л.И. Измерительные преобразователи переменного напряжения в постоянное. М.: Сов. радио, 1977, с.174, рис.4.9, б).

Генератор 15 является тактовым генератором для триггера 17 и выполнен, например, на основе мультивибратора по схеме симметричного автогенератора прямоугольных импульсов на операционном усилителе (см. книгу Шило В.Л. Линейные схемы в радиоэлектронной аппаратуре. - М.: Сов. Радио, 1974, с.175, рис.4. 42, а).

Блоки 11 и 12 индикации служат для формирования визуальных информационных сигналов, несущих информацию об идентификации и контроле положения соответственно нагретого неметаллического и ненагретого неметаллического изделий, контролируемых адаптивным датчиком, а также для определения состояния работоспособности или отказа адаптивного датчика при ремонте и проведении пусконаладочных работ на объекте его эксплуатации.

Блоки 11 и 12 индикации выполнены, например, на основе (см. фиг.1) последовательно соединенных резистора, подключенного первым выводом к выходу элемента 9 или к выходу элемента 10, и светодиода, катод которого подключен к общей "земле" схемы адаптивного датчика. Светодиоды блоков 11, 12 являются элементами индикации и имеют разные цвета свечения. В блоках индикации 11, 12 светодиоды выполнены с разноцветностью их свечения для того, чтобы получать достоверную визуальную информацию о режимах работы адаптивного датчика, об идентификации или о контроле положения конкретного вида контролируемого изделия.

Диоды 13, 14 предназначены для развязки выходов элементов 9, 10, входов блоков 11, 12 и клеммы 18 между собой, устраняющей одновременное засвечивание светодиодов блоков 11, 12, при одновременном засвечивании которых в случае отсутствия диодов 13, 14 невозможно было бы получить визуальную информацию об идентификации или о контроле положения конкретного вида контролируемого изделия.

При описании работы адаптивного датчика подразумевается, что между выходной клеммой 18 и его общей шиной источника напряжения питания подключено нагрузочное сопротивление (на фиг.1 не показано), чтобы логические уровни напряжений на его выходной клемме 18, приводимые ниже в тексте, реально соответствовали логическим уровням напряжений на выходной клемме 18 схемы, приведенной на фиг.1.

Адаптивный датчик работает следующим образом. В момент подачи напряжения питания на адаптивный датчик контролируемое изделие 25 находится вне зоны действия его чувствительной поверхности (см. фиг.2). После подачи на адаптивный датчик напряжения питания фотоприемники 6, 7 переходят в затемненное состояние. В результате формирователь 8 устанавливается в такое состояние, • при котором на его прямом и инверсном выходах устанавливаются напряжения соответственно с уровнями логического "О" и логической "1", которые подаются на первые входы соответственно элементов 9 и 10. Вместе с тем генератор 4 переходит в режим генерации электрических колебаний, при котором на его выходе, входе и выходе элемента 5, третьих входах элементов 9, 10 устанавливаются напряжения с уровнями логической "1". Наряду с этим мультивибратор 22 переходит в заторможенное состояние, при котором на его выходе, входе и выходе детектора 23 устанавливаются напряжения с уровнями логического "0". При этом на выходе элемента 24 устанавливается напряжение с уровнем логического "0", которое подается на вторые входы элементов 9, 10. После чего на выходе элемента 9, входе блока 11, аноде диода 13 и выходе элемента 10, входе блока 12, аноде диода 14 устанавливаются напряжения с уровнями логического "0", так как на вторые входы элементов 9, 10 подано с выхода элемента 24 напряжение с уровнем логического "0". В результате светодиоды блоков 11,12 переходят в погашенное состояние, а на клемме 18 и втором входе элемента 16 устанавливается напряжение с уровнем логического "0", так как при этом выходы элементов 9, 10 включены через диоды 13, 14 по схеме "МОНТАЖНОЕ ИЛИ". Наряду с этим генератор 15 переходит в режим генерации электрических колебаний, при котором на его выходе и первом входе элемента 16 появляется непрерывная последовательность прямоугольных импульсов напряжения, которые, проходя через первый вход элемента 16, инвертируются им и проходят на его выход и на вход триггера 17 в виде непрерывной последовательности импульсов напряжения, так как на втором входе элемента 16 установлено с клеммы 18 напряжение с уровнем логического "0", разрешающее их прохождение на вход триггера 17. После чего триггер 17 переходит в режим счета импульсов по модулю два. В результате на прямом и инверсном выходах триггера 17 формируются последовательно значения двухразрядного двоичного цифрового кода, равные 10, 01, которыми сканируются четвертые входы соответственно элементов 9 и 10. В процессе сканирования двухразрядным двоичным цифровым кодом четвертых входов элементов 9 и 10 их переключения не происходит, так как на вторые входы элементов 9 и 10 подано с выхода элемента 24 напряжение с уровнем логического "0", запрещающее их переключение. В результате на выходах элементов 9, 10, выходной клемме 18 и втором входе элемента 16 продолжают присутствовать напряжения с уровнями логического "0".

Таким образом, после подачи напряжения питания адаптивный датчик устанавливается в исходное состояние, при котором на выходной клемме 18 устанавливается напряжение с уровнем логического "0", генераторы 4, 15 находится в режимах генерации электрических колебаний, а мультивибратор 22 - в заторможенном состоянии, триггер 17 производит сканирование четвертых входов элементов 9, 10 значениями 10 и 01 двухразрядного двоичного цифрового кода, на выходе элемента 5 установлено напряжение с уровнем логической "1", на прямом и инверсном выходах формирователя 8 установлены напряжения соответственно с уровнями логического "0" и логической "1", светодиоды блоков 11, 12 находятся в погашенном состоянии, а контролируемое изделие 25 находится вне зоны действия чувствительной поверхности адаптивного датчика. При этом адаптивный датчик готов к первому циклу контроля нагретого неметаллического или ненагретого неметаллического изделия.

Далее рассмотрим работу адаптивного датчика в двух режимах: в режиме контроля нагретых неметаллических и в режиме контроля ненагретых неметаллических изделий. При этом контролируемое изделие 25 (см. фиг.2) перемещается в радиальном направлении параллельно чувствительной поверхности адаптивного датчика в пределах зоны действия его чувствительной поверхности в одном из направлений по стрелке 33 или 34.

При перемещении контролируемого нагретого неметаллического (ненагретого неметаллического) изделия 25 по стрелке 33 (34) оно входит в зону действия электрического поля 26 емкостного чувствительного элемента 21, например, в момент времени, когда на прямом и инверсном выходах триггера 17 установлено текущее значение двухразрядного двоичного цифрового кода 10 (01), на выходе элемента 9 (10) и клемме 18 формируются положительные перепады напряжений. По положительным перепадам выходного напряжения элемента 9 (10) и напряжения на клемме 18 происходит соответственно засвечивание светодиода блока 11 (12) и блокирование элемента 16 по его второму входу напряжением с уровнем логической "1", поданным с клеммы 18. После чего прохождение импульсов напряжения с уровнем логической "1" с выхода элемента 16 на вход триггера 17 прекращается. В результате на выходах последнего происходит фиксирование текущего значения 10 (01) двухразрядного двоичного цифрового кода на время нахождения в электрическом поле 26 нагретого неметаллического (ненагретого неметаллического) изделия 25. При этом в течение этого времени адаптивный датчик трансформируется в датчик идентификации и контроля положения нагретых неметаллических (ненагретых неметаллических) изделий, и на его клемме 18 отрабатывается потенциальный информационный сигнал напряжения с уровнем логической "1", несущий информацию о контроле положения адаптивным датчиком нагретого неметаллического (ненагретого неметаллического) изделия 25, так как в течение всего времени нахождения изделия 25 в электрическом поле 26 сохраняется фиксированное значение 10 (01) двухразрядного двоичного цифрового кода, старший и младший разряды которого подаются соответственно с прямого и инверсного выходов триггера 17 на вторую и третью выходные клеммы 19 и 20. В момент времени, когда нагретое неметаллическое (ненагретое неметаллическое) изделие 25 выходит из электрического поля 26, на выходе элемента 9 (10) и клемме 18 формируются отрицательные перепады напряжений. В этот момент времени на клемме 18 формирование потенциального информационного сигнала напряжения в виде импульса напряжения с уровнем логической "1", несущего информацию о контроле положения нагретого неметаллического (ненагретого неметаллического) изделия 25, заканчивается. В результате по отрицательным перепадам напряжений на выходе элемента 9 (10) и клемме 18 происходит соответственно переход светодиода блока 11 (12) в погашенное состояние и деблокирование элемента 16 по его второму входу напряжением с уровнем логического "0", поданным с клеммы 18. При этом по отрицательному перепаду напряжения на клемме 18 работа триггера 17 возобновляется, и он переходит в режим автоматического сканирования первых входов элементов 9, 10. В момент выхода изделия 25 из зоны 30 (29) адаптивный датчик устанавливается в исходное состояние, описанное выше после подачи на него напряжения питания. При повторном перемещении нагретого неметаллического (ненагретого неметаллического) изделия 25 по стрелке 33 (34) описанный выше цикл его контроля повторяется.

Работа адаптивного датчика в случае перемещения изделия 25 в осевом направлении по стрелке 35 последовательно в его дальнюю и ближнюю зоны чувствительности и обратно в его исходное положение аналогична его работе, описанной выше при перемещении изделия 25 в радиальном направлении по стрелке 33 (34), так как последовательность переключения формирователя 8 и элемента 24 при осевом перемещении изделия 25 идентична последовательности их переключения при радиальном его перемещении.

Следовательно, в рассмотренных первом и втором режимах работы адаптивного датчика сигналы на выходной клемме 18 адаптивного датчика однозначно соответствуют потенциальным информационным сигналам напряжений с уровнями логической "1", несущим информацию только о контроле положения соответственно нагретого неметаллического и ненагретого неметаллического изделий, а двухразрядные двоичные цифровые коды 10 и 01 на выходных клеммах 19, 20 и светодиоды блоков 11 и 12 в засвеченном состоянии однозначно соответствуют цифровому и визуальному информационным сигналам, ' несущим информацию только об идентификации соответственно нагретого неметаллического и ненагретого неметаллического изделий.

Повышение надежности работы адаптивного датчика путем устранения его ложных срабатываний от попадающих в дальнюю зону его чувствительности посторонних источников инфракрасного излучения, которыми являются посторонние нагретые металлические и неметаллические предметы и технологические источники инфракрасного излучения, обеспечивается следующим образом.

При попадании инфракрасного излучения от посторонних источников в зону 29 (30) чувствительности фотоприемника 6 (7) или в зоны 29, 30 чувствительности обоих фотоприемников 6, 7 происходит его или их засвечивание в момент нахождения адаптивного датчика в исходном состоянии, при котором контролируемое изделие 25 находится за пределами его чувствительной поверхности. В результате происходит переключение формирователя 8 и формирование на его прямом и инверсном выходах ложных импульсов напряжений соответственно с уровнями логической "1" и логического "0", которые подаются на первые входы соответственно элементов 9 и 10. Но под действием импульса напряжения с уровнем логической "1" переключения логического элемента И 9 и формирования на его выходе ложного импульса напряжения с уровнем логической "1" не происходит, и он продолжает находиться в исходном состоянии, соответствующем исходному состоянию схемы адаптивного датчика, так как на его втором входе присутствует выходное напряжение с уровнем логического "0" элемента 24, запрещающее его переключение. Вместе с тем поданный с инверсного выхода формирователя 8 ложный импульс напряжения с уровнем логического "0" лишь подтверждает исходное состояние элемента 10, при котором на его выходе продолжает присутствовать напряжение с уровнем логического "0", соответствующее исходному состоянию схемы адаптивного датчика.

Таким образом, ложного срабатывания от посторонних источников инфракрасного излучения логических элементов 9 и 10 и формирования на их выходах и, следовательно, на выходной клемме 18 ложных импульсов напряжений с уровнями логической "1" не происходит.

Устранение ложных срабатываний адаптивного датчика от случайно попадающих в зону 29 (30) чувствительности фотоприемника 6 (7) или в зоны 29, 30 чувствительности обоих фотоприемников 6, 7 в пределах ближней зоны его чувствительности посторонних нагретых металлических и неметаллических предметов обеспечивается в адаптивном датчике таким же способом, как описано выше для случая устранения ложных срабатываний адаптивного датчика от посторонних источников инфракрасного излучения, попадающих в пределы его дальней зоны чувствительности.

Таким образом, из описания схемы и работы адаптивного датчика следует, что он: обеспечивает автоматическое трансформирование его функциональных возможностей, автоматическую адаптацию к конкретному виду контролируемого изделия, и тем самым расширяются его функциональные возможности;

- обеспечивает визуальный контроль положения и визуальную идентификацию нагретых неметаллических и ненагретых неметаллических изделий, что расширяет его функциональные возможности и улучшает его эксплуатационные характеристики;

- обеспечивает также идентификацию и контроль положения нагретых и ненагретых неметаллических изделий при осевом их перемещении, что расширяет его функциональные возможности и улучшает его эксплуатационные характеристики;

- обеспечивает повышенную надежности его работы путем устранения ложных срабатываний от посторонних нагретых металлических и неметаллических предметов и посторонних источников инфракрасного излучения, случайно попадающих в пределы соответственно ближней и дальней зон чувствительности адаптивного датчика;

- является многофункциональным устройством, так как в нем сочетаются функциональные возможности четырех типов устройств: бесконтактного датчика контроля положения нагретых неметаллических изделий; бесконтактного датчика контроля положения ненагретых неметаллических изделий; бесконтактного устройства идентификации нагретых неметаллических изделий; бесконтактного устройства идентификации ненагретых неметаллических изделий.

В режимах контроля положения нагретых неметаллических и ненагретых неметаллических изделий потенциальные информационные сигналы о контроле положения этих изделий снимаются с выходной клеммы 18, визуальные сигналы об их идентификации - со светодиодов блоков 11 и 12 соответственно, а выходные клеммы 19,20 не задействуются.

Применение адаптивного датчика в режимах контроля положения изделий рекомендуется преимущественно в тех случаях, когда адаптивный датчик устанавливается на технологических объектах с невысоким уровнем автоматизации технологических процессов.

В режимах идентификации нагретых неметаллических и ненагретых неметаллических изделий потенциальные информационные сигналы о контроле положения этих изделий снимаются с выходной клеммы 18, информационные сигналы об их идентификации - с выходных клемм 19, 20 в виде двухразрядных двоичных цифровых кодов 10 и 01 соответственно и в виде визуальных сигналов - со светодиодов блоков 11 и 12 соответственно.

Применение адаптивного датчика в режимах идентификации контролируемых изделий рекомендуется преимущественно в тех случаях, когда он устанавливается на технологических объектах со средним и высоким уровнями автоматизации технологических процессов.

Кроме того, выполнение схемы адаптивного датчика с применением полупроводниковых и (или) гибридных технологий изготовления микросхем позволяет существенно уменьшить его габаритные размеры, материалоемкость и улучшить эксплуатационные характеристики.

Такой набор функциональных возможностей обеспечивает в сравнении с аналогами гибкость применения адаптивного датчика на объектах его эксплуатации с минимальными стоимостными показателями..

Адаптивный датчик идентификации и контроля положения нагретых неметаллических и ненагретых неметаллических изделий, содержащий индуктивный чувствительный элемент, выполненный в виде катушки индуктивности, помещенной в кольцевом пазу открытого торца ферритового сердечника с центральным сквозным отверстием, последовательно соединенные генератор электрических колебаний, в цепь колебательного контура которого включен индуктивный чувствительный элемент, первый пороговый элемент, а также первый и второй инфракрасные фотоприемники, формирователь импульсов, к входу которого подключены выходы первого и второго инфракрасных фотоприемников, логический элемент ИЛИ-НЕ, емкостной чувствительный элемент в виде металлической пластины с геометрической формой, повторяющей геометрическую форму центрального сквозного отверстия ферритового сердечника, последовательно соединенные мультивибратор, к входу которого подключен емкостной чувствительный элемент, установленный внутри центрального сквозного отверстия ферритового сердечника соосно с этим отверстием со смещением относительно открытого торца ферритового сердечника в сторону его закрытого торца, детектор, второй пороговый элемент, а также первый логический элемент И, первый и второй входы которого подключены соответственно к прямому выходу формирователя импульсов и выходу второго порогового элемента, причем индуктивный чувствительный элемент с емкостным чувствительным элементом и инфракрасные фотоприемники установлены вдоль прямой линии в одной плоскости, проходящей через оси симметрии емкостного и индуктивного чувствительных элементов, при этом первый и второй инфракрасные фотоприемники, расположенные один относительно другого в двух диаметрально противоположных точках со стороны наружной боковой поверхности индуктивного чувствительного элемента, емкостной и индуктивный чувствительные элементы образуют чувствительный элемент адаптивного датчика, а поверхность открытого торца ферритового сердечника, одна из плоских поверхностей емкостного чувствительного элемента и поверхности оптических окон инфракрасных фотоприемников ориентированы параллельно друг другу, направлены в одну сторону и образуют чувствительную поверхность адаптивного датчика, отличающийся тем, что в него введены тактовый генератор, выход которого соединен с первым входом логического элемента ИЛИ-НЕ, второй логический элемент И, первый и второй входы которого подключены соответственно к инверсному выходу формирователя импульсов и выходу второго порогового элемента, третий вход, соединенный с третьим входом первого логического элемента И, к выходу первого порогового элемента, первый и второй блоки индикации, входы которых соединены с выходами соответствующих логических элементов И, первый и второй диоды, выводы анодов которых подключены к выходам соответствующих логических элементов И, выводы катодов диодов - к второму входу логического элемента ИЛИ-НЕ, точка соединения второго входа которого и выводов катодов диодов является первым выходом адаптивного датчика, переменный резистор, включенный в цепь отрицательной обратной связи генератора электрических колебаний и обеспечивающий установку амплитуды генерируемых им электрических колебаний на таком уровне, чтобы дальность действия электромагнитного поля у открытого торца индуктивного чувствительного элемента вдоль его оси симметрии, превышала дальность действия электрического поля емкостного чувствительного элемента вдоль его оси симметрии, счетный триггер, вход которого соединен с выходом логического элемента ИЛИ-НЕ, прямой выход, являющийся вторым выходом адаптивного датчика, - с четвертым входом первого логического элемента И, инверсный выход, являющийся третьим выходом адаптивного датчика, - с четвертым входом второго логического элемента И, причем логические сигналы прямого и инверсного выходов счетного триггера образуют двухразрядный двоичный цифровой код, значения 10 и 01 которого являются кодами идентификации соответственно нагретых неметаллических и ненагретых неметаллических контролируемых изделий, потенциальные информационные сигналы контроля положения которых отрабатываются на первом выходе адаптивного датчика, а элементы индикации первого и второго блоков индикации выполнены с разноцветными свечениями.



 

Похожие патенты:

Изобретение относится к области автоматизации в машиностроении и предназначено для контроля положения и идентификации изделий с учетом их вида материала и термического состояния в автоматизированных высокопроизводительных производствах по сборке изделий.

Изобретение относится к теплоэнергетике и может быть использовано для определения толщины и плотности отложений в оборудовании химических, нефтехимических предприятий, а также тепловых, геотермальных, атомных энергоустановок.

Изобретение относится к контрольно-измерительной технике и может быть использовано, в частности, для измерений перемещения и деформации силоизмерительных элементов динамометров, а также при нормировании условий эксплуатации различных образцов металлоконструкций.

Изобретение относится к контрольно-измерительной технике, в частности к преобразователям малых угловых перемещений, и может быть использовано в датчиках физических величин (деформации, давления, перемещения, ускорения, параметров вибрации и т.п.) для измерения физических величин в первую очередь в условиях воздействия внешних дестабилизирующих факторов на изделиях ракетно-космической техники.
Изобретение относится к измерительной технике и может быть использовано для измерения перемещений, углов поворота, а также кинематических характеристик (скорости, ускорения, угловой скорости, углового ускорения).

Изобретение относится к устройствам с механическими средствами измерения, применяется для определения диаметров, деформации твердых тел, углов, соосности и других параметров.

Изобретение относится к области контрольно-измерительной техники и может быть использовано в машиностроении для идентификации (распознавания) нагретых металлических и неметаллических и ненагретых металлических и неметаллических изделий.

Изобретение относится к области контрольно-измерительной техники и может быть использовано для идентификации (распознавания) нагретых металлических и неметаллических, и ненагретых неметаллических изделий, а также в качестве бесконтактного датчика контроля положения металлических и неметаллических изделий с учетом их термического состояния и вида материала.

Изобретение относится к области контрольно-измерительной техники и может быть использовано для идентификации (распознавания) нагретых неметаллических и ненагретых металлических и неметаллических изделий, а также в качестве бесконтактного датчика контроля положения металлических и неметаллических изделий с учетом их термического состояния и вида материала.

Изобретение относится к области контрольно-измерительной техники и может быть использовано в машиностроении для идентификации (распознавания) нагретых металлических и неметаллических и ненагретых металлических изделий.

Изобретение относится к области автоматизации производственных процессов в машиностроении и предназначено для контроля положения и идентификации изделий с учетом их вида материала и термического состояния в автоматизированных высокопроизводительных производствах по сборке изделий. Адаптивный датчик идентификации и контроля положения изделий повышенной надежности содержит чувствительную поверхность, датчик контроля двух видов изделий, первый (основной), второй, третий и четвертый (дублирующий) выходы, логический элемент ИЛИ, логический элемент ИЛИ-НЕ, четыре логических элемента И, два резистора, транзистор р-n-р-типа, пороговый элемент, счетный триггер, первый, второй и третий блоки индикации, генератор электрических колебаний с их соответствующими электрическими связями. При перемещении относительно чувствительной поверхности одного (например, нагретого металлического) или другого (например, ненагретого неметаллического) вида контролируемого изделия происходит формирование потенциальных сигналов контроля положения этих изделий с уровнями логической «1» на первом выходе, когда на нем отсутствует короткое замыкание, или на четвертом выходе, когда на первом выходе имеет место короткое замыкание. При этом на втором и третьем выходах формируется двухразрядный двоичный цифровой код, значения 10 и 01 которого являются кодами идентификации соответственно одного или другого вида контролируемого изделия. Адаптивный датчик обеспечивает автоматический контроль одного или другого вида изделия без механического контакта с ними и автоматическую адаптацию его к конкретному виду контролируемого изделия. Технический результат заключается в расширении функциональных возможностей с повышением надежности работы и улучшением эксплуатационных характеристик. 12 з.п. ф-лы, 4 ил.

Изобретение относится к измерительной технике, а именно к лазерной интерферометрии. При реализации способа формируют когерентный световой поток и движущуюся периодическую структуру в прозрачной среде, расположенной в плоскости смещений. Световой поток направляют на прозрачную среду с движущейся периодической структурой под заданным углом, выбираемым из условия дифракции, с помощью ненулевого дифракционного порядка, сформированного движущейся периодической структурой. Создают измерительный поток, формируют опорный поток так, чтобы алгебраическая разность частот опорного и измерительного потоков, совмещенных в плоскости движения периодической структуры, была пропорциональна частоте периодической структуры, и пространственно совмещают опорный и измерительный потоки. Затем преобразуют интерферирующие потоки в электрический сигнал, а периодическую структуру охватывают обратной связью с временной задержкой. При этом световой поток и движущуюся периодическую структуру в прозрачной среде формируют в синхронном импульсном режиме, изменяют параметры синхронизации импульсного режима за счет управления временной задержкой в обратной связи и компенсируют изменения фазы электрического сигнала, возникающие из-за смещений, а о смещении по оси, связанной с направлением движения периодической структуры, судят по изменению временной задержки. Технический результат - повышение точности измерений перемещений объекта, расширение функциональных возможностей, повышение разрешающей способности. 3 ил.
Изобретение относится к способу изготовления сенсора для получения спектров гигантского комбинационного рассеяния света (ГКР), который представляет собой стеклянный капилляр, на внутреннюю сторону которого нанесены наночастицы серебра. Наночастицы серебра получаются и прикрепляются к поверхности стекла с помощью реакции восстановления ионов серебра алкиламинами. Стеклянные капилляры промывают моющим раствором для оптики, дистиллированной водой при перемешивании ультразвуком, абсолютным этанолом и сушат на воздухе, помещают в тефлоновый стакан с реакционной смесью 1 ммоль/л AgNO3 и 1 ммоль/л алкиламина в этаноле, реакционную смесь нагревают при 45-50°С в течение 40 мин при интенсивном перемешивании вдоль оси капилляров. После реакции восстановления капилляры промывают этанолом и очищают с внешней стороны. Изобретение позволяет получить сенсор спектров ГКР с высоким разрешением. 1 з.п. ф-лы, 4 пр.

Изобретение относится к измерительной технике и может быть использовано для определения абсолютных перемещений объекта. Способ измерения перемещений объекта включает установку преобразователя перемещений на объект, а также установку источников сигнала вдоль траектории перемещения объекта. При этом на каждом участке траектории обеспечивают расстановку источников сигнала, определяемую изменением количества источников сигнала и/или расстояния между любыми двумя источниками сигнала. Далее направляют сигнал на движущийся объект с преобразователем перемещений, принимают выходной сигнал с преобразователя перемещений о положении источников сигнала, находящихся в его диапазоне измерения, и определяют положение объекта. Техническим результатом является повышение точности измерений перемещений объекта, повышение скорости обработки информации от преобразователя перемещений и выдачи данных о положении объекта. 5 з.п. ф-лы, 1 ил.

Изобретение относится к измерительной технике и может быть использовано для определения абсолютных перемещений объектов. Способ измерений перемещений содержит этапы, на которых магнитострикционный преобразователь перемещений устанавливают на объект, вдоль траектории перемещения объекта устанавливают магниты и/или электромагниты, на каждом участке траектории обеспечивают расстановку магнитов и/или электромагнитов, определяемую изменением количества магнитов и/или электромагнитов и/или расстояния между любыми двумя магнитами и/или электромагнитами, направляют сигнал на движущийся объект с магнитострикционным преобразователем перемещений, принимают выходной сигнал с магнитострикционного преобразователя перемещений о положении магнитов и/или электромагнитов, находящихся в его диапазоне измерения, определяют положение объекта и/или преобразователя, измеряют перемещение на расстоянии, превышающем длину активной зоны магнитострикционного преобразователя. Технический результат - повышение точности измерения перемещений объекта, повышение скорости обработки информации от преобразователя перемещений и выдачи данных о положении объекта и/или преобразователя. 2 з.п. ф-лы, 1 ил.

Изобретение может быть использовано для определения абсолютных перемещений объектов. Техническим результатом является повышение точности измерения перемещений объекта при наличии препятствий на траектории его движения за счет исключения накопления погрешности при расстановке источников сигнала. При использовании адаптивного способа измерения перемещений, заключающегося в том, что преобразователь устанавливают на объект, используют отдельные источники сигналов с уникальным кодированием и/или формируют группы источников сигнала с уникальным кодированием, расставляют отдельные источники сигналов с уникальным кодированием и/или сформированные группы источников сигнала с уникальным кодированием случайным образом вдоль траектории перемещения объекта на любом расстоянии между любыми двумя последовательно установленными отдельными источниками сигнала с уникальным кодированием и/или между любыми двумя сформированными группами источников сигнала с уникальным кодированием, не превышающем диапазон измерения преобразователя, направляют сигнал на движущийся объект с преобразователем, принимают выходной сигнал с преобразователя о положении отдельных источников сигналов с уникальным кодированием и/или групп источников сигнала с уникальным кодированием, определяют положение объекта. 8 з.п. ф-лы, 2 ил.

Изобретение относится к системе индикации и может быть использовано для диагностики состояния элементов внутри турбинных узлов и деталей проточных частей на закрытой турбине, как на валоповороте, так и на полном останове турбин. Устройство мониторинга состояния внутри турбинных узлов и деталей паровых турбин состоит из шлюзов для обеспечения доступа без вскрытия проточных частей паровой турбины в процессе эксплуатации, как на валоповороте, так и на полном останове турбин, видеозондов, входящих в эндоскопический узел с регистратором, блока создания светового потока различной направленности. Все действия по определению места положения эндоскопического узла относительно получения данных с видеозондов согласуются с калиброванным синхродатчиком, размещенным стационарно на валу паровой турбины, который по обратной связи через центр обработки контролирует местоположение видеозондов относительно лопаточного аппарата и элементов проточной части. Изобретение позволяет проводить визуальную диагностику в автоматическом режиме элементов внутри турбинных узлов и деталей проточных частей паровых турбин без вскрытия в процессе эксплуатации, как на валоповороте, так и на полном останове турбин. 6 ил.
Наверх