Инструментальный усилитель

Изобретение относится к области измерительной техники, радиотехники, связи. Техническим результатом является повышение коэффициента ослабления входного синфазного напряжения и исключение синфазной составляющей в выходных сигналах операционных усилителей, что позволит повысить эффективность использования их амплитудной характеристики. Инструментальный усилитель содержит: входной прецизионный преобразователь (1) первого (2) и второго (3) источников входных напряжений, связанных с общей шиной питания (4), первый (9), второй (10) и третий (11) резисторы обратной связи, активный сумматор (12) с инвертирующим (13) и неинвертирующим (14) входами. 3 з.п. ф-лы, 26 ил.

 

Предлагаемое изобретение относится к области измерительной техники, радиотехники, связи и может использоваться в качестве устройства для прецизионного усиления аналоговых сигналов в микросхемах различного функционального назначения (например, для измерительных и автоматических систем, медицинской технике, диагностике и т.п.).

Создание аналоговых и аналого-цифровых интерфейсов смешанных систем на кристалле (СнК), ориентированных на взаимодействие с чувствительными элементами (сенсорами) мостового типа всегда предполагает применение инструментальных усилителей (ИУ) как с фиксируемыми, так и с управляемыми параметрами, выполняющих функции подавления синфазного напряжения и усиления дифференциального напряжения. Эти устройства являются основой как для аналоговых портов, так и для целого класса сложно-функциональных блоков (СФ блоков) СнК. Достаточно большой динамический диапазон измеряемых величин и относительно высокая точность преобразования предопредели использование в таких интерфейсах прецизионных операционных усилителей (ОУ). Большинство известных на данный момент решений связано с использованием классической структуры построения ИУ, состоящей из трех ОУ и набора прецизионных резисторов [1-16].

Ближайшим прототипом заявляемого устройства является инструментальный усилитель, представленный в патенте US 2010/0259323 A1 фиг.1 автора Paul L. Bugyik. Он содержит входной прецизионный преобразователь 1 первого 2 и второго 3 источников входных напряжений, связанных с общей шиной питания 4, первый 5 и второй 6 выходы входного прецизионного преобразователя 1, первый 7 и второй 8 входы устройства, связанные с первым 2 и вторым 3 источниками входных напряжений, первый 9, второй 10 и третий 11 резисторы обратной связи, активный сумматор 12 с инвертирующим 13 и неинвертирующим 14 входами, выход устройства 15, связанный с выходом активного сумматора 12, причем первый 5 выход входного прецизионного преобразователя 1 связан с инвертирующим входом 13 активного сумматора 12, второй 6 выход входного прецизионного преобразователя 1 связан с неинвертирующим входом 14 активного сумматора 12.

Существенные недостатки известного устройства, архитектура которого присутствует также во многих других инструментальных усилителях [1-16], состоят в следующем:

1. Первый недостаток. Даже при использовании строго идентичных операционных усилителей в структуре входного прецизионного преобразователя 1 предельное значение коэффициента ослабления входного синфазного сигнала (Kсн) будет определяться следующим соотношением:

K с н = R 4 R 3 + R 4 ( 1 + R 1 R 2 ) R 1 R 2 = R 4 R 3 R 1 R 2 R 3 + R 4 ,                                   (1)

где R1÷R4 - резисторы, входящие в структуру активного сумматора (12) фиг.1.

Поэтому глубокое ослабление входного синфазного сигнала в ИУ фиг.1 возможно только при строго согласованных резисторах R1÷R4.

Можно показать, что даже при реализации условия строгой идентичности сопротивлений резисторов (R1=R2=R3=R4=R) Kсн не лучше, чем

K с н min = Δ K с н = Θ R ,                                                                       (2)

где ΘR - погрешность сопротивлений резисторов активного сумматора (12) (фиг.1).

Таким образом, из приведенных соотношений (1) и (2) видно, что максимально реализуемый коэффициент ослабления входного синфазного сигнала ИУ фиг.1 ограничивается погрешностью сопротивлений резисторов активного сумматора ΘR. Как следствие, даже для прецизионных технологий, у которых ΘR=0,1%, коэффициент ослабления входного синфазного напряжения ИУ фиг.1 не превышает 60 дБ, что явно недостаточно для построения даже непрецизионных измерительных и датчиковых систем. Поэтому при производстве таких схем ИУ используют дорогостоящую прецизионную лазерную настройку резисторов R1÷R4, направленную на достижение требуемых качественных показателей резисторов (например, ΘR=0,01%), при которых коэффициент ослабления входного синфазного сигнала не превышает 75 дБ.

2. Второй недостаток. Неэффективность использования проходной характеристики первого (А1) и второго (А2) операционных усилителей в структуре ИУ фиг.1. Это объясняется тем, что (основная часть амплитудной характеристики первого (А1) и второго (А2) операционных усилителей содержит составляющую входного синфазного напряжения

U A 1 = U с н R 9 R 11 U д ,   U A2 = U с н + R 10 R 11 U д ,                                          (3)

где UA1 и UA2 - напряжения на выходе первого (А1) и второго (А2) операционных усилителей соответственно, Uсн - синфазное напряжение на входах инструментального усилителя 7 и 8, Uд - дифференциальное напряжение на входах инструментального усилителя 7 и 8, R9÷R11 - резисторы цепи обратной связи, входящие в структуру входного прецизионного преобразователя 1 фиг.1.

Основные задачи предлагаемого изобретения состоят в следующем. 1. Исключить прецизионные резисторы R1÷R4 из структуры активного сумматора 12 и, следовательно, необходимость дорогостоящей прецизионной лазерной настройки этих резисторов. Это позволит не только повысить выход годных изделий при производстве, но и получить максимально высокий коэффициент ослабления входного синфазного напряжения в структуре ИУ.

2. Исключить синфазную составляющую в выходных сигналах первого (А1) и второго (А2) операционных усилителей, что позволит повысить эффективность использования их амплитудной характеристики.

Поставленная задача решается тем, что в инструментальном усилителе фиг.1, содержащем входной прецизионный преобразователь 1 первого 2 и второго 3 источников входных напряжений, связанных с общей шиной питания 4, первый 5 и второй 6 выходы входного прецизионного преобразователя 1, первый 7 и второй 8 входы устройства, связанные с первым 2 и вторым 3 источниками входных напряжений, первый 9, второй 10 и третий 11 резисторы обратной связи, активный сумматор 12 с инвертирующим 13 и неинвертирующим 14 входами, выход устройства 15, связанный с выходом активного сумматора 12, причем первый 5 выход входного прецизионного преобразователя 1 связан с инвертирующим входом 13 активного сумматора 12, второй 6 выход входного прецизионного преобразователя 1 связан с неинвертирующим входом 14 активного сумматора 12, предусмотрены новые элементы и связи - входной прецизионный преобразователь 1 включает первый 15 преобразователь «напряжение-ток», инвертирующий вход которого связан с первым 7 входом устройства, а неинвертирующий вход соединен со вторым 8 входом устройства, первый 16 токовый выход первого 15 преобразователя «напряжение-ток» соединен с первым 17 токовым выходом второго 18 преобразователя «напряжение-ток» и подключен к неинвертирующему токовому входу первого 19 выходного преобразователя «ток-напряжение» и к инвертирующему токовому входу второго 20 выходного преобразователя «ток-напряжение», второй токовый выход 21 первого 15 преобразователя «напряжение-ток» соединен со вторым 22 токовым выходом второго 18 преобразователя «напряжение-ток» и подключен к инвертирующему токовому входу первого 19 выходного преобразователя «ток-напряжение» и к неинвертирующему токовому входу второго 20 выходного преобразователя «ток-напряжение», причем сигнал на первом 16 токовом выходе первого 15 преобразователя «напряжение-ток» противофазен сигналу на втором 21 токовом выходе первого 15 преобразователя «напряжение-ток», а сигнал на первом 17 токовом выходе второго 18 преобразователя «напряжение-ток» противофазен сигналу на втором 22 токовом выходе второго 18 преобразователя «напряжение-ток» и синфазен сигналам на первом 16 токовом выходе первого 15 преобразователя «напряжение-ток», выход 23 первого 19 выходного преобразователя «ток-напряжение» соединен с первым 5 выходом входного прецизионного преобразователя 1, а также связан с инвертирующим входом второго 18 преобразователя «напряжение-ток» через второй 10 резистор обратной связи, причем инвертирующий вход второго 18 преобразователя «напряжение-ток» связан с общей шиной источников питания 4 через дополнительный резистор обратной связи 24, выход 25 второго 20 выходного преобразователя «ток-напряжение» соединен со вторым 6 выходом входного прецизионного преобразователя 1, а также связан с неинвертирующим входом второго 18 преобразователя «напряжение-ток» через первый 9 резистор обратной связи, причем неинвертирующий вход второго 18 преобразователя «напряжение-ток» связан с общей шиной источников питания 4 через третий 11 резистор обратной связи.

Схема инструментального усилителя-прототипа показана на чертеже фиг.1.

На чертеже фиг.2 представлена схема заявляемого устройства в соответствии с п.1, а на чертеже фиг.3 - в соответствии с п.2 формулы изобретения. На чертеже фиг.4 представлено упрощенное графическое изображение входного прецизионного преобразователя 1, соответствующее п.1 формулы изобретения. На чертеже фиг.5 представлено упрощенное графическое изображение активного сумматора 12, соответствующее п.2 формулы изобретения.

На чертеже фиг.6 представлена схема ИУ, соответствующая п.3 формулы изобретения, а на чертеже фиг.7 - соответствующая п.4 формулы изобретения.

На чертеже фиг.8 приведена схема подключений заявляемого инструментального усилителя фиг.2 в среде PSpice на моделях компонентов биполярно-полевого аналогового базового матричного кристалла АБМК_1_3, которая использовалась для исследования его основных характеристик.

На чертеже фиг.9 приведена схема заявляемого инструментального усилителя фиг.6 в среде PSpice на моделях компонентов биполярно-полевого аналогового базового матричного кристалла АБМК_1_3, которая использовалась для исследования его основных характеристик (фиг.18-26).

На чертеже фиг.10 и фиг.11 приведены соответственно логарифмические амплитудно- и фазочастотные характеристики дифференциального коэффициента усиления по напряжению инструментального усилителя фиг.8 при различных значениях сопротивлений резисторов обратной связи в структуре входного прецизионного преобразователя (1) фиг.2, определяющего реализуемое значение этого коэффициента.

На фиг.12 показана частотная зависимость коэффициента передачи входного синфазного напряжения инструментального усилителя фиг.8 (фиг.2) при различных значениях дифференциального коэффициента усиления по напряжению (Kд=20 дБ, 40 дБ, 60 дБ).

На чертеже фиг.13 приведены графики граничных напряжений на выходах (5) и (6) входного прецизионного преобразователя (1) при подаче дифференциального сигнала на входы (7) и (8) устройства фиг.8 (фиг.2), при различных значениях дифференциального коэффициента усиления по напряжению (Kд=20 дБ, 40 дБ, 60 дБ).

На чертеже фиг.14 показаны значения напряжения дрейфа нуля на выходе (15) инструментального усилителя фиг.8 (фиг.2) при изменении температуры от -40 до +85 градусов Цельсия.

На чертеже фиг.15 приведена гистограмма, отражающая возможные значения напряжения дрейфа нуля инструментального усилителя фиг.8 (фиг.2) в результате применения метода Monte Carlo (Гауссовское распределение, изменение отношения номиналов резисторов 0,1%), а на чертеже фиг.17 - гистограмма, отражающая возможные значения коэффициента передачи входного синфазного напряжения в аналогичных условиях.

На чертеже фиг.16 приведены графики отклонения коэффициента передачи входного синфазного напряжения инструментального усилителя фиг.8 (фиг.2) с применением метода Monte Carlo (Гауссовское распределение, изменение отношения номиналов резисторов 0,1%).

На чертеже фиг.18 - фиг.20 приведены соответственно логарифмические амплитудно- и фазочастотные характеристики дифференциального коэффициента усиления по напряжению инструментального усилителя фиг.9 при различных значениях сопротивлений резисторов обратной связи в структуре входного прецизионного преобразователя 1 фиг.6, определяющего реализуемое значение этого коэффициента. На чертеже фиг.19 приведена характеристика дифференциального коэффициента усиления по напряжению инструментального усилителя фиг.9 в полосе пропускания.

На фиг.21 показана частотная зависимость коэффициента передачи входного синфазного напряжения инструментального усилителя фиг.9 (фиг.6) при различных значениях дифференциального коэффициента усиления по напряжению (Kд=20 дБ, 40 дБ, 60 дБ).

На чертеже фиг.22 приведены графики граничных напряжений на выходах (5) и (6) входного прецизионного преобразователя (1) при подаче дифференциального сигнала на входы (7) и (8) устройства фиг.9 (фиг.6) при различных значениях дифференциального коэффициента усиления по напряжению (Кд=20 дБ, 40 дБ, 60 дБ).

На чертеже фиг.23 показаны значения напряжения дрейфа нуля на выходе (15) инструментального усилителя фиг.9 (фиг.6) при изменении температуры от -40 до +85 градусов Цельсия.

На чертеже фиг.24 приведена гистограмма, отражающая возможные значения напряжения дрейфа нуля инструментального усилителя фиг.9 (фиг.6) в результате применения метода Monte Carlo (Гауссовское распределение, изменение отношения номиналов резисторов 0,1%), а на чертеже фиг.26 - гистограмма, отражающая возможные значения коэффициента передачи входного синфазного напряжения в аналогичных условиях.

На чертеже фиг.25 приведены графики отклонения коэффициента передачи входного синфазного напряжения инструментального усилителя фиг.9 (фиг.6) с применением метода Monte Carlo (Гауссовское распределение, изменение отношения номиналов резисторов 0,1%).

Графики фиг.16 - фиг.17 (ИУ фиг.2) и фиг.25 - фиг.26 (ИУ фиг.3) показывают, что заявляемое устройство, в отличие от ИУ фиг.1, характеризуется высоким коэффициентом ослабления входного синфазного сигнала, слабозависящим от погрешности резистивных элементов. Это позволит избежать дорогостоящей лазерной прецизионной настройки резисторов и, следовательно, повысить выход годных изделий при производстве. Кроме того, напряжение дрейфа нуля инструментального усилителя, определяемое напряжением смещения нуля активного сумматора 12, как видно на фиг.15 (ИУ фиг.2) и фиг.24 (ИУ фиг.6), также имеет низкую зависимость от погрешности резистивных элементов.

Инструментальный усилитель фиг.2 содержит входной прецизионный преобразователь 1 первого 2 и второго 3 источников входных напряжений, связанных с общей шиной питания 4, первый 5 и второй 6 выходы входного прецизионного преобразователя 1, первый 7 и второй 8 входы устройства, связанные с первым 2 и вторым 3 источниками входных напряжений, первый 9, второй 10 и третий 11 резисторы обратной связи, активный сумматор 12 с инвертирующим 13 и неинвертирующим 14 входами, выход устройства 15, связанный с выходом активного сумматора 12, причем первый 5 выход входного прецизионного преобразователя 1 связан с инвертирующим входом 13 активного сумматора 12, второй 6 выход входного прецизионного преобразователя 1 связан с неиивертирующим входом 14 активного сумматора 12. Входной прецизионный преобразователь 1 включает первый 15 преобразователь «напряжение-ток», инвертирующий вход которого связан с первым 7 входом устройства, а неинвертирующий вход соединен со вторым 8 входом устройства, первый 16 токовый выход первого 15 преобразователя «напряжение-ток» соединен с первым 17 токовым выходом второго 18 преобразователя «напряжение-ток» и подключен к неинвертирующему токовому входу первого 19 выходного преобразователя «ток-напряжение» и к инвертирующему токовому входу второго 20 выходного преобразователя «ток-напряжение», второй токовый выход 21 первого 15 преобразователя «напряжение-ток» соединен со вторым 22 токовым выходом второго 18 преобразователя «напряжение-ток» и подключен к инвертирующему токовому входу первого 19 выходного преобразователя «ток-напряжение» и к неинвертирующему токовому входу второго 20 выходного преобразователя «ток-напряжение», причем сигнал на первом 16 токовом выходе первого 15 преобразователя «напряжение-ток» противофазен сигналу на втором 21 токовом выходе первого 15 преобразователя «напряжение-ток», а сигнал на первом 17 токовом выходе второго 18 преобразователя «напряжение-ток» противофазен сигналу на втором 22 токовом выходе второго 18 преобразователя «напряжение-ток» и синфазен сигналам на первом 16 токовом выходе первого 15 преобразователя «напряжение-ток», выход 23 первого 19 выходного преобразователя «ток-напряжение» соединен с первым 5 выходом входного прецизионного преобразователя 1, а также связан с инвертирующим входом второго 18 преобразователя «напряжение-ток» через второй 10 резистор обратной связи, причем инвертирующий вход второго 18 преобразователя «напряжение-ток» связан с общей шиной источников питания 4 через дополнительный резистор обратной связи 24, выход 25 второго 20 выходного преобразователя «ток-напряжение» соединен со вторым 6 выходом входного прецизионного преобразователя 1, а также связан с неинвертирующим входом второго 18 преобразователя «напряжение-ток» через первый 9 резистор обратной связи, причем неинвертирующий вход второго 18 преобразователя «напряжение-ток» связан с общей шиной источников питания 4 через третий 11 резистор обратной связи.

На чертеже фиг.3, в соответствии с п.2 формулы изобретения, активный сумматор 12 содержит третий 26 преобразователь «напряжение-ток», инвертирующий вход которого соединен с выходом устройства 15, а неинвертирующий вход связан с общей шиной источников питания 4, четвертый 27 преобразователь «напряжение-ток», инвертирующий вход которого соединен с инвертирующим входом 13 активного сумматора 12, неинвертирующий вход подключен к неинвертирующему входу 14 активного сумматора 12, первый 28 токовый выход третьего 26 преобразователя «напряжение-ток» соединен с первым 29 токовым выходом четвертого 27 преобразователя «напряжение-ток» и подключен к неинвертирующему токовому входу третьего 30 выходного преобразователя «ток-напряжение», второй 31 токовый выход третьего 26 преобразователя «напряжение-ток» соединен со вторым 32 токовым выходом четвертого 27 преобразователя «напряжение-ток» и подключен к инвертирующему токовому входу третьего 30 выходного преобразователя «ток-напряжение», причем сигнал на первом 28 токовом выходе третьего 26 преобразователя «напряжение-ток» противофазен сигналу на втором 31 токовом выходе третьего 26 преобразователя «напряжение-ток», а сигнал на первом 29 токовом выходе четвертого 27 преобразователя «напряжение-ток» противофазен сигналу на втором 32 токовом выходе четвертого 27 преобразователя «напряжение-ток» и синфазен сигналу на первом 28 токовом выходе третьего 26 преобразователя «напряжение-ток».

На чертеже фиг.4, в соответствии с п.1 формулы изобретения, приведено упрощенное графическое изображение входного прецизионного преобразователя 1, в котором элементы 15, 18, 19, 20 условно обозначены активным элементом 33.

На чертеже фиг.5, в соответствии с п.2 формулы изобретения, приведено упрощенное графическое изображение активного сумматора 12, в котором элементы 26, 27, 30 условно обозначены активным элементом 34.

На чертеже фиг.6, в соответствии с п.3 формулы изобретения, первый 5 выход входного прецизионного преобразователя 1 связан с инвертирующим входом 13 активного сумматора 12 через первый 35 фильтр нижних частот, имеющий вход 37 и выход 38, а второй 6 выход входного прецизионного преобразователя 1 связан с неинвертирующим входом 14 активного сумматора 12 через второй 36 фильтр нижних частот, имеющий вход 39 и выход 40. При этом каждый из фильтров нижних частот 35, 36 содержит последовательно соединенные резисторы 41, 42, 43, усилитель 44, а также конденсаторы 45, 46, 47.

На чертеже фиг.7, в соответствии с п.4 формулы изобретения, первый 5 и второй 6 выходы входного прецизионного преобразователя 1 связаны с соответствующими инвертирующим 13 и неинвертирующим 14 входами активного сумматора 12 через дифференциальный по входу (противофазные входы 49, 50) и дифференциальный по выходу (противофазные выходы 51, 52) фильтр нижних частот 48.

Рассмотрим работу ИУ фиг.2.

Сигнал, содержащий синфазную и дифференциальную составляющие, подается на инвертирующий 7 (Вх.1) и неинвертирующий 8 (Вх.2) входы входного прецизионного преобразователя 1 и поступают на инвертирующий и неинвертирующий входы первого 15 преобразователя «напряжение-ток» соответственно. За счет реализации высокого коэффициента ослабления синфазной составляющей входного сигнала во входных дифференциальных каскадах первого 15 преобразователя «напряжение-ток» происходит подавление синфазной составляющей сигнала, выполняется усиление амплитуды дифференциальной составляющей сигнала согласно выбранным отношениям первого (9) и третьего (11), а также второго (10) и дополнительного (24) резисторов цепи обратной связи. Усиленная дифференциальная составляющая входного сигнала совместно с ослабленной по отношению ко входу синфазной составляющей сигнала, а также погрешностью, вносимой напряжением дрейфа нуля с выхода (23) первого (19) выходного преобразователя «ток-напряжение» и с выхода (25) второго (20) выходного преобразователя «ток-напряжение», поступают на выход (5) и выход (6) входного прецизионного преобразователя (1) и далее на инвертирующий ( B x . Σ 1 ( ) ) (13) и неинвертирующий ( B x . Σ 1 ( + ) ) (14) входы активного сумматора (12) соответственно, где осуществляется вычитание поступающих сигналов, что позволяет значительно уменьшить погрешность, вносимую в итоговой результат напряжением дрейфа нуля входного преобразователя (1), и уменьшить коэффициент передачи входного синфазного напряжения (при условии реализации входного прецизионного преобразователя (1) в рамках одного кристалла и единого технологического процесса), а также суммирование усиленного дифференциального напряжения. Причем ослабленная синфазная составляющая входного сигнала и напряжение дрейфа нуля, поступающие с выходов (23) и (25) первого (19) и второго (20) входных преобразователей «ток-напряжение» на инвертирующий и пеивертирующий входы второго (18) преобразователя «напряжение-ток» соответственно, воспринимаются как синфазное напряжение, подавляемое за счет реализации высокого коэффициента ослабления синфазной составляющей входного сигнала во входных дифференциальных каскадах второго (18) преобразователя «напряжение-ток». В итоге на выходе активного сумматора (12) и выходе устройства (15) появляется усиленный дифференциальный сигнал с погрешностью, определяемой напряжением смещения нуля активного сумматора (12).

Покажем аналитически, что указанные выше свойства инструментального усилителя реализуются в заявляемой схеме фиг.2.

Действительно, используя методы анализа электронных схем можно показать, что предлагаемый инструментальный усилитель (фиг.2) характеризуется следующими параметрами:

Коэффициент усиления дифференциального сигнала

K д = 2 R 24 R 24 + R 10 + R 11 R 11 + R 9 ,                                       (4)

поэтому выбор отношения номиналов первого (9) R9 и третьего (11) R11 резисторов обратной связи, а также второго (10) R10 резистора обратной связи и дополнительного (24) R24 резистора обратной связи задают значение параметра Kд инструментального усилителя (фиг.2). В частности можно использовать равенства R11=R24=r и R9=R10=R, тогда

K д = 1 + R r .                                                                 (5)

Коэффициент передачи синфазного напряжения инструментального усилителя:

K с н = 2 K д K о с с н 1 K о с с н 12 ,                                          (6)

где Kоссн1 - коэффициент ослабления синфазного напряжения, реализуемый во входных преобразователях «напряжение-ток» (15, 18) входного прецизионного преобразователя (1), Kоссн12 - коэффициент ослабления синфазного напряжения активного сумматора (12) (фиг.2).

Напряжение дрейфа нуля инструментального усилителя определяется соотношением:

U д р . И У = ( U д р .5 U д р .6 ) K о с с н 12 + U д р .12 ,                        (7)

где Uдр.ИУ - напряжение дрейфа нуля инструментального усилителя, Uдр.5 и Uдр.6 - напряжения дрейфа нуля на выходе (5) и выходе (6) входного прецизионного преобразователя (1) соответственно, Uдр.12 - напряжение дрейфа нуля активного сумматора (12). С учетом выполнения входного прецизионного преобразователя (1) (фиг.2) в едином технологическом процессе в рамках одного кристалла Uдр.5=Uдр.6:

U д р . И У = U д р .12 = K д .12 E с м .12 ,                                        (8)

где Kд.12 - коэффициент усиления дифференциального сигнала активного сумматора (12), Есм.12 - ЭДС смещения активного сумматора (12) (фиг.5). Так как активный сумматор (12) используется в качестве сумматора сигналов (Kд.12=1):

U д р . И У = E с м .12 .                                                           (9)

Таким образом, напряжение дрейфа нуля инструментального усилителя определяется ЭДС смещения активного сумматора (12).

Напряжения на выходах (5) и (6) входного прецизионного преобразователя (1):

U 5 = K о с с н 1 U с н R 10 R 24 U д 2 ,  U 6 = K о с с н 1 U с н + R 9 R 11 U д 2 .                 (10)

Таким образом, при Kоссн1<<1 повышается эффективность использования амплитудной характеристики на выходах (5) и (6) входного прецизионного преобразователя (1) (фиг.2). Действительно, в устройстве-прототипе (фиг.1):

U A 1 = U с н R 9 R 11 U д ,  U A2 = U с н + R 10 R 11 U д ,                                           (11)

эти напряжения определяются синфазным напряжением на входе инструментального усилителя Uсн.

Кроме этого в прототипе (фиг.1):

U д р . И У = Е с м . А 3 ( 1 + R 1 R 2 ) = 2 Е с м . А 3                                                (12)

дрейф нуля практически в 2 раза больше дрейфа нуля заявляемого устройства.

Уменьшение Kсн (формула 6) за счет Kоссн1<<1 объясняется дифференциальными свойствами входных основных и дополнительных дифференциальных каскадов входных преобразователей «напряжение-ток» (15, 18) входного прецизионного преобразователя (1).

Таким образом, влияние технологических погрешностей изготовления резисторов ΘRi распространяется только на дифференциальный коэффициент усиления (4) и практически не влияет на коэффициент передачи синфазного сигнала (6) и его дрейф нуля (9), что также видно на фиг.15 - фиг.17 (ИУ фиг.2) и на фиг.24 - фиг.26 (ИУ фиг.6).

Погрешность реализации дифференциального коэффициента передачи определяется влиянием статического коэффициента усиления (µ):

S μ K д = 1 μ μ + K д = K д μ + K д / 2 K д μ ,                                                   (12)

Δ K д K д = S μ K д . Δ μ μ ,                                                                              (13)

K д . max = Δ K д / K д μ Δ μ / μ ,                                                                   (14)

где Δµ/µ - погрешность статического коэффициента усиления, определяется погрешностью технологического процесса, ΔKд/Kд - погрешность дифференциального коэффициента усиления, µ - статический коэффициент усиления, увеличение которого, с помощью эффективных схемотехнических решений, позволяет уменьшить погрешность дифференциального коэффициента усиления.

Рассмотрим работу ИУ фиг.6.

Работа инструментального усилителя фиг.6 отличается от работы инструментального усилителя фиг.2, тем, что в его структуру между выходами входного прецизионного преобразователя 1 и входами активного сумматора (12) включены фильтры нижних частот (35, 36) для каждого из каналов усиления. Такая реализация инструментального усилителя позволяет минимизировать погрешность ЭДС смещения фильтра нижних частот, вносимую в итоговый результат, за счет реализации высокого коэффициента ослабления синфазного сигнала во входных каскадах четвертого (27) преобразователя «напряжение-ток» активного сумматора (12) (фиг.5), обеспечивающего ее подавление.

В зависимости от выбранных значений конденсаторов в RC-цепи фильтров нижних частот (35, 36), определяется граничная частота полосы пропускания частотных характеристик инструментального усилителя. Так каждый из фильтров нижних частот (35, 36) фиг.6, реализует передаточную функцию

F Ф ( p ) = a 0 p 3 + p 2 a 2 + p a 1 + a 0 ,                                                            (15)

коэффициенты которой

a 2 = g 41 + g 42 C 45 + g 42 + g 43 C 46 ,  a 1 = g 41 ( g 42 + g 43 ) + g 42 g 43 C 45 C 46 + g 42 g 43 C 45 C 46 , a 0 = g 41 g 42 g 43 C 45 C 46 C 47 ,  g 41 = 1 R 41 , g 42 = 1 R 42 g 43 = 1 R 43 ,                        (16)

где С45, С46, С47 - конденсаторы в RC-цепи фильтров нижних частот (35, 36), R41, R42, R43 - резисторы в RC-цепи фильтров нижних частот (35, 36), характеризуются низкой (≤1) элементной чувствительностью к нестабильности параметров резисторов и конденсаторов. Для реализации небольшой неравномерности амплитудно-частотной характеристики (АЧХ) в полосе пропускания при рациональном выборе аппроксимирующей функции добротность полюса оказывается незначительной, поэтому можно использовать дополнительные параметрические условия:

R 41 = R 42 = R 43 ;   C 45 , = C 46 = C 47 ;   C 45 = h C .                                      (17)

Тогда

a 2 = 2 ( h + 1 ) R C h ,  a 1 = 4 R 2 C 2 h ,  a 0 = 1 R 3 C 3 h ,                                            (18)

что с точностью до отношений номиналов однотипных элементов соответствует структуре лестничного фильтра.

Таким образом, предлагаемый инструментальный усилитель фиг.2 и фиг.6 выгодно отличается от прототипа и аналогов тем, что характеризуется более низким энергопотреблением и более низкой себестоимостью за счет уменьшения количества используемых компонентов и требований к их точности, более высоким (максимально достижимым) коэффициентом ослабления синфазного сигнала, слабозависящим от погрешности резистивных элементов в схеме, что позволяет избежать дорогостоящей прецизионной лазерной настройки этих резисторов.

Так же предлагаемый инструментальный усилитель характеризуется более эффективным использованием амплитудной характеристики на выходах (5) и (6) входного прецизионного преобразователя (1) и низким напряжением дрейфа нуля инструментального усилителя, имеющим низкую зависимость от погрешности неидентичных резистивных элементов в схеме, за счет реализации высокого коэффициента ослабления синфазной составляющей входного сигнала во входных каскадах входных преобразователей «напряжение-ток» (15, 18) входного прецизионного преобразователя (1) (фиг.2, фиг.6).

Данные теоретические выводы подтверждают графики фиг.10 - фиг.26

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Патент US 20100259323 A1 fig.1

2. Патент US 20110043281 A1

3. Патент US 20110043280 A1

4. Патент US 20070260150 A1

5. Патент US 20060267987 A1

6. Патент US 20050275460 A1

7. Патент US 20020163 383 A1

8. Патент US 20020113 651 A1

9. Патент US 00008138830 B2

10. Патент US 00007952428 B2

11. Патент US 00007880541 B1

12. Патент US 00007728947 B2

13. Патент US 00007719351 B2

14. Патент US 00004490682

15. Патент US 00004206416

16. Патент US 00003453554

1. Инструментальный усилитель, содержащий входной прецизионный преобразователь (1) первого (2) и второго (3) источников входных напряжений, связанных с общей шиной питания (4), первый (5) и второй (6) выходы входного прецизионного преобразователя (1), первый (7) и второй (8) входы устройства, связанные с первым (2) и вторым (3) источниками входных напряжений, первый (9), второй (10) и третий (11) резисторы обратной связи, активный сумматор (12) с инвертирующим (13) и неинвертирующим (14) входами, выход устройства (15), связанный с выходом активного сумматора (12), причем первый (5) выход входного прецизионного преобразователя (1) связан с инвертирующим входом (13) активного сумматора (12), второй (6) выход входного прецизионного преобразователя (1) связан с неинвертирующим входом (14) активного сумматора (12), отличающийся тем, что входной прецизионный преобразователь (1) включает первый (15) преобразователь «напряжение-ток», инвертирующий вход которого связан с первым (7) входом устройства, а неинвертирующий вход соединен со вторым (8) входом устройства, первый (16) токовый выход первого (15) преобразователя «напряжение-ток» соединен с первым (17) токовым выходом второго (18) преобразователя «напряжение-ток» и подключен к неинвертирующему токовому входу первого (19) выходного преобразователя «ток-напряжение» и к инвертирующему токовому входу второго (20) выходного преобразователя «ток-напряжение», второй токовый выход (21) первого (15) преобразователя «напряжение-ток» соединен со вторым (22) токовым выходом второго (18) преобразователя «напряжение-ток» и подключен к инвертирующему токовому входу первого (19) выходного преобразователя «ток-напряжение» и к неинвертирующему токовому входу второго (20) выходного преобразователя «ток-напряжение», причем сигнал на первом (16) токовом выходе первого (15) преобразователя «напряжение-ток» противофазен сигналу на втором (21) токовом выходе первого (15) преобразователя «напряжение-ток», а сигнал на первом (17) токовом выходе второго (18) преобразователя «напряжение-ток» противофазен сигналу на втором (22) токовом выходе второго (18) преобразователя «напряжение-ток» и синфазен сигналам на первом (16) токовом выходе первого (15) преобразователя «напряжение-ток», выход (23) первого (19) выходного преобразователя «ток-напряжение» соединен с первым (5) выходом входного прецизионного преобразователя (1), а также связан с инвертирующим входом второго (18) преобразователя «напряжение-ток» через второй (10) резистор обратной связи, причем инвертирующий вход второго (18) преобразователя «напряжение-ток» связан с общей шиной источников питания (4) через дополнительный резистор обратной связи (24), выход (25) второго (20) выходного преобразователя «ток-напряжение» соединен со вторым (6) выходом входного прецизионного преобразователя (1), а также связан с неинвертирующим входом второго (18) преобразователя «напряжение-ток» через первый (9) резистор обратной связи, причем неинвертирующий вход второго (18) преобразователя «напряжение-ток» связан с общей шиной источников питания (4) через третий (11) резистор обратной связи.

2. Инструментальный усилитель по п.1, отличающийся тем, что активный сумматор (12) содержит третий (26) преобразователь «напряжение-ток», инвертирующий вход которого соединен с выходом устройства (15), а неинвертирующий вход связан с общей шиной источников питания (4), четвертый (27) преобразователь «напряжение-ток», инвертирующий вход которого соединен с инвертирующим входом (13) активного сумматора (12), неинвертирующий вход подключен к неинвертирующему входу (14) активного сумматора (12), первый (28) токовый выход третьего (26) преобразователя «напряжение-ток» соединен с первым (29) токовым выходом четвертого (27) преобразователя «напряжение-ток» и подключен к неинвертирующему токовому входу третьего (30) выходного преобразователя «ток-напряжение», второй (31) токовый выход третьего (26) преобразователя «напряжение-ток» соединен со вторым (32) токовым выходом четвертого (27) преобразователя «напряжение-ток» и подключен к инвертирующему токовому входу третьего (30) выходного преобразователя «ток-напряжение», причем сигнал на первом (28) токовом выходе третьего (26) преобразователя «напряжение-ток» противофазен сигналу на втором (31) токовом выходе третьего (26) преобразователя «напряжение-ток», а сигнал на первом (29) токовом выходе четвертого (27) преобразователя «напряжение-ток» противофазен сигналу на втором (32) токовом выходе четвертого (27) преобразователя «напряжение-ток» и синфазен сигналу на первом (28) токовом выходе третьего (26) преобразователя «напряжение-ток».

3. Инструментальный усилитель по п.1, отличающийся тем, что первый (5) выход входного прецизионного преобразователя (1) связан с инвертирующим входом (13) активного сумматора (12) через первый (35) фильтр нижних частот, а второй (6) выход входного прецизионного преобразователя (1) связан с неинвертирующим входом (14) активного сумматора (12) через второй (36) фильтр нижних частот.

4. Инструментальный усилитель по п.1, отличающийся тем, что первый (5) и второй (6) выходы входного прецизионного преобразователя (1) связаны с соответствующими инвертирующим (13) и неинвертирующим (14) входами активного сумматора (12) через дифференциальный по входу и дифференциальный по выходу фильтр частот (48).



 

Похожие патенты:

Изобретение относится к области радиотехники и связи и может быть использовано в качестве устройства усиления аналоговых сигналов, в структуре аналоговых микросхем различного функционального назначения.

Изобретение относится к области радиотехники. Технический результат заключается в повышении добротности АЧХ ИУ и его коэффициента усиления по напряжению (К0) на частоте квазирезонанса f0.

Изобретение относится к области радиотехники и связи и может быть использовано в качестве устройства усиления аналоговых сигналов в структуре аналоговых микросхем различного функционального назначения (например, широкополосных и избирательных усилителях ВЧ и СВЧ диапазонов).

Изобретение относится к области радиотехники и связи и может использоваться в устройствах фильтрации радиосигналов, телевидении, радиолокации. Техническим результатом является повышение добротности амплитудно-частотной характеристики избирательного усилителя и его коэффициента усиления по напряжению на частоте квазирезонанса fo.

Изобретение относится к области радиотехники и связи и может использоваться в устройствах фильтрации радиосигналов, телевидении, радиолокации. Техническим результатом является повышение добротности амплитудно-частотной характеристики избирательного усилителя и его коэффициента усиления по напряжению на частоте квазирезонанса fo.

Изобретение относится к области радиотехники и связи и может использоваться в устройствах фильтрации радиосигналов, телевидении, радиолокации и т.п. Техническим результатом является уменьшение общего энергопотребления за счет повышения добротности АЧХ усилителя и его коэффициента усиления по напряжению (K0) на частоте квазирезонанса f0.

Изобретение относится к схемам для улучшения избирательности входных каскадов приемников, подходящих для беспроводной связи. .

Изобретение относится к области радиотехники и связи и может использоваться в качестве устройства усиления аналоговых сигналов датчиков различного функционального назначения.

Изобретение относится к области радиотехники и связи и может использоваться в устройствах фильтрации радиосигналов, телевидении, радиолокации. .

Изобретение относится к дифференциальному усилительному устройству и, более конкретно, к коррекции напряжения смещения дифференциального усилительного устройства.

Изобретение относится к области радиотехники и связи и может использоваться в устройствах фильтрации радиосигналов, телевидении, радиолокации и т.п. Технический результат - уменьшение общего энергопотребление за счет увеличения затухания входного сигнала в диапазоне низких частот при повышенной и стабильной добротности АЧХ ИУ и коэффициенте усиления по напряжению (K0) на частоте квазирезонанса f0. Управляемый избирательный усилитель содержит источник входного сигнала, два входных транзистора, два токостабилизирующих двухполюсника, источник питания, токовое зеркало, два корректирующих конденсатора, резистор и буферный усилитель. В качестве входных транзисторов используются полевые транзисторы, исток которых соответствует эмиттеру, сток - коллектору, а затвор - базе биполярного транзистора. 8 ил.

Изобретение относится к области радиотехники и связи и может быть использовано в качестве устройства усиления аналоговых сигналов, в структуре аналоговых микросхем различного функционального назначения. Техническим результатом является уменьшение систематической составляющей напряжения смещения нуля, а также его температурного и радиационного дрейфа. Гибридный дифференциальный усилитель содержит первый (1) входной транзистор, база которого подключена к неинвертирующему входу (2) устройства, коллектор связан с первой (3) шиной источника питания, а эмиттер соединен с эмиттером второго (4) входного транзистора, причем база второго (4) входного транзистора соединена с инвертирующим входом (5) устройства, а его коллектор соединен с выходом (6) устройства и связан со второй (7) шиной источника питания через цепь нагрузки (8). В качестве первого (1) входного транзистора используется первый (1) полевой транзистор с управляющим p-n переходом, затвор которого соответствует базе, исток - эмиттеру, а сток - коллектору биполярного транзистора, а цепь нагрузки (8) содержит второй (9) полевой транзистор с управляющим p-n переходом, затвор которого соединен со второй (7) шиной источника питания, сток связан с коллектором второго (4) входного транзистора, а исток связан со второй (7) шиной источника питания через дополнительный p-n переход (10), идентичный эмиттерно-базовому переходу второго (4) входного транзистора. 1 з.п. ф-лы, 11 ил.

Изобретение относится к области радиотехники и связи и может использоваться в устройствах фильтрации радиосигналов, телевидении, радиолокации. Техническим результатом является уменьшение общего энергопотребления. Избирательный усилитель содержит первый (1) входной транзистор, база которого соединена со входом (2) устройства, а коллектор соединен с выходом (3) устройства и через первый (4) частотозадающий резистор связан с первой (5) шиной источника питания, первый (6) корректирующий конденсатор, включенный по переменному току параллельно первому (4) частотозадающему резистору, второй (7) входной транзистор, коллектор которого связан со второй (8) шиной источника питания, а эмиттер подключен к эмиттеру первого (1) входного транзистора, второй (9) частотозадающий резистор, первый вывод которого соединен с базой второго (7) входного транзистора, второй (10) корректирующий конденсатор, первый вывод которого соединен с базой второго (7) входного транзистора. Второй вывод второго (10) корректирующего конденсатора подключен к выходу (3) устройства, а второй вывод второго (9) частотозадающего резистора соединен с первым (11) источником вспомогательного напряжения. 6 з.п. ф-лы, 11 ил.

Изобретение относится к области радиотехники и связи и может использоваться в устройствах фильтрации радиосигналов, телевидении, радиолокации. Технический результат - повышение добротности АЧХ ИУ и его коэффициента усиления по напряжению (К0) на частоте квазирезонанса f0,что позволяет в ряде случаев уменьшить общее энергопотребление. Избирательный усилитель содержит источник входного напряжения (1), преобразователь «напряжение-ток» (2), выходной транзистор (3), первую (4) шину источника питания, первый (5) частотозадающий резистор, первый (6) и второй (7) корректирующие конденсаторы, второй (8) и третий (9) частотозадающие резисторы, источник вспомогательного напряжения (10), отрицательную шину источника питания (11), общую шину источников питания (12), выход устройства (13), первый (14) дополнительный токостабилизирующий двухполюсник, дополнительный транзистор (15) и дополнительный конденсатор (16). 1 з.п. ф-лы, 5 ил.

Изобретение относится к составному транзистору, который может быть использован в качестве устройства усиления аналоговых сигналов и в структуре аналоговых микросхем различного функционального назначения. Технический результат заключается в повышении в 8÷10 раз верхней граничной частоты различных усилителей за счет уменьшение входной и выходной емкостей используемого в них составного транзистора. Составной транзистор содержит входной транзистор (1), база которого является базой (2), а эмиттер - эмиттером (3) составного транзистора, выходной транзистор (4), коллектор которого является коллектором (5) составного транзистора, а эмиттер соединен с коллектором входного транзистора (1), при этом в схему введен дополнительный транзистор (6), статический режим которого по току эмиттера устанавливается дополнительным источником опорного тока (7), включенным между первой (8) шиной источника питания и эмиттером дополнительного транзистора (6), причем база дополнительного транзистора (6) соединена с базой входного транзистора (1), его коллектор связан с эмиттером входного транзистора (1), а эмиттер подключен к базе выходного транзистора (4). 1 з.п. ф-лы, 10 ил.

Изобретение относится к области радиотехники, а конкретно к управляемым избирательным усилителям. Технический результат заключается в повышении добротности АЧХ и его коэффициента усиления по напряжению на частоте квазирезонанса. Избирательный усилитель содержит источник сигнала, подключенный к базе первого входного транзистора, второй входной транзистор, первый токостабилизирующий двухполюсник, включенный между эмиттером первого входного транзистора и первой шиной источника питания, второй токостабилизирующий двухполюсник, включенный между эмиттером второго входного транзистора и первой шиной источника питания, первый корректирующий конденсатор, включенный между эмиттером первого и второго входных транзисторов, первый частотозадающий резистор, включенный между коллектором первого входного транзистора и второй шиной источника питания, второй корректирующий конденсатор, второй частотозадающий резистор. Второй корректирующий конденсатор включен между базой второго входного транзистора и коллектором первого входного транзистора, второй частотозадающий резистор включен между базой второго входного транзистора, связанной с выходом устройства и общей шиной источников питания, причем параллельно второму частотозадающему резистору включен по переменному току дополнительный корректирующий конденсатор. 8 ил.

Изобретение относится к области радиотехники и связи и может быть использовано в качестве устройства усиления аналоговых сигналов, в структуре аналоговых микросхем различного функционального назначения. Техническим результатом является повышение входных сопротивлений для дифференциального и синфазного сигналов по двум из четырех входов ОУ. В мультидифференциальном операционном усилителе в качестве первого (5) и второго (8) выходных транзисторов используются первый и второй полевые транзисторы с управляющим р-n-переходом, затворы которых соответствуют базе, стоки - коллекторам, а истоки - эмиттерам соответствующих первого (5) и второго (8) выходных транзисторов, причем коллектор первого (1) входного транзистора связан со второй (10) шиной источника питания, сток второго (8) выходного полевого транзистора связан с первой (7) шиной источника питания, выход второго (9) токового зеркала подключен к выходу устройства (11), затвор первого (5) выходного полевого транзистора соединен со вторым (12) неинвертирующим входом устройства, а затвор второго (8) выходного полевого транзистора соединен со вторым (13) инвертирующим входом устройства. 4 з.п. ф-лы, 7 ил.

Изобретение относится к области радиотехники, а конкретно к управляемым избирательным усилителям. Технический результат заключается в расширение частотного диапазона избирательного усилителя. Избирательный усилитель содержит основной операционный усилитель, между выходом и инвертирующим входом которого включен первый частотозадающий резистор, первый и второй частотозадающие конденсаторы, включенные последовательно между выходом основного операционного усилителя и его инвертирующим входом, второй частотозадающий резистор, первый вывод которого соединен с общим узлом последовательно включенных первого и второго частотозадающих конденсаторов, источник входного напряжения, связанный со вторым выводом второго частотозадающего резистора. Источник входного напряжения связан со вторым выводом второго частотозадающего резистора через дополнительный инвертирующий каскад, неинвертирующий вход которого соединен с инвертирующим входом основного операционного усилителя. 10 ил.

Изобретение относится к области радиотехники и связи и может быть использовано в радиоприемных устройствах, фазовых детекторах и модуляторах, а также в системах умножения частоты. Достигаемый технический результат: получение на выходе не только амплитудных изменений выходного сигнала под действием управляющего напряжения, но и его фазы, что позволяет подавить основные гармоники. Управляемый усилитель и смеситель аналоговых сигналов содержит первый (1) и второй (2) источники противофазных входных напряжений, первый (3) входной транзистор, эмиттер которого через первый (4) токостабилизирующий двухполюсник связан с первым (5) источником питания, второй (6) входной транзистор, эмиттер которого через второй (7) токостабилизирующий двухполюсник связан с первым (5) источником питания, третий (8) входной транзистор, эмиттер которого связан с эмиттером четвертого (9) входного транзистора и через третий (10) токостабилизирующий двухполюсник соединен с первым (5) источником питания, дифференциальную цепь нагрузки, согласованную со вторым источником питания. 3 з.п. ф-лы, 21 ил.

Изобретение относится к области радиотехники и связи и может быть использовано в качестве устройства для прецизионного усиления по мощности аналоговых сигналов, в структурах неинвертирующих усилителей и выходных каскадов различного функционального назначения, в том числе ВЧ- и СВЧ-диапазонов. Технический результат: уменьшение уровня нелинейных искажений и шумов различного происхождения в цепи нагрузки ШНУ с неинвертирующим выходным каскадом. Широкополосный неинвертирующий усилитель с малым уровнем нелинейных искажений и шумов содержит неинвертирующий выходной каскад (1), вход которого связан со входом устройства (2) и источником входного напряжения (3) через согласующий резистор (4), цепь нагрузки (5), подключенную к выходу (6) устройства, связанному с выходом неинвертирующего выходного каскада (1). Между входом (2) и выходом (6) устройства включены последовательно соединенные инвертирующий буферный усилитель (7), второй (8) и третий (9) дополнительные резисторы, причем общий узел (10) второго (8) и третьего (9) дополнительных резисторов подключен ко входу корректирующего каскада (11), токовый выход которого (12) соединен со входом неинвертирующего выходного каскада (1). 2 з.п. ф-лы, 19 ил.
Наверх