Способ уменьшения температурной погрешности измерения многокоординатных смещений торцов лопаток одновитковым вихретоковым преобразователем

Использование: для уменьшения температурной погрешности при измерении перемещений электропроводящих объектов в условиях воздействия высоких температур. Сущность: в одновитковом вихретоковом преобразователе во внутреннем проводнике его коаксиального токовода, соединяющего чувствительный элемент с объемным витком согласующего трансформатора, располагают первую термопару. Горячий спай термопары находится внутри токовода у его торца, обращенного к чувствительному элементу. Вторую термопару располагают так, что ее горячий спай оказывается в месте контакта токовода с объемным витком согласующего трансформатора. Температура, учитываемая для термокоррекции при вычислении координатных составляющих, определяется как Θ Ч Э = Θ Т П 1 + ( Θ Т П 2 Θ Т П 1 ) l 1 l 2 ,

где ΘТП1 - температура в области расположения горячего спая первой термопары, размещенной во внутреннем проводнике коаксиального токовода; ΘТП2 - температура в области расположения горячего спая второй термопары, размещенной в месте контакта токовода с объемным витком согласующего трансформатора; l1, l2 - расстояния от чувствительного элемента до горячего спая первой и второй термопары соответственно. Технический результат: уменьшение погрешности измерения координатных составляющих. 2 ил.

 

Изобретение относится к измерительной технике и может быть использовано для уменьшения температурной погрешности, возникающей при измерении перемещений электропроводящих объектов в условиях воздействия высоких температур.

Известен способ уменьшения температурной погрешности, при котором обмотка преобразователя выполняется проводом из материала с термостабильными характеристиками (Прокопьев В.Н., Иванов В.В., Рунг Э.Р., Волченко Г.Н. Исследование погрешностей измерения траекторий центра шеек коленчатого вала подшипников двигателя внутреннего сгорания. // Научные труды. / Челябинский политехнический институт, 1972, №119, с.39-51).

Недостатком способа является низкая чувствительность к измеряемому параметру, обусловленная значительной активной составляющей суммарного сопротивления преобразователя из-за большого удельного сопротивления материала провода.

Наиболее близким по технической сущности к предлагаемому изобретению является способ уменьшения температурной погрешности, для реализации которого в одновитковом вихретоковом преобразователе во внутреннем проводнике его коаксиального токовода, соединяющего чувствительный элемент с объемным витком согласующего трансформатора, располагают термопару, горячий спай которой находится внутри токовода у его торца, обращенного к чувствительному элементу, экспериментально определяют семейства градуировочных характеристик во всем диапазоне температур, а также измеряют термопарой текущие значения температуры («Методы и средства измерения многомерных перемещений элементов конструкций силовых установок» под ред. Секисова Ю.Н., Скобелева О.П. - Самара, Самарский научный центр РАН, 2001, 188 с.). В случае определения осевых (х) и радиальных (y) смещений торца лопатки кластером из двух одновитковых вихретоковых преобразователей указанные смещения определяются путем решения системы уравнений

{ С 1 = f 1 ( x , y , Θ ) , С 2 = f 2 ( x , y , Θ ) ,

где C1, C2 - результаты преобразования индуктивностей преобразователей в код, Θ - результат измерения температуры термопарой.

Во избежание экранирующего воздействия торца внутреннего проводника коаксиального токовода на чувствительный элемент он удален от последнего на расстояние, равное длине чувствительного элемента. На это же расстояние не доходит до чувствительного элемента и горячий спай термопары. Преобразователи кластера на объекте устанавливаются таким образом, что объемный виток согласующего трансформатора размещается с внешней стороны статорной оболочки в зоне низких температур. Большой температурный перепад между средой в газовоздушном тракте и внешней по отношению к статорной оболочке воздушной средой создает тепловой поток в тоководе и, следовательно, температурный перепад на участке между чувствительным элементом и горячим спаем термопары, что приводит к недостаточному учету влияния температуры на результат измерения координат смещения и, следовательно, к дополнительной погрешности.

Цель изобретения - повышение точности измерения координатных составляющих смещений торца лопатки за счет более полного учета влияния температуры среды в зоне измерения на результат.

Указанная цель достигается тем, что в известном способе уменьшении влияния температуры, при котором в одновитковом вихретоковом преобразователе во внутреннем проводнике его коаксиального токовода, соединяющего чувствительный элемент с объемным витком согласующего трансформатора, располагают термопару, горячий спай которой находится внутри токовода у его торца, обращенного к чувствительному элементу, экспериментально определяют семейства градуировочных характеристик во всем диапазоне температур, а также измеряют термопарой текущие значения температуры и по значениям выходных сигналов преобразователей на основе семейств градуировочных характеристик вычисляют координатные составляющие смещения торцов лопаток относительно чувствительных элементов, дополнительно располагают вторую термопару так, что ее горячий спай оказывается в месте контакта токовода с объемным витком согласующего трансформатора, а температура чувствительного элемента, учитываемая при вычислении координатных составляющих, определяется как

Θ Ч Э = Θ Т П 1 + ( Θ Т П 2 Θ Т П 1 ) l 1 l 2 ,

где ΘТП1 - температура в области расположения горячего спая первой термопары, размещенной во внутреннем проводнике коаксиального токовода; ΘТП2 - температура в области расположения горячего спая второй термопары, размещенной в месте контакта токовода с объемным витком согласующего трансформатора; l1, l2 - расстояния от чувствительного элемента до горячего спая первой и второй термопары соответственно.

На фиг.1 представлено схематическое упрощенное изображение статорной оболочки 1 и преобразователя 2, состоящего из чувствительного элемента 3, упрощенно представленного токовода 4, в котором два соосных цилиндрических проводника заменены одним цилиндром, согласующего трансформатора 5 и встроенных в токовод термопар 6 и 7. Упрощение произведено ради удобства анализа теплообмена между элементами конструкции преобразователя и окружающей средой.

На фиг.2 представлена модель передачи тепла в тоководе с двумя термопарами.

Определение температуры среды в зоне расположения чувствительного элемента (ЧЭ), используемой для термокоррекции, осуществляется следующим образом. В соответствии с моделью передачи тепла (фиг.2) можно записать, что температура ЧЭ определяется температурой, измеренной первой термопарой (ТП1) (ΘТП1) и перепадом температур между ЧЭ и горячим спаем (ГСп) ТП1, т.е. перепадом температур на тепловом сопротивлении R 1 ( Δ Θ R 1 ) . Θ Ч Э = Θ Т П + Δ Θ R 1 = Θ Т П 1 + q R 1 .

При этом тепловой поток q можно вычислить по перепаду температур на тепловом сопротивлении R2, от ГСп ТП1 до согласующего трансформатора (СТ) и найденному в результатах измерений ТП1 и ТП2

q = Θ Т П 2 Θ Т П 1 R 2 .

С учетом выражения для теплового потока формулу для определения температуры можно записать как

Θ Ч Э = Θ Т П 1 + ( Θ Т П 2 Θ Т П 1 ) R 1 R 2 .

В то же время R 1 = l 1 λ S , R 2 = l 2 λ S , где l1, l2 - длины рассматриваемых участков токовода, S = π ( r 2 2 r 1 2 ) - площадь его сечения, а λ - коэффициент теплопроводности материала токовода.

Окончательно выражение для температуры ЧЭ можно записать как Θ Ч Э = Θ Т П 1 + ( Θ Т П 2 Θ Т П 1 ) l 1 l 2 Это значение температуры и используется затем для определения осевых и радиальных смещений путем решения системы уравнении { С 1 = f 1 ( x , y , Θ ) , С 2 = f 2 ( x , y , Θ ) .

Способ уменьшения влияния температуры, при котором в одновитковом вихретоковом преобразователе во внутреннем проводнике его коаксиального токовода, соединяющего чувствительный элемент с объемным витком согласующего трансформатора, располагают термопару, горячий спай которой находится внутри токовода у его торца, обращенного к чувствительному элементу, экспериментально определяют семейства градуировочных характеристик во всем диапазоне температур, а также измеряют термопарой текущие значения температуры и по значениям выходных сигналов преобразователей на основе семейств градуировочных характеристик вычисляют координатные составляющие смещения торцов лопаток относительно чувствительных элементов, дополнительно располагают вторую термопару так, что ее горячий спай оказывается в месте контакта токовода с объемным витком согласующего трансформатора, а температура чувствительного элемента, учитываемая при вычислении координатных составляющих, определяется как Θ Ч Э = Θ Т П 1 + ( Θ Т П 2 Θ Т П 1 ) l 1 l 2 ,
где ΘТП1 - температура в области расположения горячего спая первой термопары, размещенной во внутреннем проводнике коаксиального токовода; ΘТП2 - температура в области расположения горячего спая второй термопары, размещенной в месте контакта токовода с объемным витком согласующего трансформатора; l1, l2 - расстояния от чувствительного элемента до горячего спая первой и второй термопары соответственно.



 

Похожие патенты:

Изобретение относится к индуктивному сенсору сближения, выполненному с возможностью встраивания в монтажную плату (2), выполненную из мягкой стали. Сенсор включает корпус (16) с лицевой стенкой, выполненной из синтетического материала и образующей чувствительную поверхность (4), осциллятор (10), включающий воспринимающую обмотку (7) с сердечником (9), расположенный внутри корпуса за лицевой стенкой (16) таким образом, чтобы незамкнутая часть сердечника (9) была направлена к чувствительной поверхности (4), пустотелый цилиндрический металлический элемент (3), расположенный перпендикулярно чувствительной поверхности (4) и окружающий сердечник (9), а также измерительный контур (11), приспособленный для измерения затухания колебаний осциллятора (10), возникающего из-за наличия вихревых токов.

Изобретение относится к контрольно-измерительной технике и может быть использован, в частности, в гидравлических системах летательных аппаратов, где требуется информация о перемещениях исполнительных гидроцилиндров.

Изобретение относится к измерительной технике и может быть использовано для определения взаимных перемещений различных объектов, в том числе отдельных участков деформируемых тел.

Изобретение относится к области прецизионных измерений перемещений посредством измерения емкости и может быть использовано для определения линейных перемещений сканирующих устройств в сканирующих зондовых микроскопах (СЗМ).

Изобретение относится к измерительной технике и может быть использовано для измерения радиальных зазоров и осевых смещений торцов турбинных лопаток с большим углом изгиба профиля пера.

Изобретение относится к области измерительной техники и может быть использовано для измерения координатных составляющих смещений торцов лопаток ротора относительно статора турбомашины.

Изобретение относится к области измерительной техники и может быть использовано для измерения координатных составляющих смещений торцов лопаток ротора относительно статора турбомашины.

Изобретение относится к датчикам перемещения, в частности к перемещениям двух каких-либо объектов относительно друг друга. .

Изобретение относится к контрольно-измерительной технике и может быть использовано для измерения координатных составляющих смещений торцов лопаток колеса ротора относительно статора турбомашины.

Изобретение относится к измерительной технике и может быть использовано для оценки деформации статора газотурбинного двигателя. .

Изобретение относится к измерительной технике и может быть использовано для контроля изгиба удлиненных изделий, в частности каналов активной зоны ядерного реактора. Сущность: измеритель искривления содержит емкостные датчики зазора, закрепленные на контролируемом изделии и подключенные к измерителям емкости. Конденсаторные пластины (5), образующие емкостные датчики зазора, установлены на отдельных держателях (3), закрепленных на контролируемом изделии. Расстояние между точками крепления держателей (3) в осевом направлении больше зазора между конденсаторными пластинами (5). На каждом держателе (3) установлено по несколько конденсаторных пластин (5) с угловым смещением относительно друг друга в поперечном сечении держателя (3). Измерители емкости выполнены в виде усилителей заряда. Предложены частные случаи исполнения устройства. В первом частном случае держатели (3) выполнены в виде соосных обечаек разного диаметра, а на цилиндрических поверхностях обечаек, обращенных навстречу друг другу, закреплены пары цилиндрических конденсаторных пластин (5), образующих радиальный зазор. Во втором частном случае держатели (3) выполнены в виде пары одинаковых обечаек с фланцами на торцах, обращенных навстречу друг другу, а на фланцах закреплены пары плоских конденсаторных пластин (5), образующих осевой зазор. Технический результат: расширение функциональных возможностей измерителя. 2 з.п. ф-лы, 4 ил.

Изобретение относится к измерительной технике и может быть использовано для измерения искривлений трубчатых каналов, преимущественно в атомной энергетике. Сущность: индуктивный измеритель искривления трубчатого канала содержит индуктивные датчики зазора, соединенные с измерительной системой. Индуктивные датчики зазора выполнены в виде магнитопроводов (5) с возбуждающей (7) и измерительной (6) обмотками, закрепленных на держателях, установленных на корпусе измерителя, и замыкающих магнитных элементов (8), закрепленных на корпусе измерителя напротив разомкнутых магнитопроводов. Возбуждающие (7) и измерительные (6) обмотки установлены на магнитопроводах (5) соосно. Обмоточные провода этих обмоток и их выводы (10) выполнены из кабеля с минеральной изоляцией в металлической герметичной оболочке. Возбуждающие обмотки (7) подключены к генератору стабильного тока постоянной частоты. Измерительные обмотки (6) через усилители подключены к входам синхронных детекторов, управляемых от генератора стабильного тока. Технический результат: расширение функциональных возможностей измерителя. 4 ил.

Использование: для измерения зазоров и осевых смещений торцов рабочих лопаток турбины. Сущность изобретения заключается в том, что во взаимодействие с торцом контролируемой лопатки вводят распределенный кластер из двух высокотемпературных одновитковых вихретоковых преобразователей (ОВТП) с чувствительными элементами (ЧЭ) в виде линейного отрезка проводника, устанавливаемых на статорной оболочке с нормированным смещением друг относительно друга в направлении, параллельном оси рабочего колеса (ось X), на расстояние равное ожидаемому смещению торца лопатки Δх0, причем кластер преобразователей устанавливают по оси Х левее выходной кромки лопатки на половину длины ЧЭ (λЧЭ/2), а также ЧЭ преобразователей ориентируют параллельно касательной к средней линии профиля торца лопатки в точке пересечения ее с плоскостью вращения, проходящей через геометрический центр кластера преобразователей (середина линии, соединяющей центры ЧЭ преобразователей); из совокупности результатов преобразования параметров первого ЧЭ с торцевыми кромками спинки и корыта каждой контролируемой лопатки выбирают наименьшее из экстремальных значений кодов, а из совокупности результатов преобразования параметров второго ЧЭ с торцевыми кромками спинки и корыта каждой контролируемой лопатки выбирают наибольшее из экстремальных значений кодов. Технический результат: повышение чувствительности ОВТП с ЧЭ в виде линейного отрезка проводника при измерении радиальных зазоров и осевых смещений торцов турбинных лопаток с большим углом изгиба профиля и U-образном продольном сечении ее пера. 1 з.п. ф-лы, 2 ил.

Изобретение относится к измерительной технике и может найти применение при конструировании систем виброконтроля габаритных валов роторных машин в электрогенераторах, при эксплуатации турбонасосов, в нефтегазовой промышленности и других областях. Датчик воздушного зазора выполнен в виде двух конденсаторных пластин, рабочие поверхности которых расположены рядом в плоскости статора, совпадающей с нулем воздушного зазора между статором и ротором, изолированные от статора диэлектрической прокладкой, по торцам пластин выполнены металлические экраны замыкания краевых эффектов, пластины выполнены с перпендикулярными прорезями для уменьшения вихревых токов и стабилизации емкости конденсатора, образуемого пластинами, конденсатор является реактивной нагрузкой высокочастотного генератора, сигнал которого параметрически модулируется изменяемой емкостью воздушного зазора при прохождении полюса ротора над пластинами, промодулированный сигнал генератора детектируют пиковым детектором измерения минимального зазора и амплитудным детектором среднего профиля зазора, для увеличения чувствительности и интервала линейности выходной характеристики используют режим регенерации при соотношении частот генератора (fс) и модулятора 4:1. Технический результат - повышение чувствительности датчика и расширение линейного интервала измерений величины зазора. 4 ил.

Изобретение относится к измерительной технике, а именно к емкостному датчику для измерения расстояния, в частности, до мишени в литографическом устройстве. Сущность: емкостная измерительная система содержит два или более емкостных датчиков (30a, 30b), один или более источников (306a, 306b) питания переменного тока для подачи питания на емкостные датчики и схему обработки сигналов для обработки сигналов от датчиков. Датчики скомпонованы попарно. Один или более источников питания переменного тока выполнены с возможностью запитывать первый датчик из пары датчиков переменным током (307) или напряжением со сдвигом фаз 180 градусов относительно тока или напряжения для второго датчика из пары датчиков. Схема обработки сигналов выполнена с возможностью обработки принятых выходных сигналов для генерации единого измеренного значения расстояния, соответствующего среднему расстоянию между измерительным блоком и мишенью. Схема обработки сигналов выполнена с возможностью генерации результата дифференциального измерения путем суммирования выходных сигналов от измерительного блока в течение первого полупериода питающего сигнала и в течение второго полупериода питающего сигнала по отдельности и вычитания просуммированных значений. 14 з.п. ф-лы, 32 ил.

Изобретение относится к области неразрушающего контроля и может быть использовано для измерения расстояний, в частности в качестве датчика в дефектоскопах, профилемерах, нефтяной и газовой промышленности, для измерения геометрии трубопровода и положения дефектоскопа в трубопроводе. Задача предлагаемого решения: увеличение быстродействия, уменьшение взаимного влияния датчиков друг на друга при применении в многоканальных измерительных системах. Это достигается тем, что в измерителе расстояния между датчиком и объектом из электропроводящего материала, содержащем источник питания переменного тока, присоединенный к нему измерительный канал, состоящий из индуктивного резонансного преобразователя зазора с двумя катушками, блок линеаризации выходного сигнала от перемещения, катушки выполнены с взаимно перпендикулярным расположением осей катушки генератора и катушки приемника, причем ось катушки приемника расположена перпендикулярно поверхности объекта, параллельно катушке приемника подсоединены конденсатор, резистор и соединены с генератором, усилителем, логарифмическим усилителем, детектором, аналого-цифровым преобразователем, блоком линеаризации и введен экран. Блок линеаризации выполнен в виде контроллера с алгоритмом аппроксимации нелинейной зависимости в виде полинома с коэффициентами, которые получены после калибровки в лабораторных условиях. Экран выполнен из проводящего парамагнетика, а со стороны, обращенной к объекту, со стенкой из диэлектрика. 1 з.п. ф-лы, 2 ил.

Изобретение относится к измерительной технике, а именно к области создания средств и методов бесконтактных измерений изменений зазоров между измерительным преобразователем и контролируемой поверхностью. Способ измерения нестационарных перемещений электропроводящих объектов заключается в том, что используют бесконтактное измерительное устройство с первичным измерительным преобразователем, чувствительные элементы которого, электрически независимые друг от друга, устанавливают на одной базе со смещением в направлении объекта контроля, по показаниям измерительного устройства рассчитывают значение перемещения объекта контроля относительно измерительного устройства, согласно изобретению смещение между чувствительными элементами заменяют на эквивалентное расстояние между ними, оптимальное значение которого рассчитывают при градуировке измерительного устройства. Вычисляют i-ые приращения перемещения, а полное перемещение объекта контроля относительно измерительного устройства определяют, суммируя все i-е приращения перемещений. Технический результат заключается в повышении точности измерения нестационарных перемещений электропроводящих объектов с различной проводимостью и конфигурацией в труднодоступных местах при переменных внешних климатических условиях. 5 ил.

Демпфер/детектор в сборе содержит модуль (1) датчика перемещения, имеющий катушку (4) и корпус (2) катушки для помещения в него катушки (4) и/или опору (6) катушки для поддержки катушки (4) и демпфер (30) телескопического типа для бытового электроприбора, имеющий корпус (20) демпфера и поршень (22), выполненный с возможностью перемещения в нем и расположенный с ним на одной оси. Участок поршня (22) содержит материал или образован из материала, предназначенного для изменения электромагнитного поля катушки модуля датчика перемещения. Модуль датчика перемещения установлен так, что он надет поверх участка корпуса демпфера. Бытовой электроприбор, использующий демпфер/детектор, представляет собой стиральную машину или стиральную машину с функцией сушки, или сушильную машину. Облегчаются сборка и эксплуатация демпфера/детектора. 3 н. и 31 з.п. ф-лы, 6 ил.

Использование: для измерения радиальных зазоров между торцами лопаток рабочего колеса и статорной оболочкой. Сущность изобретения заключается в том, что фиксируется экстремальное значение кода с измерительного преобразователя при прохождении центра зоны чувствительности датчика торцом контролируемой лопатки; фиксируется экстремальное значение кода с измерительного преобразователя при прохождении центра зоны чувствительности датчика центром межлопаточного промежутка, следующего за контролируемой лопаткой; вычисляется радиальный зазор для контролируемой лопатки по разности двух зафиксированных экстремальных значений кодов с измерительного преобразователя. Технический результат: уменьшение числа датчиков и установочных отверстий в статорной оболочке, а также повышение точности измерения радиальных зазоров. 1 ил.

Изобретение относится к контрольно-измерительной технике и может быть использовано для проверки и настройки вихретоковых дифференциальных датчиков перемещения. Технический результат: расширение функциональных возможностей за счет обеспечения имитации механического смещения контролируемого объекта как поперек плоскости чувствительного элемента вихретокового датчика перемещения (зазора), так и вдоль плоскости его чувствительного элемента. Сущность: вихретоковый имитатор перемещений содержит основную обмотку индуктивности, магнитосвязанную с обмоткой возбуждения вихретокового датчика, и основной резистор переменного сопротивления, дополнительную обмотку индуктивности, магнитосвязанную с обмоткой возбуждения и первой измерительной обмоткой вихретокового датчика, и дополнительный резистор переменного сопротивления. Основная обмотка имитатора магнитосвязана со второй измерительной обмоткой датчика. Обе обмотки имитатора выполнены идентично измерительным обмоткам датчика, соединены последовательно и шунтированы основным резистором переменного сопротивления и дополнительным резистором переменного сопротивления. Средний вывод дополнительного резистора переменного сопротивления соединен с общей точкой соединения обмоток имитатора. 3 ил.
Наверх