Вентилятор

Настоящее изобретение относится к вентилятору, предназначенному для создания воздушной струи в комнате, в офисе или других бытовых условиях. Напольный вентилятор для создания воздушного потока, содержащий основание, в котором расположена крыльчатка, двигатель, предназначенный для вращения крыльчатки для создания воздушного потока, и диффузор, расположенный ниже по потоку относительно крыльчатки; устройство для выпуска воздуха; телескопическую трубку, расположенную между основанием и устройством для выпуска воздуха и предназначенную для перемещения воздушного потока к устройству для выпуска воздуха; и средство, предназначенное для направления воздушного потока, выброшенного из диффузора, в трубку, при этом направляющее воздушный поток средство содержит множество лопастей, каждая из которых предназначена для направления соответствующей части воздушного потока, выброшенного из диффузора, по направлению к трубке. Что позволяет создать устойчивый и безопасный напольный вентилятор. 14 з.п. ф-лы,15 ил.

 

Настоящее изобретение относится к вентилятору. В предпочтительном варианте выполнения изобретения настоящее изобретение относится к напольному вентилятору, предназначенному для создания воздушной струи в комнате, в офисе или других бытовых условиях.

Обычный бытовой вентилятор, как правило, содержит набор лопастей или лопаток, установленных с возможностью вращения относительно оси, и устройство привода, предназначенное для вращения набора лопастей и, таким образом, создания воздушного потока. Перемещение и циркуляция воздушного потока инициирует «охлаждение ветром» или легкий ветерок и в результате пользователь ощущает охлаждающее действие, так как тепло рассеивается благодаря конвекции и испарению.

Размеры и формы таких вентиляторов могут быть различны. Например, диаметр потолочных вентиляторов может составлять, по меньшей мере, 1 м и они могут подвешиваться к потолку с целью создания направленного вниз воздушного потока, охлаждающего комнату. С другой стороны, диаметр настольных вентиляторов часто может составлять примерно 30 см, и обычно такие вентиляторы выполнены в виде отдельно стоящих и переносимых устройств. Расположенные на полу вентиляторы обычно содержат регулируемую по высоте стойку, которая поддерживает устройство привода и набор лопастей, предназначенных для создания воздушного потока, обычно составляющего от 300 до 500 литров в секунду.

Недостаток вентиляторов такого типа заключается в том, что воздушный поток, созданный вращающимися лопастями вентилятора, обычно не является равномерным. Это происходит из-за изменений вдоль поверхности лопастей или вдоль внешней поверхности вентилятора. Степень таких изменений может меняться от одного типа вентилятора к другому и даже от одного вентилятора к другому. Эти изменения приводят к созданию неравномерного или «прерывистого» воздушного потока, что можно ощутить как серии пульсаций воздуха, и они могут быть некомфортны пользователю.

В бытовых условиях нежелательно, чтобы части устройства выступали наружу или чтобы пользователь мог коснуться каких-либо движущихся частей, таких как лопасти. Напольные вентиляторы обычно содержат кожух, окружающий лопасти, что нужно для предотвращения повреждений от контакта с вращающимися лопастями, но возникают трудности при чистке частей таких кожухов. Более того, из-за крепления устройства привода и вращающихся лопастей сверху стойки, центр тяжести напольного вентилятора обычно смещен в сторону верха стойки. Из-за этого напольный вентилятор склонен падать, если его случайно задеть, если только стойка не снабжена сравнительно широким или тяжелым основанием, что может быть нежелательно для пользователя.

Согласно первому аспекту настоящего изобретения предложен напольный вентилятор, предназначенный для создания воздушного потока, при этом указанный вентилятор содержит средство создания воздушного потока, устройство для выпуска воздуха и телескопическую трубку, предназначенную для перемещения воздушного потока к устройству для выпуска воздуха.

Предпочтительно, чтобы средство создания воздушного потока содержало крыльчатку и двигатель, предназначенный для вращения крыльчатки, и предпочтительно, чтобы средство создания воздушного потока дополнительно содержало диффузор, расположенный ниже по потоку относительно крыльчатки. Предпочтительно, чтобы вентилятор содержал основание, предпочтительно расположенное на полу основание, с трубкой, находящейся между основанием и устройством для выпуска воздуха. Предпочтительно, чтобы в основании было расположено указанное средство создания воздушного потока. Следовательно, согласно второму аспекту настоящего изобретения предложен напольный вентилятор, содержащий основание, в котором расположена крыльчатка и двигатель, предназначенный для вращения крыльчатки с целью создания воздушного потока, устройство для выпуска воздуха и телескопическую трубку, предназначенную для перемещения воздушного потока к устройству для выпуска воздуха.

Таким образом, в настоящем изобретении телескопическая трубка служит как для поддержки сопла, через который выбрасывают воздушный поток, созданный вентилятором в сборе, так и для перемещения созданного воздушного потока в выпуск воздуха. Средство, предназначенное для создания воздушного потока, может быть расположено в основании напольного вентилятора, тем самым центр тяжести вентилятора находится ниже по сравнению с напольными вентиляторами, которые соответствуют уровню техники и в которых лопастной вентилятор и устройство привода для лопастного вентилятора соединены с верхом стойки, и тем самым вентилятор в сборе менее склонен падать, если его задеть.

Предпочтительно, чтобы двигатель был выполнен в виде бесщеточного двигателя постоянного тока с целью исключения потерь на трение и отсутствия углеродной пыли от щеток, используемых в обычных щеточных двигателях. Уменьшение количества углеродной пыли и выбросов целесообразно в чистых или чувствительных к загрязнению средах, таких как госпиталь, или в присутствии людей, страдающих от аллергии. Хотя индукционные двигатели, которые обычно используются в напольных вентиляторах, также не содержат щеток, бесщеточные двигатели постоянного тока могут обеспечить гораздо более широкий диапазон рабочих скоростей вращения по сравнению с индукционными двигателями. Предпочтительно, чтобы крыльчатка была крыльчаткой с косым потоком.

Предпочтительно, чтобы в основании был расположен диффузор, находящийся ниже по потоку относительно крыльчатки. Диффузор может содержать множество спиральных лопастей, в результате чего из диффузора выбрасывается спиральный воздушный поток. Так как воздушный поток через трубку в общем направлен в осевом или продольном направлении, предпочтительно, чтобы вентилятор содержал средство направления воздушного потока, выбрасываемого из диффузора, в трубку. Это может уменьшить потери на проводимость внутри вентилятора. Предпочтительно, чтобы средство направления воздушного потока содержало множество лопастей, каждая из которых предназначена для направления соответствующей части воздушного потока, выбрасываемого из диффузора, по направлению к трубке. Эти лопасти могут быть расположены на внутренней поверхности направляющего воздух элемента, установленного поверх диффузора, и предпочтительно, чтобы указанные лопасти были расположены по существу на одинаковых расстояниях друг от друга. Средство направления воздушного потока также может содержать несколько радиальных лопастей, расположенных, по меньшей мере, частично внутри трубки, при этом каждая радиальная лопасть прилегает к соответствующей лопасти из указанного выше множества лопастей. Эти радиальные лопасти могут определять множество осевых или продольных каналов, которые расположены в трубке и каждый из которых принимает соответствующую часть воздушного потока из каналов, определенных множеством лопастей. Предпочтительно, чтобы эти части воздушного потока соединялись внутри трубки.

Трубка может содержать основание, установленное на основании напольного вентилятора, и несколько цилиндрических элементов, соединенных с основанием трубки. Изогнутые лопасти могут быть расположены, по меньшей мере, частично внутри основания трубки. Осевые лопасти могут быть расположены, по меньшей мере, частично внутри средства, предназначенного для соединения одного из цилиндрических элементов с основанием трубки. Средство соединения может содержать воздушный патрубок или другой цилиндрический элемент, предназначенный для размещения одного из цилиндрических элементов.

Предпочтительно, чтобы вентилятор был выполнен в виде безлопастного вентилятора в сборе. Благодаря использованию безлопастного вентилятора в сборе воздушная струя может быть создана без использования лопастного вентилятора. По сравнению с лопастным вентилятором в сборе, безлопастной вентилятор в сборе является менее сложным устройством и содержит меньшее количество движущихся частей. Кроме того, без использования лопастного вентилятора для выталкивания воздушной струи из вентилятора в сборе, сравнительно равномерная воздушная струя может быть создана и направлена в комнату или к пользователю. Воздушная струя может эффективно перемещаться из выпускного отверстия с потерей малого количества энергии и скорости на турбулентность.

Термин «безлопастной» используется для описания вентилятора в сборе, в котором воздушный поток выбрасывается или выталкивается вперед из вентилятора в сборе без использования движущихся лопастей. Следовательно, безлопастной вентилятор в сборе можно рассматривать как вентилятор, содержащий область вывода или зону выброса, в которой отсутствуют движущиеся лопасти и от которой воздушный поток направляется к пользователю или в комнату. В область вывода безлопастного вентилятора в сборе может поступать первичный воздушный поток, созданный одним из множества различных источников, таких как насосы, генераторы, двигатели или другие устройства передачи флюидов, и которые могут содержать предназначенное для создания воздушного потока вращающееся устройство, такое как ротор двигателя и/или крыльчатку. Созданный первичный воздушный поток может проходить из пространства комнаты или другой среды снаружи вентилятора в сборе через телескопическую трубку в сопло и далее перемещаться назад в пространство комнаты через сужение сопла.

Следовательно, не предусматривается, что описание вентилятора в сборе как безлопастного вентилятора содержит описание источника энергии и компонентов, таких как двигатели, которые нужны для осуществления вторичных функций вентилятора. Примерами вторичных функций вентилятора могут служить запуск, регулировка и колебание вентилятора в сборе.

Таким образом, форма сопла вентилятора в сборе не должна удовлетворять следующему требованию: содержать пространство для размещения лопастного вентилятора. Например, устройство для выпуска воздуха может являться кольцеобразным, высота которого предпочтительно составляет от 200 до 600 мм, более предпочтительно - от 250 до 500 мм.

Предпочтительно, чтобы устройство для выпуска воздуха окружало отверстие, через которое воздушный поток, выбрасываемый из устройства для выпуска воздуха, всасывает воздух снаружи сопла. Предпочтительно, чтобы устройство для выпуска воздуха являлось соплом, содержащим сужение, предназначенное для выбрасывания воздушного потока, и внутренний проход, предназначенный для приема воздушного потока из трубки и для перемещения воздушного потока к сужению. Следовательно, согласно третьему аспекту настоящего изобретения предложен вентилятор в сборе, содержащий сопло, установленное на стойке, указанная стойка содержит средство создания воздушного потока и телескопическую трубку, предназначенную для перемещения воздушного потока к соплу, причем указанное сопло окружает отверстие, через которое воздушный поток, выбрасываемый из сужения, всасывает воздух снаружи сопла.

Предпочтительно, чтобы сужение сопла окружало отверстие и предпочтительно, чтобы указанное сужение было кольцеобразным. Предпочтительно, чтобы сопло содержало внутреннюю часть корпуса и внешнюю часть корпуса, которые определяют сужение сопла. Предпочтительно, чтобы каждая часть была сформирована из соответствующего кольцеобразного элемента, но каждая часть может представлять собой несколько элементов, соединенных друг с другом или каким-либо образом собранных с целью формирования указанной части. Предпочтительно, чтобы форма внешней части корпуса была такова, чтобы частично перекрывать внутреннюю часть корпуса. Это может дать возможность определить выпускное отверстие сужения между перекрывающимися частями внешней поверхности внутренней части корпуса и внутренней поверхности внешней части корпуса сопла. Предпочтительно, чтобы выпускное отверстие было выполнено в виде щели и, предпочтительно, чтобы ее ширина составляла от 0,5 мм до 5 мм, более предпочтительно - от 0,5 до 1,5 мм. Сопло может содержать несколько разделителей, предназначенных для разъединения перекрывающихся частей внутренней части корпуса и внешней части корпуса сопла. Это может способствовать поддержанию по существу равномерной ширины выпускного отверстия вокруг отверстия. Предпочтительно, чтобы разделители были расположены на одинаковых расстояниях вдоль выпускного отверстия.

Предпочтительно, чтобы сопло содержало внутренний проход, предназначенный для размещения воздушного потока из трубки. Предпочтительно, чтобы внутренний проход был кольцеобразным и предпочтительно, чтобы форма внутреннего прохода была такой, чтобы разделять воздушный поток на два воздушных потока, которые текут в противоположных направлениях вокруг отверстия. Предпочтительно, чтобы внутренний проход также был определен внутренней частью корпуса и внешней частью корпуса сопла.

Предпочтительно, чтобы вентилятор в сборе содержал средство, предназначенное для колебания сопла так, чтобы воздушная струя колебалась по дуге, предпочтительно в диапазоне от 60 до 120°. Например, основание стойки может содержать средство колебания верхней части основания, с которой соединено сопло, относительно нижней части основания.

Максимальный расход воздуха для воздушной струи, созданной вентилятором в сборе, предпочтительно находится в диапазоне от 300 до 800 литров в секунду, более предпочтительно находится в диапазоне от 500 до 800 литров в секунду.

Предпочтительно, чтобы сопло содержало поверхность, предпочтительно поверхность Коанда, расположенную рядом с сужением и над которой расположено сужение, предназначенное для направления воздушного потока, выбрасываемого из него. Предпочтительно, чтобы форма внешней поверхности внутренней части корпуса сопла была такова, чтобы определять поверхность Коанда. Предпочтительно, чтобы поверхность Коанда была расположена вокруг отверстия. Поверхность Коанда является известной поверхностью, для которой при протекании флюида, выходящего из выпускного отверстия близко к поверхности, наблюдается эффект Коанда. Флюид стремится течь близко поверх поверхности, практически «прилипая» к поверхности или «держась» за нее. Эффект Коанда является доказанным, хорошо задокументированным способом увлечения, при котором первичный воздушный поток направляют поверх поверхности Коанда. Описание свойств поверхности Коанда и действия потока флюида, текущего поверх поверхности Коанда, можно найти в статьях, таких как статья Reba, журнал Scientific American, том 214, июнь 1966 г., страницы 84-92. С помощью использования поверхности Коанда воздух, выбрасываемый из сужения, всасывает через отверстие большее количество воздуха, находящегося снаружи вентилятора в сборе.

Как описано ниже, воздушный поток попадает в устройство для выпуска воздуха из телескопической трубки. В последующем описании этот воздушный поток будет называться первичным воздушным потоком. Первичный воздушный поток выбрасывается из устройства для выпуска воздуха и предпочтительно проходит поверх поверхности Коанда. Первичный воздушный поток увлекает воздух, окружающий сужение сопла, который действует как усилитель воздуха, предназначенный для подачи пользователю как первичного воздушного потока, так и увлеченного воздуха. Увлеченный воздух будет называться вторичным воздушным потоком. Вторичный воздушный поток всасывается из пространства комнаты, области или внешней среды, окружающей сужение сопла, и благодаря перемещению из других областей вокруг вентилятора и проходит в основном через отверстие, определяемое устройством для выпуска воздуха. Первичный воздушный поток, направленный поверх поверхности Коанда и объединенный с увлеченным вторичным воздушным потоком, составляет общий воздушный поток, выбрасываемый или выталкиваемый вперед из устройства для выпуска воздуха. Предпочтительно, чтобы увлечение воздуха, окружающего устройство для выпуска воздуха, было таково, чтобы первичный воздушный поток усиливался, по меньшей мере, в пять раз, более предпочтительно, по меньшей мере, в десять раз, при одновременном поддержании общей равномерности выхода.

Предпочтительно, чтобы сопло имело расширяющуюся поверхность, расположенную ниже по потоку относительно поверхности Коанда. Предпочтительно, чтобы форма внешней поверхности внутренней части корпуса сопла была такова, чтобы определять расширяющуюся поверхность.

Свойства, описанные выше в связи с первым аспектом изобретения, в равной степени применимы ко второму и третьему аспектам изобретения и наоборот.

Настоящее изобретение поясняется чертежами, на которых представлено следующее:

фиг.1 - вид в перспективе вентилятора в сборе, в котором телескопическая трубка вентилятора в сборе находится в полностью выдвинутом положении;

фиг.2 - другой вид в перспективе вентилятора в сборе по фиг.1, в котором телескопическая трубка вентилятора в сборе находится в полностью сложенном положении;

фиг.3 - разрез основания стойки вентилятора в сборе по фиг.1;

фиг.4 - вид с пространственным разделением деталей телескопической трубки вентилятора в сборе по фиг.1;

фиг.5 - вид сбоку трубки по фиг.4 в полностью выдвинутом положении;

фиг.6 - разрез А-А трубки по фиг.5;

фиг.7 - разрез В-В трубки по фиг.5;

фиг.8 - вид в изометрии трубки по фиг.4 в полностью выдвинутом положении, при этом вырезана часть нижнего цилиндрического элемента;

фиг.9 - увеличенная часть по фиг.8, при этом удалены некоторые части трубки;

фиг.10 - вид сбоку трубки по фиг.4 в сложенном положении;

фиг.11 - разрез С-С трубки по фиг.10;

фиг.12 - вид с пространственным разделением деталей сопла вентилятора в сборе по фиг.1;

фиг.13 - вид спереди сопла по фиг.12;

фиг.14 - разрез Р-Р сопла по фиг.13; и

фиг.15 - увеличенный вид области R, показанной на фиг.14.

На фиг.1 и 2 показаны виды в изометрии варианта выполнения вентилятора 10 в сборе. В этом варианте выполнения изобретения вентилятор 10 в сборе является безлопастным вентилятором в сборе, и он выполнен в виде бытового напольного вентилятора, содержащего регулируемую по высоте стойку 12 и сопло 14, установленным на стойке 12 и предназначенным для выбрасывания воздуха из вентилятора 10 в сборе. Стойка 12 содержит расположенное на полу основание 16 и регулируемую по высоте опору в виде телескопической трубки 18, которая отходит вверх от основания 16 и которая предназначена для перемещения первичного воздушного потока от основания 16 в сопло 14.

Основание 16 стойки 12 содержит по существу цилиндрическую часть 20 корпуса с двигателем, установленную по существу на цилиндрической нижней части 22 корпуса. Предпочтительно, чтобы часть 20 корпуса с двигателем и нижняя часть 22 корпуса имели по существу одинаковый внешний диаметр, чтобы внешняя поверхность части 20 корпуса с двигателем была по существу расположена заподлицо с внешней поверхностью нижней части 22 корпуса. При желании нижняя часть 22 корпуса может быть установлена на расположенной на полу, дискообразной пластине 24 основания и может содержать несколько управляемых пользователем кнопок 26 и управляемый пользователем регулятор 28, предназначенный для управления работой вентилятора 10 в сборе. Кроме того, основание 16 дополнительно содержит несколько каналов 30 для впуска воздуха, которые в этом варианте осуществления изобретения выполнены в виде отверстий, которые сформированы в части 20 корпуса с двигателем и через которые первичный воздушный поток всасывается в основание 16 из внешней среды. В этом варианте осуществления изобретения высота основания 16 стойки 12 находится в диапазоне от 200 до 300 мм и диаметр части 20 корпуса с двигателем составляет от 100 до 200 мм. Предпочтительно, чтобы диаметр пластины 24 основания составлял от 200 до 300 мм.

Телескопическая трубка 18 стойки 12 выполнена с возможностью перемещения от полностью выдвинутого положения, показанного на фиг.1, до сложенного положения, показанного на фиг.2. Трубка 18 содержит по существу цилиндрическое основание 32, установленное на основании 12 вентилятора 10 в сборе, внешний цилиндрический элемент 34, который соединен с основанием 32 и который отходит вверх от основания 32, и внутренний цилиндрический элемент 36, который частично расположен во внешнем цилиндрическом элементе 34. Соединительное устройство 37 соединяет сопло 14 и открытый верхний конец внутреннего цилиндрического элемента 36 трубки 18. Внутренний цилиндрический элемент 36 выполнен с возможностью перемещения во внешнем цилиндрическом элементе 34 между полностью выдвинутым положением, показанным на фиг.1, и сложенным положением, показанным на фиг.2. Когда внутренний цилиндрический элемент 36 находится в полностью выдвинутом положении, предпочтительно, чтобы высота вентилятора 10 в сборе составляла от 1200 до 1600 мм, а когда внутренний цилиндрический элемент 36 находится в сложенном положении, предпочтительно, чтобы высота вентилятора 10 в сборе составляла от 900 до 1300 мм. Для регулировки высоты вентилятора 10 в сборе, пользователь может взяться за открытую часть внутреннего цилиндрического элемента 36 и переместить внутренний цилиндрический элемент 36 по желанию или вверх или вниз, чтобы сопло 14 заняло нужное положение по вертикали. Когда внутренний цилиндрический элемент 36 находится в сложенном положении, пользователь может взяться за соединительное устройство 37 и вытянуть внутренний цилиндрический элемент 36 вверх.

Сопло 14 имеет кольцеобразную форму, окружающую центральную ось Х и определяющую отверстие 38. Сопло 14 содержит сужение 40, расположенное в задней части сопла 14 и предназначенное для выбрасывания первичного воздушного потока из вентилятора 10 в сборе через отверстие 38. Сужение 40 расположено вокруг отверстия 38 и предпочтительно также является кольцеобразным. Внутренняя граница сопла 14 содержит поверхность 42 Коанда, расположенную рядом с сужением 40 и поверх которой сужение 40 направляет воздух, выбрасываемый из вентилятора 10 в сборе, расширяющуюся поверхность 44, расположенную ниже по потоку относительно поверхности 42 Коанда, и направляющую поверхность 46, расположенную ниже по потоку относительно расширяющейся поверхности 44. Расширяющаяся поверхность 44 расположена по конусу от центральной оси Х отверстия 38 таким образом, чтобы способствовать течению потока воздуха, выброшенного из вентилятора 10 в сборе. Угол между расширяющейся поверхностью 44 и центральной осью Х отверстия 38 находится в диапазоне от 5 до 25°, и в этом примере равен примерно 7°. Направляющая поверхность 46 расположена под углом к расширяющейся поверхности 44, чтобы дополнительно способствовать эффективной доставке охлаждающего воздушного потока из вентилятора 10 в сборе. Предпочтительно, чтобы направляющая поверхность 46 была расположена по существу параллельно центральной оси Х отверстия 38, чтобы представлять собой по существу плоскую и по существу гладкую поверхность для воздушного потока, выброшенного из сужения 40. Визуально привлекательная скошенная поверхность 48 расположена ниже по потоку от направляющей поверхности 46 и заканчивается конечной поверхностью 50, размещенной по существу перпендикулярно центральной оси Х отверстия 38. Предпочтительно, чтобы угол между скошенной поверхностью 48 и центральной осью Х отверстия 38 был равен примерно 45°. В этом варианте осуществления изобретения высота сопла 14 составляет от 400 до 600 мм.

На фиг.3 показан вид в разрезе основания 16 стойки 12. В нижней части 22 корпуса основания 16 расположен контроллер, в целом обозначенный ссылочной позицией 52 и предназначенный для управления работой вентилятора 10 в сборе в ответ на нажатие кнопок 26, которыми управляет пользователь и которые показаны на фиг.1 и 2, и/или в ответ на манипуляции с регулятором 28, которым управляет пользователь. Нижняя часть 22 корпуса также может содержать датчик 54, предназначенный для получения управляющих сигналов от пульта дистанционного управления (не показан) и предназначенный для передачи этих управляющих сигналов в контроллер 52. Предпочтительно, чтобы эти управляющие сигналы были инфракрасными сигналами. Датчик 54 расположен за окошком 55, через которое управляющие сигналы поступают в нижнюю часть 22 корпуса основания 16. Может быть предусмотрен светодиод (не показан), предназначенный для показа, находится ли вентилятор 10 в сборе в режиме готовности. Нижняя часть 22 корпуса также содержит механизм, в целом обозначенный ссылочной позицией 56 и предназначенный для осуществления колебательного движения части 20 корпуса с двигателем основания 16 относительно нижней части 22 корпуса основания 16. Колебательный механизм 56 содержит вращающийся вал 56а, который отходит от нижней части 22 корпуса и заканчивается в части 20 корпуса с двигателем. Вал 56а поддерживается во втулке 56b, соединенной с нижней частью 22 корпуса, с помощью подшипников, чтобы вал 56а мог вращаться относительно втулки 56b. Один конец вала 56а соединен с центральной частью кольцеобразной соединительной пластины 56с, при этом внешняя часть соединительной пластины 56с соединена с основанием части 20 корпуса с двигателем. Это дает возможность вращения части 20 корпуса с двигателем относительно нижней части 22 корпуса. Колебательный механизм 56 также содержит двигатель (не показан), который расположен в нижней части 22 корпуса и который управляет кривошипно-шатунным механизмом, в целом обозначенным ссылочной позицией 56d и осуществляющим колебательное движение основания части 20 корпуса с двигателем относительно верхней части нижней части 22 корпуса. Кривошипно-шатунные механизмы, предназначенные для осуществления колебательного движения одного узла относительно другого, известны и поэтому не будут описаны в настоящем документе. Предпочтительно, чтобы диапазон колебательного цикла части 20 корпуса с двигателем относительно нижней части 22 корпуса составлял от 60° до 120°, а в этом варианте осуществления изобретения он равен примерно 90°. В этом варианте осуществления изобретения колебательный механизм 56 выполнен так, чтобы выполнять примерно от 3 до 5 колебательных циклов в минуту. Кабель 58 питания выходит через отверстие, выполненное в нижней части 22 корпуса, и предназначен для подачи электрической энергии к вентилятору 10 в сборе.

Часть 20 корпуса с двигателем содержит цилиндрическую защитную сетку 60, в которой выполнено множество отверстий 62 с целью формирования каналов 30 для впуска воздуха, расположенных в основании 16 стойки 12. Часть 20 корпуса с двигателем содержит крыльчатку 64, предназначенную для всасывания первичного воздушного потока через отверстия 62 в основании 16. Предпочтительно, чтобы крыльчатка 64 имела форму крыльчатки с косым потоком. Крыльчатка 64 соединена с вращающимся валом 66, выходящим из двигателя 68. В этом предпочтительном варианте выполнения изобретения двигатель 68 представляет собой бесщеточный двигатель постоянного тока, скорость вращения которого изменяется контроллером 52 в ответ на манипуляции пользователя с регулятором 28 и/или в ответ на сигнал, принятый от пульта дистанционного управления. Предпочтительно, чтобы максимальная скорость вращения двигателя 68 находилась в диапазоне от 5 000 до 10 000 оборотов в минуту. Двигатель 68 расположен в кожухе двигателя, который содержит верхнюю часть 70, соединенную с нижней частью 72. Верхняя часть 70 кожуха двигателя содержит диффузор 74, имеющий вид неподвижного диска со спиральными лопастями. Кожух двигателя расположен (и прикреплен) в корпусе 76 крыльчатки, который в целом имеет форму усеченного конуса и который соединен с частью 20 корпуса с двигателем. Форма крыльчатки 64 и корпуса 76 крыльчатки выбрана такой, чтобы крыльчатка 64 была близко расположена к внутренней поверхности корпуса 76 крыльчатки, но не касалась ее. По существу кольцеобразный элемент 78 для впуска воздуха соединен с низом корпуса 76 крыльчатки и предназначен для направления первичного воздушного потока в корпус 76 крыльчатки.

Предпочтительно, чтобы основание 16 стойки 12 дополнительно содержало шумопоглощающий пеноматериал, предназначенный для уменьшения распространения шума из основания 16. В этом варианте выполнения изобретения, часть 20 корпуса с двигателем основания 16 содержит первый кольцеобразный, выполненный из пеноматериала элемент 80, расположенный под защитной сеткой 60, и второй кольцеобразный, выполненный из пеноматериала элемент 82, расположенный между корпусом 76 крыльчатки и элементом 78 для впуска воздуха.

Далее со ссылками на фиг.4-11 будет описана телескопическая трубка 18 стойки 12. Основание 32 трубки 18 содержит по существу цилиндрическую боковую стенку 102 и кольцеобразную верхнюю поверхность 104, которая по существу перпендикулярна боковой стенке 102 и предпочтительно представляет собой единое целое с указанной боковой стенкой 102. Предпочтительно, чтобы внешний диаметр боковой стенки 102 по существу совпадал с внешним диаметром части 20 корпуса с двигателем основания 16 и форма боковой стенки 102 была такова, чтобы внешняя поверхность боковой стенки 102 была по существу расположена заподлицо с внешней поверхностью части 20 корпуса с двигателем основания 16, когда трубка 18 соединена с основанием 16. Кроме того, основание 32 содержит сравнительно короткий воздушный патрубок 106, отходящий от верхней поверхности 104 и предназначенный для перемещения первичного воздушного потока во внешний цилиндрический элемент 34 трубки 18. Предпочтительно, чтобы воздушный патрубок 106 был по существу соосен с боковой стенкой 102 и его внешний диаметр был немного меньше внутреннего диаметра внешнего цилиндрического элемента 34 трубки 18, чтобы была возможность полностью вставить воздушный патрубок 106 во внешний цилиндрический элемент 34 трубки 18. На внешней поверхности воздушного патрубка 106 может быть расположено множество размещенных вдоль оси ребер 108, предназначенных для формирования посадки с натягом с внешним цилиндрическим элементом 34 трубки 18, и, таким образом, для крепления внешнего цилиндрического элемента 34 к основанию 32. Кольцеобразный уплотняющий элемент 110 расположен поверх верхнего конца воздушного патрубка 106 с целью формирования воздухонепроницаемого уплотнения между внешним цилиндрическим элементом 34 и воздушным патрубком 106.

Трубка 18 содержит куполообразный направляющий воздух элемент 114, предназначенный для направления первичного воздушного потока, выброшенного из диффузора 74, в воздушный патрубок 106. Направляющий воздух элемент 114 содержит открытый нижний конец 116, предназначенный для приема первичного воздушного потока из основания 16, и открытый верхний конец 118, предназначенный для перемещения первичного воздушного потока в воздушный патрубок 106. Направляющий воздух элемент 114 расположен внутри основания 32 трубки 18. Направляющий воздух элемент 114 соединен с основанием 32 с помощью взаимодействующих защелкивающихся соединительных элементов 120, расположенных на основании 32 и направляющем воздух элементе 114. Второй кольцеобразный уплотняющий элемент 121 расположен вокруг открытого верхнего конца 118 с целью формирования воздухонепроницаемого уплотнения между основанием 32 и направляющим воздух элементом 114. Как показано на фиг.3, направляющий воздух элемент 114 соединен с открытым верхним концом части 20 корпуса с двигателем основания 16, например, с помощью взаимодействующих защелкивающихся соединительных элементов 123 или резьбовых соединительных элементов, расположенных на направляющем воздух элементе 114 и части 20 корпуса с двигателем основания 16. Таким образом, направляющий воздух элемент 114 служит для соединения трубки 18 с основанием 16 стойки 12.

Множество направляющих воздух лопастей 122 расположено на внутренней поверхности направляющего воздух элемента 114 с целью направления спирального воздушного потока, выброшенного из диффузора 74, в воздушный патрубок 106. В этом примере направляющий воздух элемент 114 содержит семь направляющих воздух лопастей 122, которые равномерно распределены по внутренней поверхности направляющего воздух элемента 114. Направляющие воздух лопасти 122 сходятся в центре открытого верхнего конца 118 направляющего воздух элемента 114 и, таким образом, определяют несколько воздушных каналов 124 в направляющем воздух элементе 114, каждый из которых предназначен для направления соответствующей части первичного воздушного потока в воздушный патрубок 106. Как показано на фиг.4, семь радиальных направляющих воздух лопастей 126 расположены в воздушном патрубке 106. Каждая из этих радиальных направляющих воздух лопастей 126 расположена вдоль по существу всей длины воздушного патрубка 106 и примыкает к соответствующей одной направляющей воздух лопасти 122, когда направляющий воздух элемент 114 соединен с основанием 32. Таким образом, радиальные направляющие воздух лопасти 126 определяют несколько расположенных по оси воздушных каналов 128 внутри воздушного патрубка 106, при этом каждый из воздушных каналов 128 принимает часть первичного воздушного потока из соответствующего одного из воздушных каналов 124, расположенных внутри направляющего воздух элемента 114, и перемещает эту часть первичного воздушного потока по оси через воздушный патрубок 106 во внешний цилиндрический элемент 34 трубки 18. Таким образом, основание 32 и направляющий воздух элемент 114 трубки 18 служат для преобразования спирального воздушного потока, выброшенного из диффузора 74, в осевой воздушный поток, который проходит через внешний цилиндрический элемент 34 и внутренний цилиндрический элемент 36 в сопло 14. Для формирования воздухонепроницаемого уплотнения между направляющим воздух элементом 114 и основанием 32 трубки 18 может быть предусмотрен третий кольцеобразный уплотняющий элемент 129.

Цилиндрическая верхняя втулка 130 соединена, например, с использованием клеящего вещества или с помощью посадки с натягом с внутренней поверхностью верхней части внешнего цилиндрического элемента 34, так что верхний конец 132 верхней втулки 130 находится на одном уровне с верхним концом 134 внешнего цилиндрического элемента 34. Внутренний диаметр верхней втулки 130 немного больше внешнего диаметра внутреннего цилиндрического элемента 36, чтобы дать возможность внутреннему цилиндрическому элементу 36 пройти через верхнюю втулку 130. Третий кольцеобразный уплотняющий элемент 136 расположен на верхней втулке 130 с целью формирования воздухонепроницаемого уплотнения с внутренним цилиндрическим элементом 36. Третий кольцеобразный уплотняющий элемент 136 содержит кольцеобразную кромку 138, которая взаимодействует с верхним концом 132 внешнего цилиндрического элемента 34 с целью получения воздухонепроницаемого уплотнения между верхней втулкой 130 и внешним цилиндрическим элементом 34.

Цилиндрическая нижняя втулка 140 соединена, например, с использованием клеящего вещества или с помощью посадки с натягом с внешней поверхностью нижней части внутреннего цилиндрического элемента 36, так что нижний конец 142 внутреннего цилиндрического элемента 36 расположен между верхним концом 144 и нижним концом 146 нижней втулки 140. Внешний диаметр верхнего конца 144 нижней втулки 140 по существу совпадет с внешним диаметром нижнего конца 148 верхней втулки 130. Таким образом, в полностью выдвинутом положении внутреннего цилиндрического элемента 36 верхний конец 144 нижней втулки 140 примыкает к нижнему концу 148 верхней втулки 130, таким образом предотвращается полное извлечение внутреннего цилиндрического элемента 36 из внешнего цилиндрического элемента 34. В сложенном положении внутреннего цилиндрического элемента 36 нижний конец 146 нижней втулки 140 примыкает к верхнему концу воздушного патрубка 106.

Ходовая пружина 150 намотана на ось 152, которая с возможностью вращения расположена между направленными внутрь кронштейнами 154 нижней втулки 140 трубки 18, как показано на фиг.7. Как показано на фиг.8, ходовая пружина 150 представляет собой стальную полосу, свободный конец 156 которой неподвижно закреплен между внешней поверхностью верхней втулки 130 и внутренней поверхностью внешнего цилиндрического элемента 34. Следовательно, ходовая пружина 150 разматывается с оси 152, когда внутренний цилиндрический элемент 36 опускают от полностью выдвинутого положения, показанного на фиг.5 и 6, до сложенного положения, показанного на фиг.10 и 11. Энергия упругой деформации, запасенная в ходовой пружине 150, служит как противовес, нужный для поддержания выбранного пользователем положения внутреннего цилиндрического элемента 36 относительно внешнего цилиндрического элемента 34.

Дополнительное сопротивление перемещению внутреннего цилиндрического элемента 36 относительно внешнего цилиндрического элемента 34 обеспечивается подпружиненной дугообразной лентой 158, предпочтительно выполненной из пластического материала и расположенной в кольцеобразной канавке 160, расположенной по окружности вокруг нижней втулки 140. Как показано на фиг.7 и 9, лента 158 не полностью охватывает нижнюю втулку 140 и, таким образом, содержит два противоположных конца 161. Каждый конец 161 ленты 158 содержит внутреннюю по радиусу часть 161a, которая расположена в отверстии 162, выполненном в нижней втулке 140. Пружина 164 установлена между внутренними по радиусу частями 161а концов 161 ленты 158 с целью прижатия внешней поверхности ленты 158 к внутренней поверхности внешнего цилиндрического элемента 34, тем самым увеличиваются силы трения, которые сопротивляются перемещению внутреннего цилиндрического элемента 36 относительно внешнего цилиндрического элемента 34.

Лента 158 дополнительно содержит выемку 166, которая в этом предпочтительном варианте выполнения изобретения расположена противоположно пружине 164 и которая определяет расположенную по оси канавку 167 на внешней поверхности ленты 158. Канавка 167 ленты 158 расположена над выступающим ребром 168, которое расположено по оси вдоль длины внутренней поверхности внешнего цилиндрического элемента 34. Угловая ширина и глубина по радиусу канавки 167 по существу совпадает с угловой шириной и глубиной по радиусу выступающего ребра 168, что нужно для предотвращения взаимного вращения внутреннего цилиндрического элемента 36 и внешнего цилиндрического элемента 34.

Далее со ссылками на фиг.12-15, будет описано сопло 14 вентилятора 10 в сборе. Сопло 14 содержит кольцеобразную внешнюю часть 200 корпуса, соединенную с кольцеобразной внутренней частью 202 корпуса и окружающую указанную внутреннюю часть 202 корпуса. Каждая из указанных частей может быть выполнена из нескольких соединенных деталей, но в этом варианте осуществления изобретения и внешняя часть 200 корпуса и внутренняя часть 202 корпуса представляют собой одно литое изделие соответственно. Внутренняя часть 202 корпуса определяет центральное отверстие 38 сопла 14 и содержит внешнюю периферийную поверхность 203, форма которой определяет поверхность 42 Коанда, расширяющуюся поверхность 44, направляющую поверхность 46 и скошенную поверхность 48.

Вместе внешняя часть 200 корпуса и внутренняя часть 202 корпуса определяют кольцеобразный внутренний проход 204 сопла 14. Таким образом, внутренний проход 204 расположен вокруг отверстия 38. Внутренний проход 204 ограничен внутренней периферийной поверхностью 206 внешней части 200 корпуса и внутренней периферийной поверхностью 208 внутренней части 202 корпуса. Основание внешней части 200 корпуса содержит отверстие 210.

Соединительное устройство 37, которое соединяет сопло 14 с открытым верхним концом 170 внутреннего цилиндрического элемента 36 трубки 18, содержит механизм наклона, предназначенный для наклона сопла 14 относительно стойки 12. Механизм наклона содержит верхний элемент, который имеет вид пластины 300, неподвижно расположенной в отверстии 210. При желании пластина 300 может быть выполнена как единое целое с внешней частью 200 корпуса. Пластина 300 содержит круглое отверстие 302, через которое первичный воздушный поток попадает во внутренний проход 204 из телескопической трубки 18. Соединительное устройство 37 дополнительно содержит нижний элемент, имеющий форму воздушного патрубка 304, который, по меньшей мере, частично вставлен в открытый верхний конец 170 внутреннего цилиндрического элемента 36. Внутренний диаметр этого воздушного патрубка 304 по существу совпадает с внутренним диаметром круглого отверстия 302, выполненного в верхней пластине 300 соединительного устройства 37. При необходимости для формирования воздухонепроницаемого уплотнения между внутренней поверхностью внутреннего цилиндрического элемента 36 и внешней поверхностью воздушного патрубка 304 может быть предусмотрен кольцеобразный уплотняющий элемент, который предотвращает извлечение воздушного патрубка 304 из внутреннего цилиндрического элемента 36. Пластина 300 с возможностью поворота соединена с воздушным патрубком 304 с использованием набора соединительных элементов, которые в целом обозначены на фиг.12 ссылочной позицией 306 и которые закрыты заглушками 308. Гибкий рукав 310 расположен между воздушным патрубком 304 и пластиной 300, и он предназначен для перемещения воздуха между воздушным патрубком 304 и пластиной 300. Гибкий рукав 310 может быть выполнен в виде кольцеобразного гофрированного уплотняющего элемента. Первый кольцеобразный уплотняющий элемент 312 образует воздухонепроницаемое уплотнение между рукавом 310 и воздушным патрубком 304, а второй кольцеобразный уплотняющий элемент 314 образует воздухонепроницаемое уплотнение между рукавом 310 и пластиной 300. Для наклона сопла 14 относительно стойки 12, пользователь просто тянет или толкает сопло 14, чтобы рукав 310 изогнулся и дал возможность пластине 300 переместиться относительно воздушного патрубка 304. Усилие, требуемое для перемещения сопла 14, зависит от плотности соединения между пластиной 300 и воздушным патрубком 304 и предпочтительно, чтобы указанное усилие составляло от 2 до 4 Н. Предпочтительно, чтобы сопло 14 было выполнено с возможностью перемещения в диапазоне ±10° от не наклоненного положения, в котором ось Х расположена по существу горизонтально, до полностью наклоненного положения. Когда сопло 14 наклоняют относительно стойки 12, ось Х поворачивается по существу в вертикальной плоскости.

Сужение 40 сопла 14 расположено в задней части вентилятора 10 в сборе. Сужение 40 сформировано благодаря перекрытию частей 212, 214 внутренней периферийной поверхности 206 внешней части 200 корпуса и внешней периферийной поверхности 203 внутренней части 202 корпуса соответственно. В этом варианте выполнения сужение 40 является по существу кольцеобразным и, как показано на фиг.15, имеет по существу U-образное поперечное сечение в разрезе по линии, проходящей по диаметру через сопло 14. В этом варианте выполнения перекрывающиеся части 212, 214 внутренней периферийной поверхности 206 внешней части 200 корпуса и внешней периферийной поверхности 203 внутренней части 202 корпуса выполнены так, что сужение 40 сходится по направлению к выпускному отверстию 216, предназначенному для направления первичного воздушного потока поверх поверхности 42 Коанда. Выпускное отверстие 216 имеет форму кольцеобразной щели предпочтительно сравнительно постоянной ширины, находящейся в диапазоне от 0,5 до 5 мм. Ширина выпускного отверстия 216 составляет от 0,5 до 1,5 мм. В сужении 40 могут быть предусмотрены разделители, предназначенные для разведения друг от друга перекрывающихся частей 212, 214 внутренней периферийной поверхности 206 внешней части 200 корпуса и внешней периферийной поверхности 203 внутренней части 202 корпуса с целью поддержания ширины выпускного отверстия 216 на нужном уровне. Эти разделители могут составлять единое целое или с внутренней периферийной поверхностью 206 внешней части 200 корпуса или с внешней периферийной поверхностью 203 внутренней части 202 корпуса.

С целью управления вентилятором 10 в сборе пользователь нажимает соответствующую одну из кнопок 26, расположенных на основании 16 стойки 12, в результате чего контроллер 52 запускает двигатель 68 с целью вращения крыльчатки 64. Вращение крыльчатки 64 приводит к тому, что первичный воздушный поток всасывается в основание 16 стойки 12 через отверстия 62 защитной сетки 60. В зависимости от скорости вращения двигателя 68, первичный воздушный поток может составлять от 20 до 40 литров в секунду. Первичный воздушный поток последовательно проходит через корпус 76 крыльчатки и диффузор 74. Спиральная форма лопастей диффузора 74 приводит к тому, что первичный воздушный поток выходит из диффузора 74 в виде спирального воздушного потока. Первичный воздушный поток попадает в направляющий воздух элемент 114, где изогнутые направляющие воздух лопасти 122 делят первичный воздушный поток на несколько частей и направляют каждую часть первичного воздушного потока в соответствующие расположенные по оси воздушные каналы 128, находящиеся в воздушном патрубке 106 основания 32 телескопической трубки 18. Части первичного воздушного потока сливаются в направленный по оси воздушный поток при выбрасывании из воздушного патрубка 106. Первичный воздушный поток проходит вверх через внешний цилиндрический элемент 34 и внутренний цилиндрический элемент 36 трубки 18 и через соединительное устройство 37 попадает во внутренний проход 86 сопла 14.

В сопле 14 первичный воздушный поток разделяют на два воздушных потока, которые проходят в противоположных направлениях вокруг центрального отверстия 38 сопла 14. Когда воздушные потоки проходят через внутренний проход 204, воздух попадает в сужение 40 сопла 14. Предпочтительно, чтобы воздух протекал в сужении 40 по существу равномерно вокруг отверстия 38 сопла 14. В сужении 40 направление воздушного потока изменяется по существу на противоположное. Воздушный поток сжимают с помощью сходящейся части сужения 40 и выбрасывают через отверстие 216.

Первичный воздушный поток, выброшенный из сужения 40, направляют поверх поверхности 42 Коанда сопла 14, что приводит к созданию вторичного воздушного потока благодаря увлечению воздуха из внешней среды, более конкретно из области вокруг выпускного отверстия 216 сужения 40 и из области вокруг задней части сопла 14. Этот вторичный воздушный поток проходит через центральное отверстие 38 сопла 14, где он объединяется с первичным воздушным потоком и получается общий воздушный поток или воздушная струя, выталкиваемая вперед из сопла 14. В зависимости от скорости вращения двигателя 68, массовая скорость воздушной струи, выходящей вперед из вентилятора 10 в сборе, может доходить до 400 литров в секунду, предпочтительно доходить до 600 литров в секунду, и более предпочтительно доходить до 800 литров в секунду, а максимальная скорость воздушной струи может находиться в диапазоне от 2,5 до 4,5 м/с.

Равномерное распределение первичного воздушного потока вдоль сужения 40 сопла 14 обеспечивает равномерное прохождение воздушного потока поверх расширяющейся поверхности 44. Расширяющаяся поверхность 44 вызывает уменьшение средней скорости воздушного потока из-за перемещения воздушного потока через область управляемого расширения. Сравнительно малый угол между расширяющейся поверхностью 44 и центральной осью Х отверстия 38 позволяет воздушному потоку расширяться постепенно. Иначе резкое или быстрое отклонение могло бы привести к разрывам воздушного потока, при этом в области расширения образовывались бы завихрения. Такие завихрения могут приводить к увеличению турбулентности и связанного с ней шума в воздушном потоке, что может быть нежелательно, особенно в бытовом устройстве, таком как вентилятор. Воздушный поток, выталкиваемый вперед за расширяющуюся поверхность 44, может стремиться продолжить расхождение. Наличие направляющей поверхности 46, расположенной по существу параллельно центральной оси Х отверстия 38, дополнительно сужает воздушный поток. В результате воздушный поток может эффективно перемещаться из сопла 14, при этом воздушный поток может быстро ощущаться на расстоянии нескольких метров от вентилятора 10 в сборе.

1. Напольный вентилятор для создания воздушного потока, содержащий основание, в котором расположена крыльчатка, двигатель, предназначенный для вращения крыльчатки для создания воздушного потока, и диффузор, расположенный ниже по потоку относительно крыльчатки; устройство для выпуска воздуха; телескопическую трубку, расположенную между основанием и устройством для выпуска воздуха и предназначенную для перемещения воздушного потока к устройству для выпуска воздуха; и средство, предназначенное для направления воздушного потока, выброшенного из диффузора, в трубку, при этом направляющее воздушный поток средство содержит множество лопастей, каждая из которых предназначена для направления соответствующей части воздушного потока, выброшенного из диффузора, по направлению к трубке.

2. Вентилятор по п.1, в котором направляющее воздушный поток средство содержит множество радиальных лопастей, расположенных, по меньшей мере, частично внутри трубки, при этом каждая из радиальных лопастей прилегает к соответствующей лопасти из множества лопастей.

3. Вентилятор по любому из пп.1 или 2, в котором устройство для выпуска воздуха окружает отверстие, через которое воздушный поток, выбрасываемый из устройства для выпуска воздуха, всасывает воздух снаружи устройства для выпуска воздуха.

4. Вентилятор по п.3, в котором устройство для выпуска воздуха содержит сопло, имеющее сужение, предназначенное для выбрасывания воздушного потока, и внутренний проход, предназначенный для приема воздушного потока из трубки и для перемещения воздушного потока к сужению.

5. Вентилятор по п.4, в котором форма внутреннего прохода такова, чтобы разделять воздушный поток на два воздушных потока, каждый из которых течет вдоль соответствующей стороны отверстия.

6. Вентилятор по п.4, в котором внутренний проход выполнен, по существу, кольцеобразным.

7. Вентилятор по п.4, в котором сужение окружает отверстие.

8. Вентилятор по п.4, в котором сопло содержит внутреннюю часть корпуса и внешнюю часть корпуса, которые вместе определяют сужение.

9. Вентилятор по п.8, в котором сужение содержит выпускное отверстие, расположенное между внешней поверхностью внутренней части корпуса и внутренней поверхностью внешней части корпуса сопла.

10. Вентилятор в сборе по п.9, в котором выпускное отверстие выполнено в виде щели, по меньшей мере, частично окружающей отверстие.

11. Вентилятор в сборе по п.9, в котором ширина выпускного отверстия находится в диапазоне от 0,5 до 5 мм.

12. Вентилятор в сборе по п.4, в котором сопло содержит поверхность, расположенную рядом с сужением и поверх которой расположено сужение, предназначенное для направления воздушного потока.

13. Вентилятор по п.12, в котором поверхность окружает отверстие.

14. Вентилятор по п.12, в котором сопло содержит расширяющуюся поверхность, расположенную ниже по потоку относительно поверхности.

15. Вентилятор по любому из пп.1 или 2, который выполнен в виде безлопастного вентилятора в сборе.



 

Похожие патенты:

Изобретение предназначено для удаления вредных для здоровья человека газов, аэрозолей и пыли, образующихся при газоплазменных способах обработки поверхностей деталей и материалов, а также для защиты от воздействия инфракрасного и ультрафиолетового излучения.

Изобретение относится к системе вентиляции промышленного предприятия и содержит вытяжной воздуховод загрязненного воздуха, в который включен вентилятор с электродвигателем, датчик концентрации вредных веществ, заслонки, расположенные по периметру меньшего диаметра вытяжного воздуховода загрязненного воздуха.

Изобретение относится к вентиляции и может быть использовано в системах вентиляции зданий различного назначения. .

Изобретение относится к вентиляции и может быть использовано в промышленных и гражданских зданиях. .

Изобретение относится к вентиляции и может быть использовано в промышленных и гражданских зданиях. .

Изобретение относится к области инженерного оборудования производственных зданий и может быть использовано при оборудовании корпусов промышленных предприятий. .

Изобретение относится к вентиляции и может быть использовано в административных, общественных и промышленных зданиях. .

Изобретение относится к системам вентиляции животноводческих помещений. Система вентиляции животноводческого помещения, включающая перфорированное чердачное перекрытие, проем для поступления приточного воздуха в чердачное пространство, вытяжные шахты, воздухоподогреватели, отличающаяся тем, что система вентиляции животноводческого помещения снабжена приточным каналом, выполненным в виде установленных с наружной стороны стены помещения одна рядом с другой вертикальных перегородок, закрепленных с образованием промежутков между ними и стеной, при этом ближняя к стене перегородка закреплена с обеспечением зазора ее нижней грани с уровнем нулевой отметки пола помещения, а верхняя грань совмещена с кровлей крыши, а другая перегородка смонтирована с совмещением ее нижней грани с уровнем нулевой отметки пола и с образованием зазора верхней ее грани с кровлей крыши. Цель изобретения состоит в том, чтобы утилизировать тепловую энергию стен помещения для предварительного подогрева атмосферного воздуха, поступающего в помещение для его вентиляции, и за счет этого уменьшить в холодное время года энергозатраты на обогрев животноводческого помещения. 2 ил.

Изобретение предназначено для применения в устройствах вентиляции и кондиционирования воздуха. Установка содержит корпус, пластинчатый рекуперативный теплоутилизатор, приточный и вытяжной вентиляторы, фильтрующий элемент, нагревательный элемент выходящего приточного воздуха, нагревательный элемент для вытяжного воздуха, байпасный клапан, входное и выходное отверстия для приточного воздуха, входное и выходное отверстия для вытяжного воздуха, поддон для слива конденсата. Байпасный клапан расположен между зоной выхода вытяжного воздуха из установки и зоной входа вытяжного воздуха в установку. Блок управления выполнен в виде микропроцессора и соединен с приточным вентилятором с возможностью его отключения средством коммутации в режиме оттаивания пластинчатого рекуперативного теплоутилизатора для циркуляции вытяжного воздуха через пластинчатый рекуперативный теплоутилизатор по замкнутому контуру. Возможность движения вытяжного воздуха по замкнутом контру через пластинчатый рекуперативный теплоутилизатор позволяет использовать нагревательный элемент выходящего приточного воздуха меньшей мощности. Технический результат изобретения: повышение энергосбережения установки за счет снижения потребления энергии при эксплуатации установки в режиме оттаивания рекуперативного теплоутилизатора, простота конструкции при отсутствии дисбаланса приточного и вытяжного воздуха в помещении при эксплуатации установки в режиме оттаивания рекуперативного теплоутилизатора. 2 з.п. ф-лы, 2 ил.

Изобретение относится к области отопления и вентиляции помещений газовыми конвекторами. Технический результат - экономия энергии путем одновременного нагрева и вентиляции помещения без затрат дополнительной тепловой энергии. Устройство для обогрева и вентиляции помещения включает газовый конвектор с коаксиальными трубами для удаления дымовых газов и подачи наружного воздуха внутрь помещения и вентилятор. Вентилятор обеспечивает забор воздуха для горения из помещения в камеру сгорания. Торцы трубы для подачи наружного воздуха герметично соединены с наружной поверхностью трубы для удаления дымовых газов. К верхней части трубы для подачи наружного воздуха присоединен патрубок с вентилятором для нагнетания наружного воздуха в межтрубное пространство с обеспечением нагрева наружного воздуха от трубы для удаления дымовых газов и вывода нагретого чистого наружного воздуха в помещение через другой патрубок, расположенный в нижней части трубы для подачи наружного воздуха. 1 ил.

Настоящее изобретение относится к устройству локальной очистки воздуха. Оно содержит: приточный фильтрующий вентилятор, имеющий поверхность для воздушного потока, выдувающую однородный поток очищенного воздуха; и воздуховод, установленный со стороны поверхности для воздушного потока, проходящий от поверхности для воздушного потока в направлении выпускной стороны воздушного потока и формирующий проходную поверхность на выпускном конце. Упомянутый вентилятор расположен таким образом, что однородный воздушный поток, выпускаемый из поверхности для воздушного потока, проходит внутри воздуховода, после чего ударяется в поверхность столкновения воздушного потока, находящуюся далее по направлению движения потока после проходной поверхности. Посредством воздуховода формируется открытая область между проходной поверхностью и поверхностью столкновения, путем размещения проходной поверхности на расстоянии от поверхности столкновения, напротив нее. Однородный поток очищенного воздуха, выпускаемый из поверхности для воздушного потока, ударяется в поверхность столкновения и растекается наружу от открытой области, благодаря чему внутри воздуховода и внутри открытой области чистота воздуха выше, чем в других областях. Это позволяет упростить конструкцию устройства локальной очистки воздуха. 10 з.п. ф-лы, 17 ил., 14 табл.

Изобретение относится к устройству локальной очистки воздуха. Оно содержит: пару приточных вентиляторов для выдувания однородного потока очищенного воздуха и пару воздуховодов для формирования проходной поверхности на концевой части с выпускной стороны воздуховодов. Причем вентиляторы расположены так, что их соответствующие проходные поверхности обращены навстречу друг другу и разнесены друг от друга с формированием открытой области между проходными поверхностями воздуховодов. При этом обеспечивается столкновение однородных потоков очищенного воздуха, выдуваемых из соответствующих проходных поверхностей, друг с другом в открытой области и их выход из открытой области так, что внутри воздуховодов и внутри открытой области обеспечивается рабочая область с большей чистотой воздуха, чем в других областях. Кроме того, воздуховоды выполнены с возможностью увеличения рабочей области при поддержании большей чистоты воздуха, посредством обеспечения расстояния между проходными поверхностями для воздушного потока вместе с воздуховодами больше, чем расстояние между проходными поверхностями для воздушного потока, не имеющих воздуховодов со стороны каждой из них. Это позволяет формировать широкое пространство чистого воздуха. 2 н. и 7 з.п. ф-лы, 14 ил., 16 табл.

Настоящее изобретение относится к приспособлению для вытяжной вентиляционной трубы. Вытяжная вентиляционная труба содержит вытяжную трубу (1) вентиляционного канала, снабженную головкой (2) и проходящую через наружную крышу здания, причем верхняя часть головки (2) содержит конический колпачок (3), предотвращающий прохождение дождевой воды в вентиляционный канал. Настоящее изобретение отличается тем, что на верхней части конического колпачка (3) головки (2) установлен круглый спиртовой уровень (6). Это позволяет легко смонтировать трубу в вертикальном положении. 1 з.п., 3 ил.

Настоящее изобретение относится к устройству выдувания очищенного воздуха. Оно содержит приточный вентилятор, имеющий поверхность выдувания воздушного потока, через которую обеспечивается выдувание однородного потока очищенного воздуха, при этом приточный вентилятор имеет поперечный выпуск воздуха для создания потока очищенного воздуха, наталкивающегося на наружную огораживающую конструкцию, обеспечиваемую при монтаже приточного вентилятора и проходящую у и вдоль периферийного направления поверхности выдувания воздушного потока приточного вентилятора, так что при сталкивании потока очищенного воздуха, выходящего из поперечного выпуска воздуха, с огораживающей конструкцией, образуется испытавший столкновение воздушный поток, направленный к передней и задней сторонам приточного вентилятора, препятствуя проникновению окружающего наружного воздуха у задней стороны приточного вентилятора в область между поперечным выпуском воздуха и огораживающей конструкцией. Это позволяет препятствовать подсосу воздуха в область подачи очищенного воздуха. 2 н. и 8 з.п. ф-лы, 10 ил., 13 табл.

Изобретение относится к воздухонагревательным устройствам. Устройство для радиационного нагрева и дестратификации окружающего воздуха содержит герметизирующий воздуховод, через который проходит по меньшей мере один поток окружающего воздуха, горелку, закрепленную внутри герметизирующего воздуховода, предназначенную для сжигания горючей смеси, полученной при помощи по меньшей мере одного потока воздуха для поддержания горения, извлекаемого из потока окружающего воздуха, и по меньшей мере одного потока газа для вырабатывания продуктов горения при высокой температуре, радиационную трубную систему для обогрева окружающей среды при помощи радиации, способную перемещать продукты горения при высокой температуре, выработанные горелкой, по меньшей мере один вентилятор, расположенный внутри герметизирующего воздуховода выше по течению от горелки, приспособленный для дестратификации окружающего воздуха посредством забора, как правило, горячего воздуха сверху и направления его вниз и одновременной подачи к горелке указанного воздуха для поддержания горения, подвесы, прикрепленные к герметизирующему воздуховоду. Изобретение направлено на корректный и рациональный обогрев окружающего воздуха внутри помещений. 10 з.п. ф-лы, 4 ил.

Изобретение относится к производству вакцин с использованием патогенных биологических агентов (ПБА) и может быть использовано при проектировании асептических изолированных технологических помещений для медицинской, фармацевтической и микробиологической промышленности. Блок содержит ограждающие строительные конструкции существующего помещения, систему приточной и вытяжной вентиляции с фильтрами высокой эффективности, разборные ограждающие конструкции, уплотненные двери, чистую зону, переточный канал с фильтром. Внутри ограждающих строительных конструкций существующего помещения на перекрытии его пола из герметизированных мобильных ограждающих строительных конструкций выполнены помещения рабочей зоны, содержащей помещения бокса и следующего за ним предбокса и помещения барьерной зоны, включающей помещение контролируемой барьерной зоны, сервисное помещение и помещение тамбур-шлюза. Фронтальная стена бокса и боковые стены блока примыкают к потолочному перекрытию существующего помещения. Помещение контролируемой барьерной зоны образовано фронтальной стеной бокса, частью боковых стен блока и наружной стеной существующего помещения. В периферийной стене бокса установлен передаточный шлюз. Помещение предбокса выполнено короче помещения бокса, образуя с частью периферийной стены бокса, частью боковой стены блока и боковой стеной предбокса проход к установленному в периферийной стене бокса передаточному шлюзу. Общее потолочное перекрытие бокса и предбокса выполнено ниже потолочного перекрытия существующего помещения, образуя запотолочную полость над боксом и предбоксом с обеспечением доступа к за потолочной полости из сервисного помещения. Вход в сервисное помещение оборудован входным тамбур-шлюзом, герметизированные мобильные ограждающие строительные конструкции которого примыкают к внутренней стене и потолочному перекрытию существующего помещения. В верхней части герметизированных мобильных ограждающих строительных конструкций тамбур-шлюза выполнен переточный канал, оборудованный фильтром высокой эффективности и соединяющий помещение тамбур-шлюза с сервисным помещением. Угловой воздухозаборный модуль сервисного помещения присоединен к воздухозаборному воздуховоду приточной вентиляционной системы. Сервисное помещение соединено с помещением контролируемой барьерной зоны переточным каналом, оборудованным фильтром высокой эффективности и установленный в верхней части фронтальной стены бокса. На воздуховодах приточной вентиляционной системы в помещениях входного тамбур-шлюза, сервисного помещения, предбокса и бокса установлены автономные воздухораспределительные модули, оборудованные фильтрами высокой эффективности. Уплотненная дверь на периферийной стене предбокса и уплотненная дверь на периферийной стене бокса максимально смещены относительно друг друга. Обеспечивается возможность блокировать возможный выход контаминированной ПБА воздушной среды из помещения бокса в предбокс и в окружающую атмосферу, необходимый класс чистоты воздушной среды в рабочей зоне бокса и предбокса при нормативном режиме разрежения их воздушной среды, а также энергосбережение по использованию тепла (холода) воздушной среды сервисного помещения и помещения тамбур-шлюза. 4 з.п. ф-лы, 5 ил.

Настоящее изобретение относится к устройству локальной очистки воздуха. Устройство локальной очистки воздуха включает приточный вентилятор, имеющий проходную поверхность для воздушного потока, через которую выдувается однородный поток очищенного воздуха, и воздуховод, расположенный со стороны приточного вентилятора, имеющей проходную поверхность для воздушного потока, и проходящий от этой стороны к выпускной стороне однородного воздушного потока с формированием проходной поверхности на концевой части выпускной стороны, причем приточный вентилятор выполнен так, что однородный воздушный поток очищенного воздуха, выдуваемый из проходной поверхности для воздушного потока, проходит через воздуховод внутри него, затем сталкивается с поверхностью столкновения воздушного потока на выпускной стороне проходной поверхности воздуховода; проходная поверхность воздуховода разнесена с поверхностью столкновения воздушного потока и расположена напротив нее с формированием открытой области между проходной поверхностью воздуховода и поверхностью столкновения воздушного потока; и однородный поток очищенного воздуха, выдуваемый из проходной поверхности для воздушного потока, сталкивается с поверхностью столкновения воздушного потока и проходит наружу открытой области, так что внутри воздуховода и внутри открытой области обеспечивается чистота более высокая, чем в других областях, при этом устройство локальной очистки воздуха также включает по меньшей мере одно из средства для измерения давлений внутри воздуховода и внутри приточного вентилятора, средства для измерения чистоты внутри воздуховода или открытой области и средства для измерения области промежутка между воздуховодом и поверхностью столкновения воздушного потока; и устройство локальной очистки воздуха выполнено с возможностью обеспечения чистоты на основе результата измерения посредством управления скоростью однородного потока очищенного воздуха, выдуваемого из проходной поверхности для воздушного потока, так что она может быть уменьшена или увеличена. Задачей является создание устройства локальной очистки воздуха, в котором может быть снижено энергопотребление при условии поддержания высокого уровня чистоты в пространстве чистого воздуха. 3 н. и 1 з.п. ф-лы, 11 ил.
Наверх