Способ очистки газа от сероводорода

Изобретение может быть использовано в нефтегазовой, нефтеперерабатывающей, химической и нефтехимической промышленности.

Способ очистки газа от сероводорода включает предварительное смешивание очищаемого газа с балансовой частью газа сепарации. Полученную газовую смесь сепарируют при пониженной температуре, но не ниже температуры замерзания воды или образования газовых гидратов, с выделением водной суспензии серы. Затем очищают от сероводорода с получением очищенного газа и газа, содержащего сероводород. Смесь газа, содержащего сероводород, с частью газа сепарации и кислородсодержащим газом при мольном соотношении кислород:сероводород 0,35÷0,45 подают на окисление. Продукты окисления смешивают с частью водной суспензии серы и сепарируют смесь при температуре 125÷135°C с выделением жидкой серы и газа сепарации. Изобретение позволяет повысить степень очистки газа и снизить энергоемкость процесса. 1 ил., 1 пр.

 

Изобретение относится к процессам обессеривания газов и может быть использовано в нефтегазовой, нефтеперерабатывающей, химической и нефтехимической промышленности для очистки газов от сероводорода с одновременным получением серы.

Известен способ удаления кислотных газов, таких как сероводород и/или углекислый газ [RU №2087181, МПК B01D 53/14, B01D 53/52, B01D 53/62, опубл. 20.08.1997 г.], включающий их абсорбцию из газообразной смеси водным раствором диметилэтаноламина с концентрацией 40-70% (абсорбентом), и последующую регенерацию отработанного водного раствора диметилэтаноламина, согласно которому газ, который подвергается обработке, подают в низ тарельчатого абсорбера, на верх которого одновременно подают абсорбент. Очищенный газ выводят с верха абсорбера. Использованный раствор, насыщенный сероводородом и/или углекислым газом, выводят из нижней части абсорбера и после сброса давления в редукционном клапане и подогрева в теплообменнике направляют в среднюю часть тарельчатой регенерационной колонны (десорбера). С низа десорбера, снабженного подогревателем, регенерированный абсорбент после охлаждения в рекуперационном теплообменнике и холодильнике регенерированного абсорбента подают циркуляционным насосом на верх абсорбера. Пары с верха десорбера охлаждают и разделяют на газ, содержащий сероводород и/или углекислый газ, выводимый с установки и конденсат, возвращаемый в качестве орошения в верхнюю часть десорбера.

Недостатком способа является необходимость использования дополнительного оборудования для утилизации кислого газа.

Наиболее близок к предлагаемому изобретению способ получения серы и способ приготовления катализатора для получения серы [RU 2405738, МПК С01В 17/04, B01J 37/02, B01J 37/08, опубл. 10.12.2010], согласно которому катализатор содержит фосфаты, или фториды, или бораты, или смесь этих солей металлов, выбранных из группы: железо, кобальт, никель, медь или их смесь, и включает гидроксильные группы в пределах 0,05-20 мкмоль/г, а газ очищают путем окисления содержащегося в газовых потоках сероводорода в серу кислородом или воздухом в присутствии гетерогенного катализатора на кремнийсодержащем носителе при температуре 180-320°С и мольном соотношении кислород:сероводород, равном 0,5-5, а перед окислением сероводорода в реакторе газовый поток пропускают при температуре 20-70°С через емкость, содержащую 0,2-1 г/л хлорида меди и 0,5-3 г/л амина в углеводородной среде.

Недостатком способа является большие энергозатраты для нагрева всего объема очищаемого газа до температуры окисления, загрязнение очищаемого газа парами углеводородов и амина, невысокий выход серы (93-95%), а также низкая селективность окисления (95-99%), приводящая к загрязнению очищенного газа диоксидом серы (1-5% на исходный сероводород).

Задачей изобретения является повышение степени очистки газа и снижение энергоемкости процесса.

При реализации способа достигается следующий технический результат:

- повышение степени очистки за счет предварительной очистки газа с получением очищенного газа и газа, содержащего сероводород, каталитического окисления сероводорода при температуре окисления и при соотношении кислород:сероводород ниже стехиометрического и рециркуляции газа с пониженной концентрацией сероводорода в очищаемый газ,

- снижение энергоемкости процесса за счет предварительного выделения газа, содержащего сероводород, и соответствующего уменьшения объема газа, подвергаемого окислению.

Указанный технический результат достигается тем, что в известном способе, согласно которому газ очищают путем окисления кислородом при повышенной температуре в присутствии твердого катализатора и конденсации серы из продуктов окисления, особенностью является то, что очищаемый газ предварительно смешивают с балансовой частью газа сепарации, газовую смесь сепарируют при пониженной температуре, но не ниже температуры замерзания воды или образования газовых гидратов, с выделением водной суспензии серы, и далее очищают от сероводорода с получением очищенного газа и газа, содержащего сероводород, а на окисление подают смесь газа, содержащего сероводород, с частью газа сепарации и кислородсодержащим газом при мольном соотношении кислород:сероводород 0,35÷0,45, продукты окисления смешивают с частью водной суспензии серы и сепарируют смесь при температуре 125÷135°С с выделением жидкой серы и газа сепарации.

Предварительное смешение очищаемого газа с балансовой частью газа сепарации, сепарация газовой смеси с выделением водной суспензии серы при пониженной температуре, но не ниже температуры замерзания воды или образования газовых гидратов, позволяет сконденсировать реакционную воду и очистить смесь газов от аэрозоля и паров серы.

Подача на окисление смеси газа, содержащего сероводород, с кислородсодержащим газом при мольном соотношении кислород:сероводород 0,35÷0,45:1 (меньшем, чем стехиометрическое соотношение 0,5:1) и частью газа сепарации, позволяет за счет проведения окисления при недостатке кислорода предотвратить образование диоксида серы. Увеличение соотношения кислород: сероводород свыше 0,45 приводит к появлению в продуктах реакции диоксида серы, загрязняющего очищаемый газ, а снижение ниже 0,35 приводит к возрастанию циркуляции сероводорода и увеличению нагрузки на стадию очистки газа. Расход теплоты реакции окисления на нагрев рециркулируемой части газа сепарации позволяет проводить процесс окисления в оптимальных температурных условиях и исключить образование диоксида серы.

Смешение продуктов окисления с частью водной суспензии серы и сепарация смеси при температуре 125÷135°С с выделением жидкой серы и газа сепарации позволяет сконденсировать серу путем прямого охлаждения испаряющейся водой с одновременной конденсацией паров серы на каплях воды и частицах серы без использования металлоемких поверхностных конденсаторов серы.

Способ осуществляется следующим образом. Очищаемый сероводородсодержащий газ (I) смешивают с балансовой частью газа сепарации (II), сепарируют в охлаждаемом сепараторе 1 с выделением суспензии серы (III) и сероводородсодержащей смеси газов (IV), которую направляют на блок очистки от сероводорода 2, где получают газ, содержащий сероводород (V), и очищенный газ (VI), который выводят с установки. Газ, содержащий сероводород (V) смешивают с кислородсодержащим газом (например, воздухом) (VII) при мольном соотношении кислород:сероводород 0,35÷0,45, и рециркулируемой частью газа сепарации (VIII), и направляют на блок прямого каталитического окисления 3, сероводород селективно окисляют до серы. Продукты окисления (IX), содержащие пары серы, реакционной воды и непрореагировавший сероводород, смешивают с частью водной суспензией серы (X), подаваемом в количестве, которое обеспечивает поддержание температуры смеси 125÷135°С, жидкую серу (XI) отделяют в сепараторе 4 и выводят с установки. Часть газа сепарации (VIII) направляют на смешение с кислым газом (V), а балансовую часть (II) направляют в поток сероводородсодержащего газа (I). Балансовую часть водной суспензии серы (XII) фильтруют (на схеме не показано), воду выводят с установки.

Сущность изобретения иллюстрируется следующим примером.

Пример 1. Углеводородный газ состава, % об.: кислород 0,03, азот 11,40, углекислый газ 0,28, метан 73,3, этан 5,89, пропан 4,15, н-бутан 1,40, изобутан 1,10, изопентан 0,73, пентан и выше отс., сероводород 1,72, с влажностью, соответствующей точке росы 25°С и расходом 10 л/мин смешивают с балансовой частью газа сепарации, при 35°С сепарируют водную суспензию серы и подвергают аминовой очистке 50% водным раствором метилдиэтаноламина с получением очищенного газа и кислого газа с концентрацией сероводорода 92% об. (в расчете на осушенный газ). Кислый газ смешивают с 0,27 л/мин воздуха, что обеспечивает соотношение кислород:сероводород около 0,35:1, далее смешивают с 2,0 л/мин рециркулируемой части газа сепарации и при температуре 250-300°С в присутствии 200 см3 гранулированного катализатора ИКТ-27-42 (ТУ 6-68-205-03) окисляют сероводород до серы. Газообразные продукты реакции смешивают с водной суспензией серы при 130°С, жидкую серу отделяют, а газ сепарации частично рециркулируют, подавая на смешение с кислым газом, а балансовое количество подают на смешение с сероводородсодержащего газом.

Состав очищенного газа в расчете на осушенный газ: кислород отс., азот 11,62, углекислый газ 0,29, метан 74,6, этан 5,98, пропан 4,23, н-бутан 1,41, изобутан 1,12, изопентан 0,74, сероводород 0,0003, диоксид серы - отс. В течение 30 мин с момента установления стационарного режима получено 7,35 г серы.

Из примера следует, что предлагаемый способ позволяет эффективно очищать углеводородный газ от сероводорода с получением жидкой серы и может быть использован в нефтегазовой, нефтеперерабатывающей, химической и нефтехимической промышленности.

Способ очистки газа от сероводорода путем окисления кислородом при повышенной температуре в присутствии твердого катализатора и конденсации серы из продуктов окисления, отличающийся тем, что очищаемый газ предварительно смешивают с балансовой частью газа сепарации, газовую смесь сепарируют при пониженной температуре, но не ниже температуры замерзания воды или образования газовых гидратов, с выделением водной суспензии серы, и далее очищают от сероводорода с получением очищенного газа и газа, содержащего сероводород, а на окисление подают смесь газа, содержащего сероводород, с частью газа сепарации и кислородсодержащим газом при мольном соотношении кислород:сероводород 0,35÷0,45, продукты окисления смешивают с частью водной суспензии серы и сепарируют смесь при температуре 125÷135°C с выделением жидкой серы и газа сепарации.



 

Похожие патенты:

Изобретение относится к области химии и может быть использовано для управления процессом восстановления кислородсодержащих сернистых газов с получением элементарной серы в цветной металлургии, химической и нефтеперерабатывающей промышленности.

Изобретение относится к области органической химии, в частности, к способам получения элементной серы из сероводородсодержащих газов и газоконденсатных смесей, и может быть использовано на предприятиях химической, нефтехимической, газоперерабатывающей и металлургической промышленности.

Изобретение относится к подготовке углеводородного газа. Cпособ комплексной подготовки углеводородного газа, включающий очистку от тяжелых углеводородов, меркаптанов, сероводорода и осушку с получением очищенного газа и газов регенерации, а также утилизацию кислого газа регенерации с получением серы и отходящего газа, при этом углеводородный газ предварительно смешивают со смесью газов регенерации и отходящего газа и подвергают абсорбционной очистке хемосорбентом с получением органической фазы, воды и предварительно очищенного газа, направляемого на дальнейшую очистку, при этом в качестве хемосорбента используют углеводородный раствор серы, органических ди- и полисульфидов, а также каталитическое количество органического соединения, содержащего третичный атом азота, который получают путем смешения органической фазы с серой в количестве, обеспечивающем полное окислительное превращение меркаптанов.

Изобретение относится к области химии. Серу получают методом каталитического прямого окисления сероводорода кислородом в две или более стадии в условиях отвода тепла реакции из объема катализатора.

Изобретение может быть использовано в нефтяной, газовой, газоперерабатывающей, нефтеперерабатывающей, нефтехимической отраслях промышленности и относится к способам жидкофазной окислительной конверсии сероводорода, содержащегося в газах, с получением элементарной серы.

Изобретение относится к области электрохимии. В органический растворитель с фоновым электролитом вводят электрокатализатор - 3,5-ди-трет-бутил-о-бензохинон и проводят электролиз сероводорода на платиновом аноде при температуре 20-25°С и атмосферном давлении.
Изобретение относится к способу получения элементарной серы из высококонцентрированных сероводородсодержащих газов, включающему окисление сероводорода кислородом в неподвижном слое гранулированного катализатора при повышенной температуре и конденсацию получаемой серы на теплообменной поверхности.
Изобретение относится к области химии и может быть использовано в процессах получения серы из дымовых газов, содержащих диоксид серы, на предприятиях химической, нефтехимической, газоперерабатывающей и металлургической промышленности.

Изобретение относится к области химии и может быть использовано для получения элементной серы из отходящего газа, содержащего диоксид серы, на предприятиях химической, нефтехимической, газоперерабатывающей и металлургической промышленности.

Изобретение относится к области химии. .

Изобретение относится к области металлургии, а именно к фольге из нержавеющей стали, используемой в носителе катализатора устройства очистки выхлопного газа автомобиля.

Изобретение может быть использовано в химической промышленности для восстановления оксидов азота до азота в отработанном газе. Отработанный газ в присутствии кислородсодержащего органического восстановителя пропускают через каталитическую систему, содержащую, по меньшей мере, два слоя катализатора.
Изобретение относится к области катализа. Описан способ приготовления катализатора для полного окисления углеводородов путем нанесения платины или палладия на прокаленный сульфатированный цирконийоксидный носитель путем пропитки его водным раствором соединения платины или палладия с последующей прокаливанием на воздухе при температуре 300-500°C и восстановлением в токе водорода при температуре 300-500°C, в котором сульфатированный цирконийоксидный носитель дополнительно модифицируют ионами галлия путем их нанесения из водного раствора нитрата галлия.

Изобретение относится к области химии. Серу получают методом каталитического прямого окисления сероводорода кислородом в две или более стадии в условиях отвода тепла реакции из объема катализатора.

Группа изобретений относится к фильтру для улавливания твердых частиц с гидролизующим покрытием, который может быть использован, главным образом, в системах выпуска отработавших газов, образующихся при работе нестационарных двигателей внутреннего сгорания, например на автомобилях.

Изобретение относится к области воздухоочистки и вентиляции и может найти применение в быту, лечебных учреждениях, в производственных помещениях и т.д. Фотокаталитический воздухоочиститель включает корпус, который выполнен в виде закрученной в спираль постоянной по площади поперечного сечения трубки, образующей фотокаталитический блок, внутренняя поверхность которого покрыта слоем фотокатализатора, насос-вентилятор и пылевой фильтр с органическим или неорганическим адсорбентом.

Изобретение может быть использовано в химической промышленности. Способ удаления серо-, азот- и галогенсодержащих примесей, присутствующих в синтез-газе, таких как H2S, COS, CS2, HCN, NH3, HF, HCl, HBr и HI, содержит: а) этап совместного гидролиза COS и HCN и улавливания галогенированных соединений с использованием катализатора на основе TiO2, содержащего от 10 вес.% до 100 вес.% TiO2 и от 1 вес.% до 30 вес.% по меньшей мере одного сульфата щелочноземельного металла, выбранного из кальция, бария, стронция и магния, b) этап промывки по меньшей мере одним растворителем, с) этап обессеривания на улавливающей массе или адсорбенте.

Изобретение относится к катализаторам сжигания водорода. Описан катализатор сжигания водорода, включающий каталитически активный металл, нанесенный на носитель катализатора, образованный неорганическим оксидом, при этом носитель включает органический силан по меньшей мере с одной алкильной группой из трех или менее атомов углерода, путем замещения присоединенной к концу каждой из определенной части или ко всем гидроксильным группам на поверхности носителя; и каталитически активный металл нанесен на носитель катализатора, включающий присоединенный к нему органический силан.

Группа изобретений относится к методам очистки воздушных потоков с использованием фотохимических реакций. Устройство содержит последовательно расположенные секции электростатической очистки, фотоокисления, фотокатализа и увлажнения.

Настоящее изобретение относится к катализатору окисления ртути (варианты) и способу его приготовления (варианты). Описан катализатор окисления ртути в отходящем газе до водорастворимого соединения ртути, предотвращающий улетучивание МоО3, который содержит: TiO3 в качестве носителя; V2O5 и МоО3 в качестве активных компонентов, нанесенных на носитель, и по меньшей мере один из элементов, выбранных из группы, состоящей из W, Cu, Со, Ni, Zn и их соединений, в качестве компонента, предотвращающего улетучивание МоО3, нанесенного на носитель.

Изобретение относится к устройству и способу управления последовательным взаимодействием жидкости с различными газами в отдельных зонах массообмена внутри единой емкости, причем зоны массообмена функционально соединены посредством жидкостного соединения друг с другом, что предусматривает непосредственное взаимодействие жидкости с технологическим газом в параллельном потоке в расположенной ниже по потоку зоне массообмена для осуществления массообмена между жидкостью и технологическим газом, и введение жидкости в расположенную выше по потоку зону массообмена со вторым газом, отличающимся от технологического газа, для осуществления массообмена между жидкостью и вторым газом.
Наверх