Способ тестирования солеустойчивости сельскохозяйственного растения

Изобретение относится к области физиологии растений. Изобретение представляет собой способ оценки устойчивости растений к засолению почвы. При реализации способа проводят фиксацию корней 3- и 6-дневных проростков тестируемых растений и приготовление препаратов мацерированных клеток. Осуществляют иммунофлуоресцентное окрашивание препарата антителами к белку, формирующему микротрубочки цитоскелета, с последующим микроскопическим анализом окрашенного препарата и сравнением препарата с контрольным образцом. О солеустойчивости сельскохозяйственного растения судят по нарушению параллельности ориентации кортикальных пучков микротрубочек цитоскелета 6-дневных образцов относительно ориентации кортикальных микротрубочек цитоскелета 3-дневных образцов. Изобретение позволяет оценить устойчивость растений к засолению почвы. 6 з.п. ф-лы.

 

Изобретение относится к области физиологии растений, а именно к способам оценки устойчивости растений к засолению почвы, и может быть применено в растениеводстве и селекции при отборе солеустойчивых сортов.

Разработанный метод дает возможность проводить направленный отбор экземпляров растений, пригодных для дальнейших испытаний и отбраковывать экземпляры, которые не приобрели устойчивости к соли для дальнейшей селекционной работы.

Известен (SU, авторское свидетельство 1166745) способ определения солеустойчивости растений. Согласно известном способу проводят проращивание семян в солевом растворе, причем с целью повышения точности и сокращения затрат времени, из семян стерильно выделяют зародыши и помещают их на питательную среду, в которую дополнительно вводят 2-3 мас.% хлористого натрия, при этом о солеустойчивости судят в сравнении с сортом-индикатором.

К недостаткам известного способа следует отнести невысокую точность.

Известен также (RU, патент 2017408) способ оценки солеустойчивости растений на основании измерения биофизического показателя. В качестве биофизического показателя измеряют электрическое сопротивление листьев в период воздействия солевого стресса на растение, а об устойчивости к засолению судят по изменению этого показателя в сравнении с уровнем электрического сопротивления листьев растений, находящихся в оптимальных условиях роста, при этом, чем меньше изменяется сопротивление, тем выше солеустойчивость растений.

Недостатком известного способа следует признать его невысокую точность.

Известен (RU, патент 2181240) способ оценки солеустойчивости растений, включающий 10-суточное проращивание семян в термостате при температуре 25-28°C на увлажненной водой и 0,5-молярным раствором хлористого натрия многослойной фильтровальной бумаге, причем семенной материал после предварительного получасового замачивания в теплой (30-35°C) воде проращивают при круглосуточном освещении 5 тыс. лк с последующим определением содержания в листьях свободного пролина и вычислением коэффициентов солеустойчивости, которые выражаются отношением концентрации аминокислоты в растениях, выращенных на солевом растворе, к контрольной (на воде), и выделяют три группы стойкости растений: высоко устойчивые к засолению (коэффициент солеустойчивости 3,0 и выше), среднеустойчивые (2,0-2,9), слабоустойчивые (1,9 и ниже).

Недостатком известного способа следует признать его невысокую точность.

Наиболее близким аналогом разработанного технического решения можно признать (Тестирование солеустойчивости нормальных и модифицированных форм сельскохозяйственных растений по цитологическим маркерам: автореферат диссертации на соискание ученой степени кандидата биологических наук: 03.00.23 / Баранова Екатерина Николаевна; (Всероссийский научно-исследовательский институт сельскохозяйственной биотехнологии РАСХН) способ тестирования солеустойчивости сельскохозяйственного растения. Согласно известному способу проводят фиксацию корней проростков тестируемых растений и приготовление препаратов мацерированных клеток из фиксированных корней проростков, иммунофлуоресцентное окрашивание препарата антителами к белку, формирующему микротрубочки цитоскелета, а именно к α-тубулину, с последующим микроскопическим анализом окрашенного препарата и сравнением препарата с контрольным образцом, при этом о солеустойчивости сельскохозяйственного растения судят по изменению цитоскелета тестируемого растения относительно цитоскелета контрольного растения. Разработанный способ применим для тестирования, как нормальных форм сельскохозяйственного растения, так и модифицированных форм сельскохозяйственного растения. В предпочтительном варианте реализации тестированию подвергают 2-3-дневные проростки сельскохозяйственного растения, которые преимущественно выращивают в условиях акклимации к стрессовым факторам.

Недостатком известного способа следует признать недостаточную точность определения.

Технический результат, достигаемый при реализации разработанного способа, состоит в повышении точности определения солеустойчивости растений.

Для достижения указанного технического результата предложено использовать разработанный способ тестирования солеустойчивости сельскохозяйственного растения. При реализации разработанного способа проводят фиксацию корней 3-дневных, а затем 6-дневных проростков, тестируемых растений и приготовление препаратов мацерированных клеток из фиксированных корней проростков, иммунофлуоресцентное окрашивание препарата антителами к белку, формирующему микротрубочки цитоскелета, с последующим микроскопическим анализом окрашенного препарата и сравнением препарата с контрольным образцом, при этом сельскохозяйственное растение признается солеустойчивым, если параллельность ориентации кортикальных пучков микротрубочек цитоскелета 6-дневных образцов нарушена не более чем на 32-35% относительно ориентации кортикальных микротрубочек цитоскелета 3-дневных образцов.

В процессе определения солеустойчивости сельскохозяйственных растений экспериментально было установлено, что точность определения по способу - прототипу не достаточна. По этой причине были проведены дальнейшие исследования по изучению влияния среды на положение микротрубочек цитоскелета. Исследования проводили методом, тождественным методу, известному из прототипа, но на проростках 2-, 4-, 5-, 6-, 7- и 8-дневным. При проведении экспериментов было экспериментально установлено, что характеристикой солеустойивости сельскохозяйственных растений является отклонение от параллельности кортикальных микротрубочек цитоскелета, причем наиболее четко это отклонение проявляется для 6-дневных проростков. Также экспериментально было установлено, что максимальной сопеустойчивостью обладают сельскохозяйственные растения, для которых параллельность ориентации кортикальных пучков микротрубочек цитоскелета 6-дневных образцов нарушена не более чем на 32-35% относительно ориентации кортикальных микротрубочек цитоскелета 3-дневных образцов.

Разработанный способ применим для тестирования как нормальных форм сельскохозяйственного растения, так и модифицированных форм сельскохозяйственного растения. В предпочтительном варианте реализации тестированию подвергают проростки сельскохозяйственного растения, которые преимущественно выращивают в условиях акклимации к стрессовым факторам. В некоторых вариантах реализации в качестве контрольных экземпляров используют растения, развивающиеся в рулонной культуре.

В предпочтительном варианте реализации фиксацию корней проростков тестируемых растений осуществляют путем помещения корней проростков в раствор 4% параформальдегида в РНЕМ-буфере pH 6,9 в течение 1,5-2 часов при комнатной температуре с последующей отмывкой излишков фиксатора в том же буфере. Однако в зависимости от условий реализации способа могут быть использованы и другие варианты реализации фиксации растительной ткани.

Преимущественно приготовление препаратов мацерированных клеток из фиксированных корней проростков проводят путем отделения зоны меристемы и помещения ее в мацерирующий раствор, содержащий 2% раствор целлюлазы «Sigma» на Na-ацетатном буфере pH 5,0, на 30 секунд, после чего обработанные корешки накапливают в РНЕМ-буфере с последующим разделением на клетки зоны меристем и помещением продуктов разделения в 0,2% желатин и высушиванием на воздухе при +4°C. Однако в зависимости от условий реализации способа могут быть использованы и другие варианты приготовления препаратов мацерированных клеток из фиксированных растительных тканей.

Обычно иммунофлуоресцентное окрашивание препарата антителами к α-тубулину проводили путем помещения образцов в 0,5% Triton Х-100, приготовленный на стабилизирующем микротрубочки буфере (РНЕМ), содержащем 5% диметилсульфоксида (DMSO), на 30 минут, затем последовательно отмывали в 10 mM Mg-Tris-Cl буфере (pH 7,6), инкубировали в течение ночи при комнатной температуре с моноклональными антителами к α-тубулину мыши (клон DM1A), отмывали в 10 mM Mg-Tris-Cl буфере (pH 7,6), инкубировали в 20 mM Mg-Tris-Cl буфере, содержащем 0,1% фосфатного буфера (BSA) (pH 8,2), инкубировали с FITC-коньюгированными антимышиными IgG, Alexa-коньюгированными антикрысиными IgG, TRITC-коньюгированными антикрысиными IgG 45 минут при 37°C, окрашивали DAPI и помещали в заливочную среду, содержащую флуорохром и хлорид магния (Vestasheld). Однако в зависимости от условий реализации способа могут быть использованы и другие варианты иммунофлуоресцентного окрашивание препаратов из фиксированных растительных тканей.

В предпочтительном варианте реализации разработанный способ применяют следующим образом.

В качестве модели используют 3- и 6-дневные проростки. Принципиальным является то, что для выявления реакции цитоскелета экспериментальные растения выращиваются в условиях акклимации к стрессовым факторам.

Фиксацию и приготовление препаратов мацерированных клеток осуществляют следующим образом. Корни проростков фиксировали в растворе 4% параформальдегида в РНЕМ-буфере pH 6,9 (60 mM PIPES, 25 mM HEPES, 10 mM EGTA, 2 mM MgCl2) в течение 1,5-2 часов при комнатной температуре. Далее фиксатор отмывали в том же буфере. Отделяли зону меристемы (3 мм) и помещали в мацерирующий раствор, содержащий 2% раствор целлюлазы «Sigma» на Na-ацетатном буфере pH 5,0, на 30 секунд, после чего обработанные корешки накапливали в PHEM-буфере. Препараты получали после разделения на клетки зоны меристем с использованием металлической иглы. После чего помещали в 0,2% желатин и высушивали на воздухе в холодильнике при +4°C.

Для иммунофлуоресцентного окрашивания антителами к α-тубулину образцы помещали в 0,5% Triton Х-100, приготовленный на РНЕМ, содержащем 5% DMSO, на 30 минут. Далее отмывали в ЮтМ Mg-Tris-Cl буфере (pH 7,6) и инкубировали в течение ночи при комнатной температуре с моноклональными антителами к α-тубулину, мыши (клон DM1A). После чего отмывали в 10 mM Mg-Tris-Cl буфере (pH 7,6) и инкубировали в 20 mM Mg-Tris-Cl буфере, содержащем 0,1% BSA (pH 8,2). Затем клетки инкубировали с FITC-коньюгированными антимышиными IgG, Alexa-коньюгированными антикрысиными IgG, TRITC-коньюгированными антикрысиными IgG 45 минут при 37°C. Клетки окрашивали DAPI и помещали в Vestasheld.

Полученные препараты просматривали в световом микроскопе Zeiss с флуоресцентной насадкой и стандартным набором фильтров, использовали ×40 и ×100 обьективы. Изображения записывали на DC камеру Kodak 260 и анализировали в программе Adope Photoshop 6.0. По величине отклонения ориентации микротрубочек в кортикальном цитоскелете клеток для 3- и 6-дневных проростков судят о солеустойчивости сельскохозяйственного растения.

Выше приведенным способом были протестированы заведомо неустойчивые к соли растения люцерны посевной (сорт «Надежда») и ячменя (сорт «Белогорский»). Установлено, что в препаратах, полученных разработанным способом, отклонение ориентации кортикальных пучков микротрубочек цитоскелета 6-дневных образцов нарушена не более чем на 54-57% относительно ориентации кортикальных микротрубочек цитоскелета 3-дневных образцов, Аналогично были протестированы растения солеустойчивого клона люцерны, полученного методом клеточной селекции, и у солеустойчивого ячменя сорта «Эол», полученного методом генной инженерии, микротрубочки приобретают устойчивость к действию соли. У этих препаратов отклонение от параллельности ориентации кортикальных пучков микротрубочек цитоскелета 6-дневных образцов нарушена не более чем на 26-28% относительно ориентации кортикальных микротрубочек цитоскелета 3-дневных образцов.

Тестирование солеустойчивых сортов риса («Южанин», «Степняк») показало, что для этих сортов отклонение от параллельности ориентации кортикальных пучков микротрубочек цитоскелета 6-дневных образцов составляет не более чем на 29-31% относительно ориентации кортикальных микротрубочек цитоскелета 3-дневных образцов. Для сорта риса «камолино» (Египетский рис), очень чувствительного к солености почвы, отклонение от параллельности ориентации кортикальных пучков микротрубочек цитоскелета 6-дневных образцов составляет не более чем на 61-64% относительно ориентации кортикальных микротрубочек цитоскелета 3-дневных образцов.

Тестирование солеустойчивой пшеницы «Ошская» показало, что отклонение от параллельности ориентации кортикальных пучков микротрубочек цитоскелета 6-дневных образцов составляет не более чем на 23-26% относительно ориентации кортикальных микротрубочек цитоскелета 3-дневных образцов. Для пшеницы сорта «Саратовская 29» - соответственно 49-52%.

1. Способ тестирования солеустойчивости сельскохозяйственного растения, отличающийся тем, что проводят фиксацию корней 3- и 6-дневных проростков тестируемых растений и приготовление препаратов мацерированных клеток из фиксированных корней проростков, иммунофлуоресцентное окрашивание препарата антителами к белку, формирующему микротрубочки цитоскелета, с последующим микроскопическим анализом окрашенного препарата и сравнением препарата с контрольным образцом, при этом сельскохозяйственное растение признается солеустойчивым, если параллельность ориентации кортикальных пучков микротрубочек цитоскелета 6-дневных образцов нарушена не более чем на 32-35% относительно ориентации кортикальных микротрубочек цитоскелета 3-дневных образцов, причем тестируемые растения выращивают в условиях акклимации к стрессовым факторам.

2. Способ по п.1, отличающийся тем, что тестированию подвергают нормальные формы сельскохозяйственного растения.

3. Способ по п.1, отличающийся тем, что тестированию подвергают модифицированные формы сельскохозяйственного растения.

4. Способ по п.1, отличающийся тем, что в качестве контрольных экземпляров используют растения, развивающиеся в рулонной культуре.

5. Способ по п.1, отличающийся тем, что фиксацию корней проростков тестируемых растений осуществляют путем помещения корней проростков в раствор 4% параформальдегида в РНЕМ-буфере pH 6,9 в течение 1,5-2 часов при комнатной температуре с последующей отмывкой излишков фиксатора в том же буфере.

6. Способ по п.1, отличающийся тем, что приготовление препаратов мацерированных клеток из фиксированных корней проростков проводят путем отделения зоны меристемы и помещения ее в мацерирующий раствор, содержащий 2% раствор целлюлазы «Sigma» на Na-ацетатном буфере pH 5,0, на 30 секунд, после чего обработанные корешки накапливают в РНЕМ-буфере с последующим разделением на клетки зоны меристем и помещением продуктов разделения в 0,2% желатин и высушиванием на воздухе при +4°C.

7. Способ по п.1, отличающийся тем, что иммунофлуоресцентное окрашивание препарата антителами к α-тубулину проводят путем помещения образцов в 0,5% Triton Х-100, приготовленный на стабилизирующем микротрубочки буфере (РНЕМ), содержащем 5% диметилсульфоксида, на 30 минут, затем последовательно отмывали в 10 mM Mg-Tris-Cl буфере (pH 7,6), инкубировали в течение ночи при комнатной температуре с моноклональными антителами к α-тубулину мыши (клон DM1A), отмывали в 10 mM Mg-Tris-Cl буфере (pH 7,6), инкубировали в 20 mM Mg-Tris-Cl буфере, содержащем 0,1% фосфатного буфера (pH 8,2), инкубировали с FITC-коньюгированными антимышиными IgG, Alexa-конъюгированными антикрысиными IgG, TRITC-конъюгированными антикрысиными IgG 45 минут при 37°C, окрашивали DAPI и помещали в заливочную среду, содержащую флуорохром и хлорид магния (Vestasheld).



 

Похожие патенты:

Изобретения относятся к области сельского хозяйства. Способ включает высев на полях комплекса сортов пшеницы, расположенных совместно в регионе.
Способ относится к области сельского хозяйства, в частности к плодоводству и селекции. Способ включает промораживание однолетних побегов в период покоя в камере искусственного климата.

Изобретение относится к области селекции сельскохозяйственных растений. Изобретение представляет собой способ оценки кислотоустойчивости сельскохозяйственных растений, включающий размещение зерен в инертном носителе с дистиллированной водой с низкой (стресс-фактор) и нейтральной (контроль) pH, воду заменяют ежедневно в одно и то же время суток на дистиллированную воду с низкой и нейтральной pH соответственно, замеряют массу корней (mr), массу побегов (ms), общую массу растений (mp), длину побегов (l), оценку проводят по коэффициенту редукции, при этом, если Кред ≥1 - растение ацидофильное; 0,5<Кред<1 - растение толерантное к высокой кислотности; Кред<0,5 - растение кислоточувствительное.
Изобретение относится к области сельского хозяйства. Изобретение представляет собой способ ускоренной оценки устойчивости сортов гороха к Bruchus pisorum L.

Изобретение относится к области сельского хозяйства. Изобретение представляет собой способ отбора засухоустойчивых растений рапса (Brassica napus L.), включающий измерение длины левого и правого семядольных листьев растений рапса в образце, определение показателя флуктуирующей асимметрии, при этом в качестве засухоустойчивых растений рапса отбирают растения с величиной флуктуирующей асимметрии, равной или меньше 0,031±0,0060.

Изобретение относится к области сельского хозяйства, в частности к селекции растений. Способ включает отбор более устойчивых к растрескиванию стручков образцов путем анализа высоты плотной перегородки в области гинофора в фазу зеленого стручка.
Изобретение относится к области сельского хозяйства, в частности к селекции. .

Изобретение относится к области биохимии, в частности к маслу из семян элитного сорта подсолнечника, имеющему профиль жирных кислот, включающий 3% или меньше общего содержания взятых вместе пальмитиновой кислоты (16:0) и стеариновой кислоты (18:0).

Изобретение относится к области биохимии. .
Изобретение относится к области сельского хозяйства, в частности к селекции. .

Изобретение относится к области биохимии, в частности к способу создания трансгенных линий растений, продуцирующих белок с высоким уровнем экспрессии, включающему трансформацию растений экспрессирующим вектором, включающим плазмиду, содержащую ген, кодирующий β-глюкуронидазу, 35S промотор, nos терминатор транскрипции.

Изобретение относится к области биохимии, в частности к способу молекулярно-генетической идентификации древесных видов растений, который включает выбор эффективных стабильных молекулярных маркеров, сбор материала, проведение молекулярно-генетического анализа с использованием ПЦР, анализ выявленных ISSR-маркеров и определение идентификационных (мономорфных и полиморфных), анализ полученных данных после секвенирования, составление молекулярно-генетической формулы, составление штрихкода, составление генетического паспорта.
Изобретение относится к области биотехнологии и генной инженерии, в частности к способам получения трансгенных форм картофеля in vitro сорта Скороплодный, устойчивых к абиотическим и биотическим стрессам.

Изобретение относится к области биохимии, в частности к способу оценки степени пленчатости зерна генотипа ячменя по сравнению со степенью пленчатости других генотипов ячменя одного года репродукции, включающий взятие навески сухого зерна каждого генотипа, помещение ее в жидкость, выдерживание навески зерна в этой жидкости в течение определенного времени, извлечение навески и повторное взвешивание.
Изобретение относится к биотехнологии и представляет собой питательную среду для укоренения побегов яблони и груши in vitro. .

Изобретение относится к способу получения растений-регенерантов ириса мечевидного (I.ensata Thunb.) in vitro. .

Изобретение относится к способу скрининга популяции растений листовых овощей на присутствие особей, обнаруживающих пониженную чувствительность к этилену и физиологическим нарушениям, в частности к Бурой Пятнистости и Пожелтению по сравнению с контрольным растением.
Изобретение относится к области сельского хозяйства и может быть использовано для оценки качества зерна генотипов ячменя пивоваренного направления. .

Изобретение относится к биотехнологии и может быть использовано в сельском хозяйстве в области растениеводства на открытом грунте и в сооружениях защищенного грунта.

Изобретение относится к биотехнологии. .
(57) Изобретение относится к области биотехнологии и генной инженерии. Листовые экспланты, вычлененные из тридцатидневных асептических растений исходных сортов, выращенных в сосудах 1 л, помещают в чашки Петри с жидкой средой определенного состава и прединкубируют, кокультивируют и культивируют на питательных средах определенного состава. При появлении регенерантов размером не менее 10 мм их срезают и переносят на среду определенного состава. Проводят первый этап отбора форм, устойчивых к возбудителям фитофтороза и альтернариоза, путем культивирования срезанных регенерантов на среде МС с 50 мл/л канамицина сульфата в течение 30-45 дней при 22-25°C и освещенности 6000-10000 лк при 16-часовом фотопериоде с последующим отбором укоренившихся регенерантов картофеля с зелеными листьями и стеблями. Проводят второй этап отбора форм, устойчивых к возбудитялям фитофтороза и альтернариоза, включающий проверку укоренившихся растений методом ПЦР на наличие целевой ДНК и размножение регенерантов с подтвержденной ПЦР вставкой целевой ДНК микрочеренкованием. Использование заявленного способа позволяет получить устойчивые к возбудителям фитофтороза и альтернариоза формы картофеля. 5 табл.
Наверх