Ступень турбины гтд с отверстиями отвода концентрата пыли от системы охлаждения

Ступень турбины газотурбинного двигателя, выполненного с отверстиями отвода концентрата пыли от системы охлаждения, содержит рабочие и сопловые охлаждаемые лопатки, образующие проточную часть турбины, аппарат закрутки с отверстиями для подвода охлаждающего воздуха в систему охлаждения элементов турбины. В аппарате закрутки дополнительно имеется, по меньшей мере, одно отверстие отвода пылевого концентрата, которое выполнено под углом 0°<α<90° в направлении вращения рабочего колеса и под углом 0°<β<60° от оси двигателя. Отверстие отвода пылевого концентрата находится выше по радиусу отверстий подвода охлаждающего воздуха в меридиальной плоскости на расстоянии более одного диаметра отверстий подвода охлаждающего воздуха. Изобретение направлено на предотвращение загрязнения системы охлаждения турбины и как следствие повышение надежности работы турбины. 3 ил.

 

Изобретение относится к охлаждаемым турбинам газотурбинных авиационных двигателей и газотурбинных установок наземного применения.

Изобретение направлено на решение проблемы попадания пыли в систему охлаждения лопаток турбины посредством внедрения в конструкцию отверстий, через которые частицы пыли сбрасываются в проточную часть и далее в атмосферу через реактивное сопло.

Газовые турбины и принцип их действия общеизвестны. Во время работы газовой турбины для охлаждения ее направляющих и рабочих лопаток подается охлаждающий воздух под давлением, которое обычно отбирается на выходе из компрессора или его диффузора. Несмотря на то, что проходящий через компрессор воздух предварительно фильтруется в установленном перед ним входном устройстве, расположенных там фильтров недостаточно, чтобы в соответствии с требованиями очистить охлаждающий воздух, протекающий через подверженные воздействию горячего газа детали газовой турбины. Подхваченные сжатым воздухом грязевые частицы представляют собой опасность, по меньшей мере, для той его части, которая используется в качестве охлаждающего воздуха для охлаждения турбин. Опасность заключается в засорении отверстий, необходимых для охлаждения турбинных лопаток осаждающимися на них грязевыми частицами, которые подхватываются охлаждающим воздухом. Из-за этого необходимое охлаждение турбинных лопаток при определенных условиях нельзя обеспечить на необходимый ресурс.

В соответствии с данной проблемой подаваемый к турбине охлаждающий воздух приходится очищать при помощи дополнительных мер.

Известно устройство охлаждения турбины (Патент РФ №1625078, кл. F01D 5/08, опубликовано 15.05.1994), содержащее рабочее колесо с установленными в нем охлаждаемыми лопатками. Охлаждаемая лопатка содержит полое перо с отверстиями в периферийном торце, которые имеют переменный диаметр, уменьшающийся от входной кромки к выходной кромке пера через которые выбрасываются частицы пыли.

Недостатком этого устройства является присутствие посторонних частиц внутри лопатки, и налипание их на стенки уменьшает теплосъем температуры от стенки лопатки и приводит к прогару, что снижает ресурс лопатки и уменьшает надежность турбины.

Известно устройство охлаждения турбины (Патент РФ №2406827, кл. F01D5/08, опубликовано 20.12.2010), содержащее отверстия для охлаждения рабочей лопатки турбины. Для выработки чистого охлаждающего воздуха для деталей турбины, например направляющих лопаток и/или рабочих лопаток, радиально снаружи дальше, чем заборные отверстия и на расстоянии от них расположен защитный элемент для осаждения взвешенных в сжатом воздухе частиц. Защитный элемент выполнен в виде козырька, который прочно соединен с корпусом турбины.

Недостатком данного устройства является осаждение частиц пыли на бандажной ленте и других деталях корпуса турбины, что приводит к прогару, уменьшая ресурс работы деталей турбины, а следовательно, снижает надежность работы турбины.

Известно выбранное в качестве прототипа устройство для охлаждения турбины (Патент РФ №2069768, кл. F01D 5/08, F01D 25/12, опубликовано 19.02.1992), содержащее рабочие и сопловые охлаждаемые лопатки, образующие проточную часть турбины, аппарат закрутки с отверстиями для подвода охлаждающего воздуха в систему охлаждения элементов турбины. Сепарация частиц происходит при помощи кольца-отражателя. Посторонние частицы по инерции при ударе о кольцо-отражатель отбрасываются в проточную часть турбины двигателя, а очищенный воздух через щель между кольцом-отражателем и картером турбины поступает в систему охлаждения турбины.

Недостатком описанного устройства является скапливание пыли на стенках картера, что приводит к прогару, снижению ресурса работы деталей турбины и уменьшению надежности работы турбины.

Техническим результатом, достигаемым в заявленном изобретении, является предотвращение загрязнения системы охлаждения турбины и как следствие повышение надежности работы турбины.

Указанный технический результат достигается тем, что ступень турбины ГТД с отверстиями отвода концентрата пыли от системы охлаждения, содержащая рабочие и сопловые охлаждаемые лопатки, образующие проточную часть турбины, аппарат закрутки с отверстиями для подвода охлаждающего воздуха в систему охлаждения элементов турбины, согласно изобретению в аппарате закрутки дополнительно имеется по меньшей мере одно отверстие отвода пылевого концентрата, которое выполнено под углом 0°<α<90° в направлении вращения рабочего колеса и под углом 0°<β<60° от оси двигателя, при этом отверстие отвода пылевого концентрата находится выше по радиусу отверстий подвода охлаждающего воздуха в меридиальной плоскости на расстоянии более одного диаметра отверстий подвода охлаждающего воздуха.

Наличие по меньшей мере одного дополнительного отверстия отвода пылевого концентрата в аппарате закрутки, выполненного под углом 0°<α<90° в направлении вращения рабочего колеса и под углом 0°<β<60° от оси двигателя, расположенного выше по радиусу отверстий подвода охлаждающего воздуха в меридиальной плоскости на расстоянии более одного диаметра отверстий подвода охлаждающего воздуха устраняет возможность скапливания и налипания посторонних частиц на стенках аппарата закрутки, увеличивает ресурс работы деталей и повышает надежность турбины.

На прилагаемых чертежах изображена ступень турбины ГТД с отверстиями отвода концентрата пыли от системы охлаждения:

Фиг.1 - представлен общий вид ступени турбины ГТД с отверстиями отвода концентрата пыли от системы охлаждения;

Фиг.2 - увеличенный разрез А-А фиг.2.

Фиг.3 - увеличенный вид Б фиг.3.

Ступень турбины ГТД с отверстиями отвода концентрата пыли от системы охлаждения содержит рабочие охлаждаемые лопатки 1 и сопловые охлаждаемые лопатки 2, образующие проточную часть 3 турбины. В аппарате закрутки 4 выполнены отверстия 5 для подвода охлаждающего воздуха в систему охлаждения элементов турбины и дополнительно выполнено по меньшей мере одно отверстие 6 отвода пылевого концентрата. Отверстие 6 отвода пылевого концентрата, которое выполнено под углом 0°<α<90° в направлении вращения рабочего колеса 7 и под углом 0°<β<60° от оси двигателя 8, при этом отверстие 6 отвода пылевого концентрата находится выше по радиусу отверстий 5 подвода охлаждающего воздуха в меридиальной плоскости на расстоянии более одного диаметра отверстия подвода охлаждающего воздуха.

Устройство работает следующим образом.

Охлаждающий воздух, отбираемый из-за промежуточной ступени компрессора или вторичный воздух камеры сгорания, засоренный посторонними частицами от выработки уплотнений компрессора, сажи, кокса из-за неполного сгорания топлива в камере сгорания, пыли, попадающей в проточную часть двигателя из внешней атмосферы, поступает в аппарат закрутки 4. Посторонние частицы вследствие массовых сил, закручиваясь, вылетают через отверстия 6 отвода концентрата пыли и сбрасываются в проточную часть 3 турбины, далее за реактивное сопло двигателя, а очищенный воздух через отверстие 5 подвода охлаждающего воздуха поступает в систему охлаждения турбины.

Отверстие отвода пылевого концентрата выполняется под углом 0°<α<90° в направлении вращения рабочего колеса и под углом 0°<β<60° от оси двигателя, выше по радиусу отверстий подвода охлаждающего воздуха в меридиальной плоскости на расстоянии более одного диаметра отверстий подвода охлаждающего воздуха для отвода концентрата пыли и сброса его в проточную часть турбины.

Угол 0°<α<90° позволяет обеспечить снижение температуры охлаждающего воздуха на входе в систему охлаждения рабочих лопаток. Изменение угла α ограничивается технологическими возможностями изготовления. Оптимальное значение угла α выбирается из условия равенства окружной составляющей скорости воздуха истекающего из аппарата закрутки и окружной скорости диска на радиусе входа в каналы охлаждения.

Угол 0°<β<60° позволяет обеспечить отвод концентрата пыли. Изменение угла β ограничивается технологическими возможностями изготовления и обеспечивает выброс частиц пыли в направлении проточной части турбины.

Применяемость заявленного технического решения подтверждена положительными результатами ресурсных и эквивалентно-циклических испытаний опытных образцов авиационных двигателей АЛ-55И №21и №40.

Положительный эффект предполагаемого изобретения проявится в повышении надежности и ресурса работы деталей статора сопловых и рабочих лопаток турбины и повышения их ремонтопригодности.

Ступень турбины ГТД с отверстиями отвода концентрата пыли от системы охлаждения, содержащая рабочие и сопловые охлаждаемые лопатки, образующие проточную часть турбины, аппарат закрутки с отверстиями для подвода охлаждающего воздуха в систему охлаждения элементов турбины, отличающаяся тем, что в аппарате закрутки дополнительно имеется по меньшей мере одно отверстие отвода пылевого концентрата, которое выполнено под углом 0°<α<90° в направлении вращения рабочего колеса и под углом 0°<β<60° от оси двигателя, при этом отверстие отвода пылевого концентрата находится выше по радиусу отверстий подвода охлаждающего воздуха в меридиальной плоскости на расстоянии более одного диаметра отверстий подвода охлаждающего воздуха.



 

Похожие патенты:

Турбина высокого давления газотурбинного двигателя содержит, по меньшей мере, один лопаточный роторный диск, две кольцевых радиально внешних полости. Одна из полостей расположена на входе диска и получает поток вентиляционного воздуха для лопаток диска от днища камеры сгорания.

Объектом настоящего изобретения является узел из диска турбины газотурбинного двигателя и опорной цапфы опорного подшипника. Диск турбины содержит радиальный кольцевой крепежный фланец, неподвижно соединенный с радиальной кольцевой частью цапфы при помощи болтов.

Лопатка турбины охлаждается внутренним потоком охлаждающей текучей среды, поступающей через отверстия, расположенные внизу хвостовой части лопатки. Лопатка включает в себя регулирующую пластину, снабженную отверстиями, расположенными в соответствии с отверстиями внизу хвостовой части лопатки.

Ротор компрессора газотурбинного двигателя содержит, по меньшей мере, два коаксиальных диска, на которых расположены лопатки и которые соединены между собой, по существу, цилиндрической коаксиальной стенкой вращения, и средства центробежного забора воздуха.

Изобретение относится к области газотурбинного двигателестроения, а именно к охлаждаемым турбинам ГТД. .

Изобретение относится к нанесению алюминиевого покрытия на металлическую деталь, а именно на полую деталь, содержащую внутреннюю рубашку, а также к рубашке для циркуляции охлаждающего воздуха, алюминированной полой лопатке газотурбинного двигателя и направляющему сопловому аппарату газотурбинного двигателя.

Изобретение относится к системам регулирования расхода воздуха на охлаждение турбины одноконтурных и двухконтурных двигателей. .

Двухпоточный цилиндр паротурбинной установки включает наружный и внутренний цилиндры, ротор с дисками и рабочими лопатками проточной части прямого и обратного потоков, трубопровод подвода охлаждающего пара к турбине. Во внутреннем цилиндре установлены корпусы с уплотнениями вала ротора. В пространстве между дисками первых ступеней прямого и обратного потоков устанавливаются перегородки, соединенные по торцу с поверхностью внутреннего цилиндра и корпусов уплотнений, образующие две кольцевые камеры, ограниченные поверхностями внутреннего цилиндра, корпусов уплотнений и перегородок, а также боковыми поверхностями дисков первых ступеней. Каждая из кольцевых камер соединена через осевой зазор между диском первой ступени примыкающего к этой камере потока и торцевой поверхностью внутреннего цилиндра с камерой подвода пара на рабочую лопатку первой ступени. Через радиальный зазор между валом ротора и гребнями уплотнений кольцевые камеры соединены между собой. Достигается эффективное охлаждение центральной части ротора при минимальном расходе охлаждающего пара, исключаются непроизводительные перетоки пара, что повышает надежность и КПД цилиндра, увеличивает ресурс ротора. 1 ил.

Лопатка турбины, продолжающаяся вдоль продольной оси (А), содержит крепежный участок, снабженный базовой поверхностью, платформу, соединенную как одно целое с крепежным участком, основной продолговатый корпус, охлаждающий контур и регулировочную пластину. Основной продолговатый корпус продолжается от платформы на противоположной стороне по отношению к крепежному участку и содержит заднюю кромку. Охлаждающий контур содержит первую охлаждающую линию для охлаждения задней кромки и снабжен первым входным отверстием, расположенным на базовой поверхности крепежного участка лопатки. Регулировочная пластина соединена с базовой поверхностью у первого входного отверстия и содержит первый и второй участки, выполненные с возможностью соединения друг с другом и имеющие такую форму, чтобы образовывать вместе отверстие, имеющее переменное сечение. Изобретение направлено на снижение себестоимости лопатки и на корректирование скорости потока охлаждающего воздуха. 3 з.п. ф-лы, 4 ил.

Изобретение относится к газотурбинным двигателям авиационного и наземного применения, преимущественно, к турбомашинам, на роторе которых закрепляются лопатки и средства для охлаждения и устранения деформаций и вибраций. Ротор осевой газовой турбины содержит диск ротора с расположенными на нем охлаждаемыми рабочими лопатками и покрывной диск, установленный на ободе диска ротора с образованием кольцевой полости и зафиксированный с помощью неподвижных разъемных соединений. В ободе диска и в основании хвостовой части каждой лопатки выполнены каналы для подвода охлаждающего воздуха в полости под основанием лопаток и во внутренние полости рабочих лопаток. Диск ротора снабжен кольцевым посадочным выступом, выполненным на ободе диска, а покрывной диск оснащен канавкой, выполненной ответной посадочному выступу. Каналы в ободе диска выполнены открытыми по его поверхности со стороны покрывного диска и наклонными со стороны основания хвостовой части каждой лопатки. Разъемное соединение выполнено в виде радиально центрированных по одной оси отверстий в стенках канавки покрывного диска и посадочного выступа диска ротора и штифтов, установленных в эти отверстия. Ротор содержит не менее трех разъемных соединений. Изобретение позволяет повысить надежность и технологичность ротора турбины газотурбинного двигателя, а также уменьшить его вес. 2 ил.

Изобретение относится к газотурбинным двигателям авиационного и наземного применения и может быть использовано преимущественно в турбомашинах, на роторе которых закрепляются лопатки и средства для охлаждения и устранения деформаций и вибраций. Ротор осевой газовой турбины содержит диск ротора, охлаждаемые рабочие лопатки, расположенные на диске, и покрывной диск. Покрывной диск установлен на диске ротора с образованием кольцевой полости и закреплен байонетными соединениями и штифтами. Кольцевая полость соединена каналами в диске с каналами в основании хвостовой части каждой лопатки. Ротор снабжен также, по меньшей мере, тремя выступами с пазами, выполненными над байонетными соединениями. Байонетные соединения образованы зацепами диска ротора и зацепами покрывного диска. В покрывном диске выполнено не менее трех отверстий, сопрягаемых с пазами. Штифты жестко закреплены в отверстиях покрывного диска и установлены в пазы диска ротора с радиальным зазором. Каждый зацеп покрывного диска установлен по радиусу на расстоянии, равном 1,4-1,8 внутреннего радиуса ступицы покрывного диска. Изобретение позволяет улучшить охлаждение рабочих лопаток, повысить надежность ротора турбины и повысить ресурс газотурбинного двигателя. 2 ил.

Газовая турбина с ротором, в котором установлена лопатка, содержит перо с входной кромкой и выходной кромкой, расположенное вдоль продольной оси указанной лопатки от корневой части до концевой части лопатки. В корневой части пера выполнен хвостовик, установленный съемно в гнезде ротора. В пере выполнена центральная полость, расположенная вдоль продольной оси от хвостовика лопатки до концевой части лопатки и предназначенная для прохода потока охлаждающей текучей среды, который входит в центральную полость лопатки через входное отверстие в хвостовике лопатки и выходит из центральной полости лопатки, по меньшей мере, через одно выходное отверстие в концевой части лопатки. Поток охлаждающей текучей среды подается по каналу ротора, который проходит через ротор и сообщается с входным отверстием лопатки. По меньшей мере, в одном направлении область поперечного сечения входного отверстия лопатки больше области поперечного сечения указанного канала ротора. Выходное отверстие канала ротора имеет форму диффузора и на границе раздела выходного отверстия канала ротора и входного отверстия лопатки область поперечного сечения выходного отверстия канала ротора покрывает область поперечного сечения входного отверстия лопатки. На границе раздела указанного входного отверстия лопатки и выходного отверстия канала ротора расположена полость повышенного давления, образованная между нижней поверхностью указанного хвостовика лопатки и гнездом ротора, в котором расположен хвостовик лопатки. Полость высокого давления имеет конфигурацию, обеспечивающую стравливание потока охлаждающей текучей среды наружу хвостовика лопатки либо к входной кромке пера лопатки, либо к выходной кромке пера лопатки. Изобретение направлено на создание охлаждаемой лопатки, в которой предусмотрена гибкая конфигурация охлаждающих каналов и гибкие режимы на их работы. 11 з.п. ф-лы, 7 ил.

Турбореактивный двигатель содержит впускной канал потока воздуха охлаждения диска турбины высокого давления, открывающийся в полость. Полость является по существу изолированной с входной стороны от полости, в которой циркулирует поток воздуха, отбираемый с выхода компрессора высокого давления, первым лабиринтным уплотнением и с выходной стороны от полости, сообщающейся с первичным каналом турбореактивного двигателя, вторым лабиринтным уплотнением. Турбореактивный двигатель содержит каналы, сообщающиеся с впускным каналом и открывающиеся через неподвижную часть первого лабиринтного уплотнения между двумя ребрами этого уплотнения для обеспечения пропускания между этими ребрами потока воздуха, поступающего из впускного канала. Изобретение направлено на повышение экономичности охлаждения, уменьшение номинальной величины расхода воздушного потока охлаждения входного колеса компрессора высокого давления в турбореактивном двигателе. 5 з.п. ф-лы, 4 ил.

Изобретение относится к роторам высокотемпературных турбин газотурбинных двигателей авиационного и наземного применения. Ротор высокотемпературной турбины включает диски первой и второй ступени, между которыми расположен промежуточный диск с радиальными выступами. Промежуточный диск фиксируется радиальными выступами в окружном направлении относительно осевых выступов, расположенных на полотне диска первой ступени. Осевые выступы на полотне диска первой ступени выполнены таким образом, что образуют в поперечном сечении U-образный выступ. Кольцевое ребро промежуточного диска, размещенное с внутренней стороны обода диска первой ступени, выполнено с пазами. Посредством пазов воздушные полости повышенного давления сообщаются с кольцевой воздушной полостью пониженного давления, ограниченной кольцевым ребром промежуточного диска, радиальными выступами промежуточного диска, U-образным выступом и полотном диска первой ступени. Отношение длины U-образного выступа в осевом направлении к глубине канавки U-образного выступа составляет 1,1 - 2. Изобретение позволяет повысить надежность и снизить вес ротора высокотемпературной турбины. 3 ил.

Изобретение относится к роторам турбин низкого давления газотурбинных двигателей авиационного и наземного применения. Ротор турбины включает установленный на задней по потоку газа стороне обода диска лабиринт с внутренним радиальным ребром, а также установленный с передней стороны обода диска фланец. Фланец образует с ободом диска кольцевую воздушную полость, соединенную на выходе с газовой полостью, а на входе, через каналы в замковом соединении лопатки с диском, с внутренней полостью лабиринта. Лабиринт установлен на диске радиальным фланцем, соединенным с радиальным ребром упругим элементом. Внутренняя полость лабиринта соединена с каналами в замковом соединении через открытые к диску пазы в радиальном фланце лабиринта. Воздушная полость с передней стороны обода соединена с газовой полостью через фаски в замковом соединении лопатки с диском. Отношение осевой длины заднего кольцевого ребра лабиринта относительно внутреннего радиального ребра к осевой длине переднего кольцевого ребра лабиринта относительно внутреннего радиального ребра составляет 2…5. Отношение осевой длины переднего кольцевого ребра лабиринта относительно внутреннего радиального ребра к радиусу поверхности упругого элемента составляет 1,5…3. Изобретение позволяет повысить надежность ротора турбины низкого давления. 1 ил.

Осевая газовая турбина содержит ротор и статор. Статор представляет собой корпус, охватывающий ротор снаружи с образованием между ними тракта течения горячего газа, через который протекает горячий газ, полученный в камере сгорания. Ротор содержит вал с осевыми пазами, в частности, елочного типа для закрепления в них большого количества рабочих лопаток, которые размещены в виде последовательных рядов рабочих лопаток. Между соседними рядами рабочих лопаток установлены теплозащитные экраны ротора и в результате образуется внутренняя граница тракта течения горячего газа. Вал ротора выполнен с возможностью транспортирования основного потока охлаждающего воздуха в осевом направлении вдоль теплозащитных экранов ротора и нижних частей рабочих лопаток. Вал ротора снабжает рабочие лопатки охлаждающим воздухом, поступающим во внутреннюю полость рабочих лопаток. В осевой газовой турбине обеспечены герметичные каналы для охлаждающего воздуха, которые проходят в осевом направлении через вал ротора отдельно от основного потока охлаждающего воздуха и снабжают рабочие лопатки охлаждающим воздухом. Изобретение направлено на снижение уточек охлаждающего воздуха и повышение эффективности работы турбины. 12 з.п. ф-лы, 9 ил.

Рабочая лопатка газовой турбины содержит профильную часть, проходящую в продольном направлении, и хвостовик лопатки, служащий для крепления рабочей лопатки на валу ротора газовой турбины. Профильная часть рабочей лопатки выполнена с внутренними каналами охлаждения. Каналы охлаждения предпочтительно проходят вдоль продольного направления и могут быть обеспечены охлаждающим воздухом с помощью средств подачи охлаждающего воздуха, имеющихся внутри хвостовика рабочей лопатки. Хвостовик рабочей лопатки снабжен каналом, проходящим в поперечном направлении через указанный хвостовик рабочей лопатки и сообщающийся с каналами охлаждения. В канал лопатки введена вставка для установления окончательной конфигурации и характеристик соединений между каналом лопатки и каналами охлаждения. Канал лопатки представляет собой цилиндрический канал. Вставка имеет трубчатую конфигурацию так, что она полностью размещается в цилиндрическом канале. В стенке вставки имеется, по меньшей мере, одно сопло, через которое один из каналов охлаждения соединен с каналом рабочей лопатки и которое определяет массовый расход охлаждающего воздуха, поступающего в один канал охлаждения. Изобретение направлено на оптимизирование распределения и подачи охлаждающего воздуха, не жертвуя при этом простотой изготовления лопатки. 3 н. и 6 з.п. ф-лы, 8 ил.
Наверх