Способ оценки реализации элементарных двойных диплоидных геномов в полиплоидных полигеномных пшеницах

Изобретение относится к области сельского хозяйства, в частности к способам генетико-селекционных исследований. Изобретение представляет собой способ оценки реализации элементарных двойных диплоидных геномов в полиплоидных полигеномных пшеницах, включающий выращивание в одинаковых условиях полиплоидных пшениц и мелкогабитусного диплоидного мутанта, анализ их количественных признаков и последующее сравнение результатов анализа, по которым оценивают реализацию диплоидного генома. При этом в качестве феномогеномного маркера для определения вклада элементарного диплоидного генома в признак полиплоидной пшеницы используют полученную из T.aestivum L. AABBDD фенотипически идентичную ей мелкогабитусную диплоидную форму. Изобретение позволяет упростить оценку реализации элементарных двойных диплоидных геномов в полиплоидных полигеномных пшеницах. 3 табл., 3 пр.

 

Изобретение относится к области сельского хозяйства, в частности к способам генетико-селекционных исследований.

Известен способ оценки вклада двойного диплоидного элементарного генома, включающий выращивание полиплоидных растений пшеницы разного количественного и качественного геномного состава и их диплоидных сородичей - источников исходных геномов, определение площади флагового листа и использование в качестве оценки фактического значения признака в полиплоиде к теоретически рассчитанному исходя из суммарного признака диплоидных сородичей - источников исходных геномов (С.Е.Дунаев, Р.Л.Богуславский, М.И.Зеленский. Сравнительная характеристика видов пшеницы по морфологии листа и содержанию хлорофилла в условиях Дагестана и Ленинградской области // Труды по прикладной ботанике, генетике и селекции. - 1989. - т.127. - С.115-122).

Недостатком данного способа является необходимость выращивания наряду с полиплоидными видами их диплоидных сородичей - источников исходных геномов.

Известен способ оценки вклада генома в сложный количественный признак пшеницы, включающий выделение из мягкой пшеницы T.aestivum L. ее тетраформы и использование в качестве оценки сравнительного анализа массы 1000 семян T.aestivum AuBD и ее тетраформы АuB (В.Г.Конарев, Н.К.Губарева, И.П.Гаврилюк, В.Бушук. Идентификация генома Д у пшениц по глиадину // Вестник с/х науки. - 1972. - N 7. - С.108-114).

Недостатком этого способа является трудность получения тетраформы, которая сопряжена со скрещиванием и бэкроссированием до 7-8 поколения, кроме того, в результате плохой всхожести и слабой жизнеспособности очень трудно получить семена тетраформ.

Известен способ оценки вклада геномов в количественный признак, когда для сравнения используются представители первой филогенетической ветви и их гомологи по второй филогенетической ветви, в частности T.aestivum AuBD, T.persicum Vav. AuB и их гомологи T.miguschovae Zhir. AbGD, T.militinae AbG соответственно (Патент на изобретение №2101931, 20.01.1998) - ближайший аналог. Суть способа в выявлении наличия или отсутствия вклада элементарных диплоидных геномов при сравнении видов пшениц с известными уровнями количественных признаков с соответствующими гомологами. Схематично это выглядит следующим образом:

Благодаря такому подходу было установлено, что T.miguschovae AbAbGDgd неполный гомолог T.aestivum AuAuBBDD, поскольку у него не проявляется вклад одного из трех элементарных диплоидных геномов. То есть согласно феномогеномным исследованиям у T.aestivum- трехфеномный, а у T.miguschovae - двухфеномный уровень количественных признаков, что и отражено на схеме.

Недостатком является выращивание наряду с основными видообразцами их гомологов.

Цель изобретения - упростить и снизить трудоемкость оценки реализации элементарных двойных диплоидных геномов в полиплоидных растениях. При заявляемом способе исключается возделывание видов - гомологов, т.к. используют естественные полиплоидные видообразцы, а также полученные из T.aestivum L. AABBDD (2n=42) мелкогабитусные диплоидные макромутанты (2n=14).

Суть изобретения в использовании этих мелкогабитусных диплоидных форм в качестве феномогеномных маркеров (двойной диплоидный геном-феном), при помощи которых определяют вклады элементарных геномов в сложный количественный признак полиплоидного полигеномного растения.

Так, из данных табл.1 видно, что такой важный и сложный количественный признак, как масса зерна с колоса, характеризующая продуктивность растения, у мелкогабитусного мутанта и диплоидного T.monococcum L. очень близки. В то же время разница между образцами с диплоидным набором хромосом (мелкогабитусный мутант и T.monococcum) с озимой пшеницей Рассвет-1 по данному признаку примерно троекратная, а у яровой мягкой - двукратная. Это можно показать по средним показателям, используя при этом, как данные мелкогабитусного мутанта, так и диплоидного T.monococcum. К примеру: 2,11: 0,73=2,89≈3 или 2,11:0,69=3,06≈3.

Относительно двукратного преимущества яровой мягкой - 1,36: 0,73=1,86≈2 или 1,36:0,69=1,97≈2. То есть у озимой мягкой пшеницы проявляются вклады всех трех его элементарных диплоидных геномов, а у яровой только двух. Следовательно признак мелкогабитусного мутанта (2n=14) можно использовать как феномогеномный маркер для выявления вклада элементарных диплоидных геномов в признаках полигеномного полиплоидного растения, в частности мягкой пшеницы (2n=42). Таким образом, используя в эксперименте всего лишь два образца пшеницы, мы существенно упрощаем способ, снижаем трудоемкость и затраты при оценке вкладов элементарных двойных диплоидных геномов в признак полиплоидной пшеницы.

Пример 1. Для того чтобы определить реализуются ли вклады всех элементарных геномов в признаке озимой мягкой пшеницы T.aestivum L. AABBDD (2n=42), достаточно вырастить одновременнно в одинаковых условиях ее и мелкогабитусный мутант (2n=14), а затем, используя признак мелкогабитусного диплоидного мутанта как феномогеномный маркер, расчетным путем выявить вклады скольких элементарных геномов формируют сложный признак данного растения. То есть 2,11: 0,73=2,89≈3 (см.табл.1). Чтобы подтвердить, факт реализации всех трех элементарных диплоидных геномов, проверим через χ2 (табл.2).

Таблица 2
Вычисление теоретических частот (F) и критерия соответствия (χ2) для массы зерна с колоса мягкой пшеницы T.aestivum AABBDD
Показатели Геномы Сумма
АА(14)
2n=14
ВВ(14) 2n=U DD(14) 2n-14 AABBDD(42) 14+14+14=42
Ожидаемое расщепление (Н0) 1 1 1 3
Наблюдаемые частоты (f) 0,703 0,703 0,703 2,110
Ожидаемые частоты (F) 0,730 0,730 0,730 2,190
Разность (f-F) +0,027 +0,027 +0,027 +0,080
Квадрат разности (f-F)2 0,0007 0,0007 0,0007 0,0064
Соотношение (f-F)2 / F 0,0009 0,0009 0,0009 0,0029
χ2=Σ(f-F)2/F=0,0056; .

В качестве наблюдаемых частот (f) принимаем вычисленный вклад элементарного диплоидного генома (для чего делим признак озимой мягкой пшеницы на 3, зная ее трехгеномную природу и 42-хромосомный генотип: 2,11: 3=0,703; в качестве ожидаемых частот признаки феномогеномного маркера (признак мелкогабитусного мутанта (2n=14) 0,730 см. табл.1). Как видно из данных табл.2, теоретически рассчитанная масса зерна с колоса (2,190) очень близка к реальной (2,110) и нулевая гипотеза не отвергается. Таким образом, доказано, что в данном признаке проявляются вклады всех трех элементарных двойных диплоидных геномов (трехфеномный уровень), входящих в генотип полиплоидной мягкой пшеницы. Значит, используя признак мелкогабитусного мутанта, мы существенно упрощаем способ оценки реализации вкладов элементарных двойных диплоидных геномов в признак полиплоидной пшеницы.

Пример 2. Применяя показатели мелкогабитусного мутанта можно показать реализацию вкладов только двух элементарных геномов в признаке яровой мягкой пшеницы T.aestivum L. AABBDD, так как эти растения также выращивались одновременно с мелкогабитусным мутантом: 1,36: 0,73=1,86≈2 (см.табл.1). Таким образом, данный количественный признак у мягкой яровой пшеницы определяется вкладами двух элементарных геномов, то есть, несмотря на гексаплоидный трехгеномный статус, яровая мягкая пшеница обладает двухфеномным уровнем данного показателя.

Пример 3. Более того, используя признак мелкогабитусного мутанта как феномогеномный маркер, показан «двухфеномный» тетраплоидный уровень сложного количественного признака у гексаплоидной пшеницы T.compactum Host. AABBDD и Tsphaerococcum Perciv. AABBDD (табл.3).

Таблица 3
Продукционные характеристики колосьев изучаемых форм пшеницы
Генотип 2n Число Масса зерна с колоса, г
геномов феномов
Мелкогабитусный мутант 14 1 1 0,73
T.sphaerococcum Шарада исходная 42 3 2 1,55
T.aestivum из Шарады 42 3 3 2,19
Шарада улучшенная 42 3 3 2,17
T.compactum 42 3 2 1.46
НСР05=0,40

Так, T.sphaerococcum AABBDD (Шарада исходная), обладает двухфеномным уровнем массы зерна с колоса: 1,55: 0,73=2,12≈2, тогда как мягкая пшеница T.aestivum AABBDD, выделенная из нее и улучшенная форма первой, трехфеномным уровнем данного признака: 2,19: 0,73=3 и 2,17:0,73=2,97≈3 соответственно. T.compactum AABBDD, использовавшийся в этом же опыте обладает двухфеномным уровнем: 1,46:0,73=2. Следовательно, используя показатели диплоидного мелкогабитусного мутанта, как феномо-геномный маркер, показано, что в продукционных признаках T.sphaerococcum и T.compactum реализуются вклады только двух элементарных двойных диплоидных геномов, тогда как у T.aestivum и Шарады улучшенной всех трех элементарных двойных диплоидных геномов. Следует подчеркнуть, что все эти видообразцы возделывались одновременно, мягкими пшеницами, о которых речь шла выше.

Таким образом, используя показатели мелкогабитусного диплоидного мутанта, мы существенно упростили и снизили трудоемкость и затраты на определение вкладов элементарных двойных диплоидных геномов в признаки полиплоидной пшеницы.

Способ оценки реализации элементарных двойных диплоидных геномов в полиплоидных полигеномных пшеницах, включающий выращивание в одинаковых условиях полиплоидных пшениц и мелкогабитусного диплоидного мутанта, анализ их количественных признаков и последующее сравнение результатов анализа, по которым оценивают реализацию диплоидного генома, отличающийся тем, что в качестве феномогеномного маркера для определения вклада элементарного диплоидного генома в признак полиплоидной пшеницы используют полученную из T.aestivum L. AABBDD фенотипически идентичную ей мелкогабитусную диплоидную форму.



 

Похожие патенты:
Изобретение относится к области физиологии растений. Изобретение представляет собой способ оценки устойчивости растений к засолению почвы.

Изобретения относятся к области сельского хозяйства. Способ включает высев на полях комплекса сортов пшеницы, расположенных совместно в регионе.
Способ относится к области сельского хозяйства, в частности к плодоводству и селекции. Способ включает промораживание однолетних побегов в период покоя в камере искусственного климата.

Изобретение относится к области селекции сельскохозяйственных растений. Изобретение представляет собой способ оценки кислотоустойчивости сельскохозяйственных растений, включающий размещение зерен в инертном носителе с дистиллированной водой с низкой (стресс-фактор) и нейтральной (контроль) pH, воду заменяют ежедневно в одно и то же время суток на дистиллированную воду с низкой и нейтральной pH соответственно, замеряют массу корней (mr), массу побегов (ms), общую массу растений (mp), длину побегов (l), оценку проводят по коэффициенту редукции, при этом, если Кред ≥1 - растение ацидофильное; 0,5<Кред<1 - растение толерантное к высокой кислотности; Кред<0,5 - растение кислоточувствительное.
Изобретение относится к области сельского хозяйства. Изобретение представляет собой способ ускоренной оценки устойчивости сортов гороха к Bruchus pisorum L.

Изобретение относится к области сельского хозяйства. Изобретение представляет собой способ отбора засухоустойчивых растений рапса (Brassica napus L.), включающий измерение длины левого и правого семядольных листьев растений рапса в образце, определение показателя флуктуирующей асимметрии, при этом в качестве засухоустойчивых растений рапса отбирают растения с величиной флуктуирующей асимметрии, равной или меньше 0,031±0,0060.

Изобретение относится к области сельского хозяйства, в частности к селекции растений. Способ включает отбор более устойчивых к растрескиванию стручков образцов путем анализа высоты плотной перегородки в области гинофора в фазу зеленого стручка.
Изобретение относится к области сельского хозяйства, в частности к селекции. .

Изобретение относится к области биохимии, в частности к маслу из семян элитного сорта подсолнечника, имеющему профиль жирных кислот, включающий 3% или меньше общего содержания взятых вместе пальмитиновой кислоты (16:0) и стеариновой кислоты (18:0).

Изобретение относится к области биохимии. .

Изобретение относится к области биохимии, в частности к способу молекулярно-генетической идентификации стерильности/фертильности пыльцы подсолнечника. Способ включает анализ тотальной ДНК исследуемых образцов на наличие/отсутствие митохондриального гена orfH522 и маркерной последовательности ядерного гена Rf1 с помощью мультиплексной полимеразной цепной реакции с использованием первой пары праймеров: agtagcccgttccgtgtttatgga и ctttctatttgggtcatcgccgga, идентифицирующей ген orfH522 цитоплазматической мужской стерильности пыльцы (ЦМС РЕТ1), и второй пары праймеров: ggcatgatcaagtacataagcacagtc и tatgtacgggaatgagctccggtt, идентифицирующей маркерную последовательность гена Rf1 - восстановителя фертильности пыльцы ЦМС РЕТ1, при этом образец определяют как фертильный, если а) присутствует и orfH522, и маркер гена Rf1, б) отсутствует orfH522 и присутствует маркер гена Rf1, в) отсутствует и orfH522, и маркер гена Rf1, и образец определяют как стерильный, если присутствует orfH522 и отсутствует маркер гена Rf1. Раскрыт диагностический набор, включающий праймеры, для молекулярно-генетической идентификации стерильности/фертильности пыльцы подсолнечника указанным способом, а также применение указанного способа в селекции растений. Изобретение позволяет эффективно определять стерильность/фертильность пыльцы подсолнечника. 3 н. и 4 з.п. ф-лы, 6 ил., 1 табл.

Изобретение относится к области биохимии, в частности к cпособу отбора селекционных образцов растений гречихи, обладающих устойчивостью к стрессовым воздействиям, включающий: выращивание селектируемой и контрольной популяций при нормальных условиях с последующим помещением части образцов каждой популяции в стрессовые условия; сбор образцов ткани растений селектируемой и контрольной популяций, подвергнутых и не подвергнутых стрессовому воздействию; определение в собранных образцах уровней экспрессии предварительно выявленных генов, маркирующих уровень ответа на анализируемый тип стресса; сравнение уровня экспрессии генов в образцах, помещенных в стрессовые условия, и образцов, выращенных при нормальных условиях; отбор тех образцов, у которых наблюдается максимальное изменение уровня экспрессии генов, маркирующих уровень ответа на анализируемый тип стресса, по сравнению с контрольной популяцией. Изобретение позволяет провести выделение перспективного селекционного материала без анализа нескольких поколений потомков. 15 з.п. ф-лы, 2 табл.
Изобретение относится к области сельского хозяйства, в частности к интродукции, и может найти применение при внедрении новых сортов зернобобовых культур. В способе местные районированные сорта высевают широкорядно, на 2-3 недели раньше интродуцентов. После появления всходов осуществляют внекорневую подкормку 0,3-0,5% раствором парааминобензойной кислоты с последующим рыхлением междурядий и посевом в них интродуцируемых сортов. Способ позволяет упростить процесс интродукции и повысить его эффективность. 1 табл., 3 пр.
Изобретение относится к сельскому хозяйству. Изобретение представляет собой способ выращивания растений топинамбура и включает в себя оценку исходного материала, отбор среди них биотипов по хозяйственно-ценным признакам, выращивание растений топинамбура в пробирочной культуре на питательной агаризованной среде Мурасиге-Скуга, после высадки пробирочных ростков в пробирки на среду и достижения растениями 5-6 листочков и развития корневой системы производят черенкование, затем растения в фазе 10-15 листочков и развития корневой системы или образования микроклубней пересаживают в грунт, а оценку по здоровью проводят визуально, к здоровым относят растения, у которых не выделены экземпляры с признаками поражения болезнями, а отбор хозяйственно-ценных и морфологических признаков производят в период уборки по более высокой продуктивности с покустной оценкой каждого растения. Использование заявленного способа позволяет улучшить условия выращивания топинамбура, осуществить раннюю диагностику заболеваний, повысить надежность и эффективность отбора для семеноводческих хозяйств, повысить качество получения семенного материала, оздоровить семенной топинамбур. 1 табл., 2 пр.

Изобретение относится к сельскому хозяйству и биотехнологии. Гибридную линию яровой мягкой пшеницы, содержащую фрагмент хромосомы с двумя генами от Aegilops speltoides: ген, определяющий удлинение срока колошения (VRN-Asp1), и ген устойчивости к бурой ржавчине (LrAsp5), скрещивают с линией, содержащей ген устойчивости к мучнистой росе (Pm) из генома ржи Secale cereale, и растения поколения F1 самоопыляют до поколения F2. Из поколения F2 с помощью молекулярного ПЦР-маркера Pr1/Pr5 отбирают растения, содержащие гены VRN-Asp1 и LrAsp5 в гомозиготном состоянии. Отобранные с помощью ПЦР-маркера Pr1/Pr5 растения F2 с генами VRN-Asp1 и LrAsp5 проверяют ПЦР-маркером SCM009 для выявления растений с геном Pm устойчивости к мучнистой росе. Использование заявленного способа позволяет упростить известный способ и создать линии яровой мягкой пщеницы с удлиненным сроком колошения и с комплексной устойчивостью к грибным болезням. 2 ил., 3 табл.
Изобретение относится к области сельского хозяйства, в частности к селекции. Изобретение представляет собой способ повышения коэффициента размножения капусты белокочанной в условиях in vitro, включающий выращивание эксплантов, культирование их на питательной среде Мурасиге-Скуга, внесение в нее регуляторов роста тидиазурон в концентрации 1 мг/л в сочетании с индолил-3-уксусной кислотой - 0,5 мг/л, при использовании цветолож размером 0,2-0,3 мм, изолированных из бутонов длиной 0,5-0,7 мм, где цветоложе используют за 1-2 дня до распускания цветков и после выращивания их на питательных средах культивируют до образования почек в течение 14-21 суток. Способ позволяет получить большое количество растений-регенерантов с признаками ЦМС и получить генетически стабильный урожай селекционных образцов. 3 табл.

Изобретение относится к области сельского хозяйства, в частности к физиологии сельскохозяйственных растений и селекции. Способ включает отбор проб, определение площади листьев, биометрических показателей путем определения количества и массы отдельных органов растений по фазам роста и развития, учет накопления вегетативной массы всего растения и семян за период развития, фотосинтетического потенциала. Показатель продуктивности фотосинтетического потенциала рассчитывают по выражению П Ф П = Б П Ф П , где БП - биологическая урожайность семян с 1 га; ФП - фотосинтетический потенциал, сформированный за весь период вегетации на 1 га посева. Способ позволяет определять величину накопления органического вещества в вегетативных и репродуктивных органах на единицу фотосинтетического потенциала. 1 ил., 1 табл., 1 пр.

Изобретение относится к биотехнологии. Изобретение представляет собой способ выращивания ячменя с применением обработки защитно-стимулирующим комплексом, где семена ячменя замачивают водным раствором комплекса биологически активных веществ кормовой добавки Флоравит® с концентрацией 1*10-4 мг/мл и расходе 10 л/т семян и растения ячменя в фазу кущения опрыскивают водным раствором комплекса биологически активных веществ кормовой добавки Флоравит® с концентрацией 1*10-4 мг/мл и расходе раствора 200-250 л/га. Изобретение позволяет повысить урожайность и качественные показатели ячменя. 1 ил., 4 табл.
Изобретение относится к области фитопатологии, сельского хозяйства и экологии. Способ включает предпосевную обработку семян пшеницы мягкой диспергированной суспензией. При этом суспензия содержит наночастицы железа диаметром 80±5 нм. Причем в первый день обработки проводится однократный полив семян пшеницы 5 мл суспензии наночастиц железа в концентрациях 0,5·10-3-1·10-6 мг/л и полив дистиллированной водой в последующие 14 дней. Способ позволяет повысить устойчивость пшеницы мягкой к хлорозу за счет повышения содержания фотосинтетических пигментов. 1 табл.

Изобретение относится к области сельского хозяйства. Изобретение представляет собой способ определения всхожести семян льна-долгунца с учетом оценки степени развития проростков, включающий отбор проб семян, выделение семян из навесок при определении чистоты, отсчет четырех проб по 50 семян в каждой, проращивание семян между полосами фильтровальной бумаги, свернутыми в рулон в термостате при температуре 20°С в течение 5 суток, где проращивание семян проводят при ширине покровной полосы фильтровальной бумаги 2 см. Изобретение позволяет сократить время проведения анализа семян на двое суток и снизить расход материалов на 27%. 2 ил., 1 табл.
Наверх