Способ измерения расхода газожидкостной смеси

Изобретение относится к измерительной технике и может использоваться для контроля расхода газожидкостной смеси (ГЖС), извлекаемой, например, из буровой скважины. Способ измерения расхода газожидкостной смеси включает измерение объемного расхода по частоте вращения ротора при нулевом перепаде давления и передачу данных вычислителю. При этом поддерживают частоту вращения ротора при нулевом перепаде давления на нем, измеряют величины крутящего момента ротора и его частоты вращения, определяют плотность смеси по крутящему моменту ротора, приравнивают ее к одному из двух уравнений, связывающих плотность, вязкость и покомпонентные доли трехкомпонентной смеси для формирования ее доли сопротивления в крутящем моменте ротора. Далее выделяют вязкость для двухфазной смеси и сравнивают ее с другим из двух уравнений, корректируют величину плотности смеси в трехкомпонентной смеси через крутящий момент ротора, формируют его доли по плотности и вязкости смеси, извлекают вычислителем из полученных независимых уравнений массовые и объемные составляющие трехкомпонентной смеси и массового расхода смеси. Технический результат - упрощение способа измерения расхода газожидкостной смеси при ограниченном приборном составе устройств измерения, т.е. сокращение измерительных операций, требующих одновременности для более достоверного измерения массового расхода среды, а также измерение параметров потока в одном приборном месте. 1 ил.

 

Изобретение относится к измерительной технике и может использоваться для контроля расхода газожидкостной смеси (ГЖС), извлекаемой, например, из буровой скважины.

Известны способы измерения многофазного расхода или многокомпонентных веществ (см., например, П.П. Кремлевский. Расходомеры и счетчики количества вещества. СПб. Политехника. 2002. Книга 2, с.245) с помощью нескольких последовательно установленных расходомеров, обладающих селективными свойствами (кориолисова, объемного и теплового), и вычислительного устройства, определяющего на основе показаний приборов расходы отдельных компонентов.

Недостатками известных решений являются суммарная большая погрешность измерения расхода, а также наличие разнообразных приборов и большие габариты устройства.

Известен способ измерения расхода многофазного потока (RU 2428662 С2, 10.09.2011). Предложенный расходомер содержит блок измерения скорости газожидкостного двухфазного трехкомпонентного потока, блок измерения плотности данного потока и блок вычисления скорости потока каждой фазы, при этом блок измерения плотности содержит блок извлечения смешанной жидкости, причем блок извлечения смешанной жидкости содержит генератор разности давлений, установленный в трубопроводе, через который проходит трехкомпонентный поток, пару соединительных труб, соединенных с расположенными выше по потоку и ниже по потоку сторонами генератора разности давлений. Резервуар для извлечения газа-жидкости служит в качестве места, где принудительно перемешивается посредством изменения давления между входной и выходной сторонами сопла (генератора разности давлений). То есть часть отбираемого трехфазного потока принудительно встряхивается горизонтально, вертикально и т.д. для перемешивания. При этом пузырьки, содержащиеся в смешанной жидкости, вырастают в более крупные пузырьки в результате столкновения друг с другом и отделяются от смешанной жидкости в газовую фазу. Вследствие принудительного перемешивания, даже в случае маленьких пузырьков, пузырьки отделяются от смешанной жидкости в газовую фазу. Далее смешанную жидкость, из которой были отделены пузырьки, накапливают в резервуаре для хранения жидкости посредством регулирования вентиля регулировки скорости потока жидкости. Смешанную жидкость, накопленную в резервуаре для хранения жидкости, используют для измерения плотности. Измерение плотности проводят на смешанной жидкости, из которой были удалены пузырьки, и, следовательно, можно получить измеряемую величину высокой точности.

Недостатками известного способа является большое число механических операций при определении плотности потока, отбирается часть потока для анализа, понижающих достоверность измерения всего потока, большие габариты устройства при выстаивании для отделения фаз.

Известен способ определения параметров потока многофазной смеси жидкости и газа (RU 2386930 С2, 27.06.2009). В измерительный гидроканал помещают датчики, имеющие различные зависимости показаний от расходов компонентов потока. Для получения зависимостей показаний датчиков от измеряемых параметров потока во время калибровки производят запись показаний датчиков при различных комбинациях расходов жидкости и газа и осуществляют последовательную интерполяцию. Для определения расходов двух взаимно нерастворимых жидкостей и газа потока трехкомпонентной смеси используют три датчика, зависимость показаний которых от расходов жидкостей и газа разная. Для определения расходов двух взаимно нерастворимых жидкостей, расхода газа и вязкости потока трехкомпонентной смеси используют четыре датчика, зависимость показаний которых от расходов жидкостей, газа и вязкости разная. В частном случае однотипные датчики располагают в последовательно соединенных отрезках измерительного гидроканала разного диаметра.

Недостатком известного способа является определение параметров по тарировочным данным, предварительно полученным на стендах. Реальные показания могут значительно отличаться от полученных в лабораторных условиях из-за отличия показаний по давлению в трубе, температуре, различных сочетаний и соотношения фаз потока, что ухудшает точность измерения скоростей фаз, их скольжения относительно друг друга и др.

К предлагаемому способу наиболее близким, принятым за прототип, является способ измерения массового расхода газообразных и жидких сред (RU 2279640 С1, 10.07.2006).

По известному способу имеется два измерительных участка: первый - объемный расходомер с датчиком частоты вращения измерителя и второй - датчик перепада давления на сужающем устройстве.

Недостатками известного способа в реализованном устройстве является взаимное расположение по потоку измерителя объемного расхода и далее сужающего устройства, вносит дополнительную погрешность при измерении из-за возможного расширения газообразной среды после сужающего устройства, увеличение ее объема и искажение показаний датчика перепада давления; требуются дополнительные участки трубопровода до и после сужающего устройства для получения достоверных результатов измерения перепада давления; сужающее устройство используется только для получения параметра плотности среды, поскольку общий расход среды измеряется объемным расходомером; дополнительное оборудование в виде сужающего устройства требует дополнительной тарировки межповерочного интервала, наличие дополнительных вычислительных операций при определении массового расхода.

Техническим результатом предлагаемого изобретения является упрощение способа измерения расхода газожидкостной смеси при ограниченном приборном составе устройств измерения, т.е. сокращение измерительных операций, требующих одновременности для более достоверного измерения массового расхода смеси, а также измерение параметров потока в одном приборном месте.

Технический результат достигается тем, что предлагается способ измерения расхода газожидкостной смеси, включающий измерение объемного расхода по частоте вращения ротора при нулевом перепаде давления и передачу данных вычислителю, отличающийся тем, что поддерживают частоту вращения ротора при нулевом перепаде давления на нем, измеряют величины крутящего момента ротора и его частоты вращения, определяют плотность смеси по крутящему моменту ротора, приравнивают ее одному из двух уравнений, связывающих плотность, вязкость и покомпонентные доли трехкомпонентной смеси для формирования ее доли сопротивления в крутящем моменте ротора, далее выделяют вязкость для двухфазной смеси и сравнивают ее с другим из двух уравнений, корректируют величину плотности смеси в трехкомпонентной смеси через крутящий момент ротора, формируют его доли по плотности и вязкости смеси, извлекают вычислителем из полученных независимых уравнений массовые и объемные составляющие трехкомпонентной смеси и массового расхода смеси.

Предлагается способ измерения расхода газожидкостной смеси, в котором объемный расход Qсм измеряется при нулевом перепаде давления, и для такого режима вычислителем поддерживается требуемый крутящий момент на приводе ротора и далее по заданному алгоритму массовый расход определяется вычислителем.

Для реализации способа организуют измерительный участок, на котором проводят измерения объемного расхода с использованием замкнутого контура регулирования по нулевому перепаду давления на измерительном участке (вращающемся измерителе) с помощью привода, выполненного в электромеханическом или пневмогидравлическом вариантах.

На чертеже представлена схема устройства, реализующего предлагаемый способ.

Вращающийся ротор 1 объемного расходомера приводится во вращение приводом 2, частота вращения которого измеряется датчиком 3. Объемный расход смеси Qсм поступает на вход измерительного участка 4 и проходит через вращающийся ротор 1 на выход 5. Частота вращения n ротора 1 поддерживается контуром регулирования при ∆P≈0, состоящим из датчика 6 перепада давления, вычислителя 7 и привода 2.

Способ реализуется по следующему алгоритму в условиях:

- перепад давления на роторе (измерительном устройстве) поддерживается равным нулю,

- температура и давление измеряется соответствующими датчиками (на чертеже не показаны) для измеряемого расхода в данном месте, в данное время и передаются вычислителю.

Объемный расход Qсм ГЖС расходомера определяется частотой вращения n ротора 1 (датчик 3)

Q с м = k 1 n , г д е k 1 р а з м е р н ы й к о э ф ф и ц и е н т . ( 1 )

Крутящий момент Mсм привода 2 ротора 1 для преодоления сил сопротивления равен сумме моментов сопротивления смеси по плотности Мρ и вязкости Мµ (индекс «см» -смесь).

Другие внешние силы сопротивления принимаем малыми и не учитываем.

M с м = M ρ + M μ . ( 2 )

При вращении ротора с частотой n и величине перепада давления ∆P≈0 на измерительном участке 4, включая ротор 1, величина гидравлического сопротивления может быть выражена по плотности

M ρ = k 2 G с м n = k 2 Q с м ρ с м n = k 3 ρ с м n 2 , ( 3 )

по вязкости

M μ = k 4 S μ с м n = k 5 μ с м n ( 4 )

k4, k5 - постоянные размерные коэффициенты.

Величины n, Mсм измеряются датчиками 3 и 8 при ∆P≈0.

µсм - коэффициент динамической вязкости смеси, ρсм - величина плотности смеси, Gсм - величина массового расхода смеси, S - поверхность расходомера, участвующая в сопротивлении по вязкости.

Плотность смеси ρсм из выражения (3) равна ρсм=Mρ/k3n2. Можно принять для некоторых режимов по расходу Qсм смеси, что

M ρ M с м , т . е . ρ с м = M с м / k 3 n 2 ( 5 )

Известно выражение плотности смеси через покомпонентные составляющие массового и объемного расхода смеси

ρ с м = ( G н ρ н + G в ρ в + G г ρ г ) / G с м и ρ с м = α н ρ н + α в ρ в + α г ρ г ( 6 )

и единства массы смеси

1 = α н + α в + α г ( 7 )

при αн=Qн/Qсм, αв=Qв/Qсм, αг=Qг/Qсм, а также

μ с м = 1 / [ ( G н / μ н ) + ( G в / μ в ) + ( G г / μ г ) ] и л и μ с м = 1 / ( Q н / ν н + Q в / ν в + Q г / ν г ) = 1 / А , ( 8 )

A=[(Qнн+Qвв+Qгг)].

Индексы, обозначающие н - нефть, в - вода, г - газ, относятся к плотности, вязкости и покомпонентным массовым и объемным долям смеси Gн, Gв, Gг и Qн, Qв, Qг.

Считаем, что величины плотности ρн, ρв, ρг и вязкости µн, µв, µг компонентов смеси известны и для конкретной буровой скважины нефти постоянны.

Приравняем (5) и (6), получим

M с м k 3 n 2 = α н ρ н + α в ρ в + α г ρ г ( 9 )

Выражение (9) содержит объемные покомпонентные составляющие Qн, Qв, Qг.

Перепишем (2), имеем

M с м = k 3 ρ с м n 2 + k 5 μ с м n ( 10 )

С другой стороны, крутящий момент ротора Mсм можно выразить с помощью уравнений, связывающих плотность ρсм и вязкость µсм смеси двухфазной ГЖС (газ-жидкость), исходя из положения, что такие параметры, как плотность и вязкость пластовой минерализованной воды, а также нефти и эмульсии колеблются в пределах 5-10%. В этом случае можно принять компонент нефть за основную составляющую в преодолении сил сопротивления по вязкости при вращении ротора. Плотность ρсм смеси, которая ранее (5) подсчитывалась через Mсм, корректируется параметрами трехкомпонентной смеси ГЖС при дальнейшем совместном решении объединенной покомпонентной системы уравнений (7), (9) и (14).

Из (Физико-химические свойства нефти, газа, воды и их смесей, www.allbest.ru) имеем для двухфазной смеси жидкости (нефть и вода) и газа соотношение кинематических вязкостей

1 / ν с м = ( β / ν г ) + ( 1 β ) / ν н ( 11 )

β=Qг/(Qг+Qн) - расходное объемное газосодержание двухфазного потока при средних значениях по давлению и температуре в трубопроводе, преобразуем (14)

ρ с м = μ с м [ ( β / ν г ) + ( 1 β ) / ν н ] и л и ρ с м = μ с м [ ( Q г ν н + Q н ν г ) / ν г ν н ( Q г + Q н ) ] = μ с м B , ( 12 )

В=[(Qгνн+Qнνг)/νгνн(Qг+Qн)].

Подставим (12) в (10), тогда

M с м = k 3 n 2 μ с м B + k 5 μ с м n , д а л е е и щ е м μ с м = M с м / n ( k 3 n B + k 5 ) ( 13 )

Приравняем (13) и (8), получим

Mсм/n (k3nВ+k5)=1/А или, подставляя выражения А и В, получим

M с м = n ( k 3 n [ ( Q г ν н + Q н ν г ) / ν г ν н ( Q г + Q н ) ] + k 5 ) [ ( Q н / ν н + Q г / ν г ) ] ( 14 )

При наличии известных величин плотности и кинематической и динамической вязкости компонентов смеси (считая их const для исследуемой буровой), а также измеренной величины Qсм далее из трех независимых уравнений (7), (9) и (14) извлекаются массовые и объемные покомпонентные составляющие ГЖС - Gн. Gв, Gг и Qн, Qв, Qг.

Далее определяем ρсм и Gсм по ф. (6).

Измерение массового и объемного расхода ГЖС предлагаемым способом имеет следующие преимущества:

- отсутствие квадратичной зависимости «расход - перепад давлений»,

- значительное расширение диапазона измерений с сохранением текущей погрешности,

- отсутствие протечек при нулевом перепаде на роторе позволяет измерять объемный расход с максимальной точностью,

- среда не подвергается сжатию и расширению, проходя через измерительный участок при измерении объемного и массового расхода,

- сведение к минимуму влияния плотности и вязкости среды на измерение расходов ГЖС,

- фактически диапазон измерения зависит от технических возможностей измерителя и привода (электродвигателя) с большим диапазоном изменения частоты вращения,

- упрощение способа измерения массового расхода при ограниченном приборном составе устройства измерения, т.е. сокращение измерительных и вычислительных операций, требующих одновременности для более достоверного измерения массового расхода среды,

- одновременное измерение двух параметров в одном приборном месте для вычисления массового расхода, а также покомпонентных массовых и объемных составляющих газожидкостной смеси.

Способ измерения расхода газожидкостной смеси, включающий измерение объемного расхода по частоте вращения ротора при нулевом перепаде давления и передачу данных вычислителю, отличающийся тем, что поддерживают частоту вращения ротора при нулевом перепаде давления на нем, измеряют величины крутящего момента ротора и его частоты вращения, определяют плотность смеси по крутящему моменту ротора, приравнивают ее к одному из двух уравнений, связывающих плотность, вязкость и покомпонентные доли трехкомпонентной смеси для формирования ее доли сопротивления в крутящем моменте ротора, далее выделяют вязкость для двухфазной смеси и сравнивают ее с другим из двух уравнений, корректируют величину плотности смеси в трехкомпонентной смеси через крутящий момент ротора, формируют его доли по плотности и вязкости смеси, извлекают вычислителем из полученных независимых уравнений массовые и объемные составляющие трехкомпонентной смеси и массового расхода смеси.



 

Похожие патенты:

Изобретение относится к области контроля правильности загрузки железнодорожных цистерн нефтепродуктами и может применяться для контроля уровня загрузки железнодорожных цистерн непосредственно в процессе налива нефтепродуктов, например мазута, на наливных эстакадах для исключения (предупреждения) перелива или недолива цистерн.

Турбинный расходомер содержит корпус с измерительным каналом, в котором между двумя обтекателями, соответственно струенаправляющего аппарата и струевыпрямителя, с возможностью осевого перемещения и вращения расположена турбинка, а также узел съема сигнала.

Изобретение относится к методам измерения объемного расхода, а именно определения эффективной площади натекания и механизма поступления природного газа радона в помещение.

Изобретение относится к измерительным устройствам и может быть использовано в технологических трубопроводах для измерения количества газа или жидкости в производственных процессах, а также в узлах учета энергоресурсов для коммерческого расчета в ЖКХ.

Способ обеспечивает определение объема отсепарированного попутного нефтяного газа (ПНГ) в установке предварительного сброса воды (УПСВ) или дожимной насосной станции (ДНС).

Предложенное изобретение относится к измерительной технике и может быть использовано в водоснабжении и гидравлике для измерения количества холодной и/или горячей воды.

Способ оценки термодинамического равновесия газожидкостной смеси при проведении фильтрационных экспериментов предусматривает закачивание в многофазный сепаратор газовой и жидкой фаз с заданными объемным соотношением фаз в потоке и расходами.

Изобретение относится к области измерительной техники. .

Изобретение относится к области газовой хроматографии, а именно к прокачке поверочных газовых смесей (ПГС) через какие-либо изделия, например концентраторы, используемые в дальнейшем в лабораторных комплексах для отбора и газохроматографического анализа проб воздуха из компрессора газотурбинного авиационного двигателя при его стендовых испытаниях на наличие и содержание вредных примесей.

Изобретение относится к способу измерения объема расхода электропроводящих жидкостей через сосуд по п.1 формулы изобретения. .

Изобретение относится к измерительной технике и может использоваться для измерения расхода различных сред, в частности при коммерческих расчетах. Способ измерения массового расхода среды включает измерение объемного расхода по частоте вращения измерителя при нулевом перепаде давления и передачу данных вычислителю. При этом выработанную вычислителем величину крутящего момента привода делят на частоту вращения измерителя. Технический результат - упрощение способа измерения массового расхода при ограниченном приборном составе устройства измерения, т.е. сокращение измерительных и вычислительных операций, требующих одновременности для более достоверного измерения массового расхода среды, а также одновременное измерение двух параметров в одном приборном месте. 2 з.п. ф-лы, 1 ил.

Изобретение относится к измерительной технике и может использоваться для контроля расхода газожидкостной смеси (ГЖС), извлекаемой, например, из буровой скважины. Способ измерения покомпонентного расхода газожидкостной смеси включает измерение объемного расхода и передачу данных вычислителю. При этом поддерживают частоту вращения ротора при нулевом перепаде давления на нем, измеряют величины крутящего момента ротора, его частоты вращения и вязкость смеси, определяют плотность смеси по величине крутящего момента и приравнивают ее одному из двух известных уравнений, связывающих плотность, вязкость и покомпонентные доли трехкомпонентной смеси, измеренный коэффициент вязкости смеси сравнивают с другим из двух известных уравнений, извлекают вычислителем из трех независимых уравнений массовые и объемные покомпонентные составляющие смеси. Технический результат - упрощение способа измерения покомпонентного расхода газожидкостной смеси при ограниченном приборном составе устройств измерения, т.е. сокращение измерительных операций, требующих одновременности для более достоверного измерения массового расхода среды, а также измерение параметров потока в одном приборном месте. 1 ил.

Изобретение относится к приборостроению, а именно к технике измерения расхода жидких металлов с помощью электромагнитного способа, т.е. способа, основанного на взаимодействии движущейся жидкости с магнитным полем. Электромагнитный расходомер жидких металлов имеет цилиндрическую трубу, выполненную из немагнитного материала, электроды и индуктор. При этом имеется защитный кожух, выполненный из нержавеющей немагнитной стали в виде полого цилиндра с диаметром, превышающим диаметр трубы, и установленный соосно с трубой, с которой закреплен с помощью двух металлических перемычек, касающихся наружной поверхности трубы и внутренней поверхности защитного кожуха по линии, пересекающий диаметр канала в центральной области поперечного сечения трубы перпендикулярно направлению магнитного поля, создаваемого индуктором, который расположен за пределами защитного кожуха, а электроды приварены к внешней поверхности защитного кожуха. Технический результат - упрощение монтажа расходомера на трубопроводе с защитным кожухом. 1 з.п. ф-лы, 2 ил.

Устройство для регулирования уровня жидкости содержит сепарационную емкость, коллектор входа газожидкостной смеси, газовую трубу, жидкостную трубу, выходной коллектор. Сепарационная емкость соединена с выходным коллектором через расходную емкость, причем соединения жидкостной трубы, газовой трубы и выходного коллектора образуют комплекс из двух прямых и двух оппозитных сифонов и, при этом жидкостная труба соединена через расходную емкость с выходным коллектором при помощи прямого сифона и оппозитного сифона, а газовая труба соединена с выходным коллектором при помощи другого прямого и другого оппозитного сифона тоже через расходную емкость, и, кроме того, и оба оппозитных сифона, и выходной коллектор соединены тройником, а нижняя образующая колена прямого сифона, соединяющая сепарационную емкость с расходной емкостью, находится внутри расходной емкости. Соединение сепарационной емкости с выходным коллектором через расходную емкость достаточного объема для организации необходимого расхода жидкости посредством комплекса из двух прямых и двух оппозитных сифонов и создает надежную систему регулирования уровня жидкости. Технический результат - повышение эксплуатационных характеристик, герметичности и стабильности работы устройства для регулирования уровня жидкости. 1 ил.

Изобретение относится к измерительной технике и может быть использовано для измерения объема и объемного расхода жидких сред. Счетчик состоит из входного (1) и выходного (2) коллекторов, корпуса (3), ротора (4), имеющего возможность вращаться вокруг оси в точке O, и лопастей (5), шарнирно закрепленных на роторе в точках A, A′, A′′. Также имеются тяги (6), соединяющие одну из точек (B, B′, B′′) каждой лопасти (5) с точкой C. Положение точек O и C неизменно и они не совпадают. Подача потока жидких сред возможна в любом направлении. Технический результат - повышение точности измерения объема и объемного расхода жидких сред, исключение трения разделительного элемента по формообразующей поверхности корпуса и износа формообразующих поверхностей корпуса и лопастей. 2 ил.

Изобретение относится к приборостроению, а именно к технике измерения расхода жидких металлов с помощью способа, основанного на взаимодействии движущейся жидкости с магнитным полем. Это взаимодействие подчиняется закону электромагнитной индукции, согласно которому в жидкости, пересекающей магнитное поле, индуцируется электрическое поле, являющееся мерой объемного расхода. Электромагнитный расходомер большого диаметра для жидких металлов состоит из трубы без электроизоляционного покрытия, электродов, присоединенных к наружной поверхности трубы, магнитопровода, выполненного в виде полого цилиндра толщиной не менее 5 мм и двух бескаркасных седлообразной формы индукционных катушек возбуждения магнитного поля. Каждая бескаркасная катушка имеет вид эллипса, огибающего трубу, ось среднего витка которого, расположенная вдоль образующей трубы, равна 0,5-0,6 диаметра канала, а ось среднего витка, расположенная вдоль периметра трубы, равна 1,0-1,2 диаметра канала. Технический результат - повышение верхнего предела температуры измеряемой среды до 500°C и повышение точности измерения расхода в трубах большого диаметра (от 300 до 1000 мм). 1 ил.

Изобретение относится к устройствам автоматики и может быть использовано для измерения расхода и количества газа или жидкости в производственных процессах, а также в узлах учета энергоресурсов для коммерческого расчета в ЖКХ. Способ изготовления струйного генератора, содержащего проточную часть в виде плоских струйных элементов с каналами управления, приемными, питания и слива, конструктивно расположенных друг над другом, по которому разрабатывают 3D-модель струйного генератора, выбирают рабочий материал для выращивания струйного генератора, определяют ось модели 3D струйного генератора в качестве оси выращивания, подбирают в формате 3D ее положение для выращивания (полимеризации), которое определяет минимум уменьшения проходных сечений проточной части, формируют послойные сечения струйного генератора в формате 3D в направлении оси выращивания, технологически выращивают послойно всю конструкцию струйного генератора. Технический результат - надежность герметичности между слоями и каналами передачи информации, уменьшение количества времени на изготовление струйного генератора, упрощение размещения цельного корпуса струйного генератора в любой конструкции за счет неразборности, сложность копирования. 2 з.п. ф-лы, 2 ил.

Изобретение относится преимущественно к ракетной технике и используется для поддержания заданного расхода компонентов топлива при изменении давления на входе в двигатель. Устройство имеет регулирующий орган, с соответствующим ему дросселирующим отверстием, корпус с входной и выходной полостями, между которыми расположен чувствительный элемент в виде сильфона с неподвижным фланцем, закрепленным в корпусе на выходе из устройства и подвижным фланцем, расположенным на входе в устройство. Согласно изобретению сильфон подпружинен пружиной сжатия, а дросселирующее отверстие выполнено в подвижном фланце сильфона и взаимодействует с неподвижно установленным профилированным регулирующим органом. Дополнительно в неподвижном фланце могут быть выполнены одно или несколько дросселирующих отверстий, соединяющих входную и выходную полости. Технический результат - повышение точности поддержания заданного расхода рабочего тела в расширенном диапазоне изменения давления на входе и улучшение динамики выхода двигателя на режим при включении. 1 з.п. ф-лы, 2 ил., 1 табл.

Изобретение относится к устройствам для измерения объемов и расходов текучих сред, а более конкретно к устройствам для измерения объемов и расходов (дебитов) многофазных текучих сред. Сущность изобретения заключается в том, что монитор многофазной жидкости содержит трубопровод, резервуары для калибровочных жидкостей, жидкостные насосы, измеритель скорости потока, анализатор жидкости, включающий генератор 14 МэВ нейтронов и гамма-спектрометры, располагаемые на трубопроводе и подключенные к анализатору спектра, связанному с микрокомпьютером, измеритель скорости потока располагается на трубопроводе на расстоянии от генератора 14 МэВ нейтронов по направлению потока многофазной жидкости и подключен к многоканальному временному анализатору, синхронизованному с генератором 14 МэВ нейтронов, дополнительно содержит один или несколько трубопроводов, соединенных с резервуарами для калибровочных жидкостей посредством жидкостных насосов, количество трубопроводов равно количеству калибровочных жидкостей, трубопроводы закрепляются на трубопроводе для прокачки многофазной жидкости параллельно ему и образуют вместе с ним полость, связанную с внешним пространством, генератор 14 МэВ нейтронов располагается внутри полости, гамма-спектрометры устанавливаются на всех трубопроводах, входят в состав анализатора жидкости и подключены к анализатору спектра, количество гамма-спектрометров равно или больше количества трубопроводов, измеритель скорости потока располагается на трубопроводе для прокачки многофазной жидкости на расстоянии L>V × t от генератора 14 МэВ нейтронов по направлению потока многофазной жидкости, где V - скорость потока многофазной жидкости, a t - время ее облучения. Технический результат - расширение области применения устройства. 1 ил.

Изобретение относится к устройствам для измерения объемов и расходов текучих сред, а более конкретно к устройствам для измерения объемов и расходов (дебитов) многофазных текучих сред. Монитор многофазной жидкости содержит обходной трубопровод с возможностью его соединения с трубопроводом для прокачки многофазной жидкости, резервуары для калибровочных жидкостей, жидкостные насосы, анализатор жидкости, измеритель скорости потока, анализатор жидкости включает генератор 14 МэВ нейтронов и гамма-спектрометры, располагаемые на обходном трубопроводе и подключенные к анализатору спектра, связанному с микрокомпьютером, измеритель скорости потока располагается на обходном трубопроводе на расстоянии от генератора 14 МэВ нейтронов по направлению потока многофазной жидкости и подключен к многоканальному временному анализатору, синхронизованному с генератором 14 МэВ нейтронов, дополнительно содержит трубопроводы, соединенные с резервуарами для калибровочных жидкостей посредством жидкостных насосов, количество этих трубопроводов равно количеству калибровочных жидкостей, трубопроводы располагаются параллельно обходному трубопроводу и образуют вместе с ним полость, связанную с внешним пространством, генератор 14 МэВ нейтронов располагается внутри полости, гамма-спектрометры устанавливаются на всех трубопроводах, входят в состав анализатора жидкости и подключены к анализатору спектра, их количество равно или больше количества трубопроводов, измеритель скорости потока располагается на обходном трубопроводе на расстоянии L>V×t от генератора 14 МэВ нейтронов по направлению потока многофазной жидкости, где V - скорость потока многофазной жидкости, a t - время ее облучения. Технический результат - повышение производительности и точности измерений. 1 ил.
Наверх