Сплав на основе интерметаллида ni3al и изделие, выполненное из него

Изобретение относится к области металлургии, а именно к литейным сплавам на основе интерметаллида Ni3Al и изделиям, получаемым методом точного литья по выплавляемым моделям с дендритной столбчатой структурой, таким как, например, сопловые лопатки, блоки сопловых лопаток и другие детали газотурбинных двигателей авиационной и автомобильной промышленности. Сплав на основе интерметаллида Ni3Al имеет следующий химический состав, мас.%: Al 8,4-9,0, Cr 4,5-5,5, W 3,0-3,8, Mo 3,0-3,8, Ti 0,3-0,8, Co 6,5-7,5, C 0,02-0,08, La 0,0015-0,015, Hf 0,3-0,8, Ni - остальное. Сплав на основе интерметаллида Ni3Al характеризуется повышенной жаропрочностью при температурах 1000 и 1050°C на базах испытания 100, 500 и 1000 часов. Использование предлагаемого сплава на основе интерметаллида Ni3Al повысит надежность изделий и увеличит ресурс их работы. 2 н.п. ф-лы, 2 табл., 3 пр.

 

Изобретение относится к области металлургии, а именно, к литейным сплавам на основе интерметаллида Ni3Al и изделиям, получаемым методом точного литья по выплавляемым моделям с дендритной столбчатой (направленной кристаллизованной) структурой, таким как, например, сопловые лопатки, блоки сопловых лопаток и другие детали газотурбинных двигателей авиационной и автомобильной промышленности.

Известен сплав на основе интерметаллида Ni3Al следующего химического состава, мас.%:

Al 2,4-6,5
V 8,1-15,5
Nb 0,8-8,6
B 0,005-0,05
Ni остальное

(Патент США 8197618)

Недостатком этого сплава является хрупкость при комнатной температуре и неудовлетворительная пластичность в диапазоне температур 100-800°С.

Изделия из этого сплава используются для наземных ГТД при температурах эксплуатации до 1100°С.

Известен также сплав на основе интерметаллида Ni3Al следующего химического состава, мас.%:

Al 8,0-10,8
Cr 4,0-6,0
W 1,5-5,5
Ti 1,0-1,4
С 0,15-0,20
La 0,0015-0,0150
Zr 0,03-0,05
Y 0,01-0,02
В 0,008-0,018
Ni остальное

(Патент РФ №2405851)

Недостатком известного сплава является неудовлетворительная жаропрочность при температурах 1000 и 1050°C на базах испытания 100 и 500 часов.

Недостатком изделий, выполненных из известного сплава, является низкий выход годного при отливке изделий с дендритной столбчатой (направленной кристаллизованной) структурой.

Известен сплав на основе интерметаллида Ni3Al следующего химического состава, мас.%:

Al 8,0-9,1
Cr 5,5-6,5
W 2,5-3,5
Mo 4,5-5,5
Ti 0,3-0,8
С 0,001-0,01
La 0,1-0,3
Zr 0,05-0,5
Hf 0,1-0,5
Та 0,1-1,0

Ni и технологические примеси - остальное

и изделие, выполненное из него

(Патент РФ №2351673)

Сплав обладает недостаточной пластичностью при комнатной температуре.

Изделия, выполненные из этого сплава, имеют низкий выход годного при отливке с дендритной столбчатой (направленной кристаллизованной) структурой.

Наиболее близким аналогом, взятым за прототип, является сплав на основе интерметаллида Ni3Al, имеющий следующий химический состав, мас.%:

Al 8,0-9,0
Cr 4,5-5,5
W 1,8-2,5
Mo 4,5-5,5
Ti 0,6-1,2
Co 3,5-4,5
С 0,01-0,08
La 0,0015-0,015
Sc 0,015-0,03
Ni остальное

и изделие, выполненное из него

(Патент РФ №2349663)

Недостатком сплава-прототипа является недостаточно высокая жаропрочность при температурах 1000 и 1050°С на базах испытания 100, 500 и 1000 часов и недостаточный выход годного.

Изделия из этого сплава имеют ограниченный ресурс эксплуатации.

Технической задачей изобретения является создание сплава на основе интерметаллида Ni3Al, обладающего повышенной жаропрочностью при температурах 1000 и 1050°С на базах испытания 100, 500 и 1000 часов и повышение выхода годного при отливке изделий с дендритной столбчатой (направленной кристаллизованной) структурой.

Для достижения поставленной технической задачи предложен сплав на основе интерметаллида Ni3Al, содержащий алюминий, хром, вольфрам, молибден, титан, кобальт, углерод, лантан и никель, который дополнительно содержит гафний при следующем соотношении компонентов, мас.%:

Al 8,4-9,0
Cr 4,5-5,5
W 3,0-3,8
Mo 3,0-3,8
Ti 0,3-0,8
Co 6,5-7,5
С 0,02-0,08
La 0,0015-0,015
Hf 0,3-0,8
Ni остальное

и изделие, выполненное из него

Сплав может содержать в виде примесей следующие элементы, мас.%: серу ≤0,005, фосфор ≤0,015, железо ≤0,5, кремний ≤0,4; свинец ≤0,001, висмут ≤0,0005, олово ≤0,003 и сурьму ≤0,003.

Было установлено, что снижение содержания молибдена в сплаве приводит к повышению жаростойкости, увеличение содержания в сплаве вольфрама приводит к упрочнению γ′ и γ-твердого раствора, кобальта - к упрочнению γ-твердого раствора и повышению пластичности при комнатной температуре, технологичности, а, следовательно, и выхода годного. При введении в состав гафния, действующего как карбидообразующий элемент, наблюдается образование мелкодисперсной карбидной фазы. При введении в состав гафния ниже 0,3 масс.% он будет выполнять роль только раскислителителя, что недопустимо при заявленном содержании других легирующих элементов, в частности, углерода. При повышении содержания гафния более 0,8 масс.% возможно образование легкоплавкого соединения Ni5Hf (Тпл.=1190°С).

При заявленном содержании и соотношениях компонентов в предлагаемом сплаве на основе интерметаллида Ni3Al достигается наибольший эффект повышения жаропрочности сплава при температурах 1000 и 1050°С на базах испытания 100, 500 и 1000 часов и повышения выхода годного при отливке изделий с дендритной столбчатой структурой.

Примеры осуществления:

Шихтовую заготовку из предлагаемого сплава различных составов и сплава-прототипа выплавляли из чистых шихтовых материалов в вакуумной индукционной печи с тиглем из основной футеровки. После разливки сплавов в кокили ⌀ 90 мм отбирали стружку на химический анализ. Результаты химического анализа составов сплава приведены в таблице 1.

Содержание легирующих элементов, газов и примесей определяли по стандартным методикам.

Перед последующими операциями шихтовую заготовку протачивали по поверхности на глубину 1-2 мм для удаления слоя, контактирующего с чугуном, затем разрезали на мерные заготовки весом по 3,2 кг для последующего переплава.

Заготовки под образцы ⌀ 16 мм и длиной 150 мм и изделия в виде модельных сопловых лопаток газотурбинных двигателей с дендритной столбчатой структурой получали методом направленной кристаллизации в вакууме.

Выход годного по дендритной столбчатой структуре заготовок образцов и отливок изделий контролировали путем выявления макроструктуры травлением в смеси соляной кислоты и перекиси водорода. Годными по макроструктуре отбирались отливки, имеющие 2-3 зерна с границами зерен, ориентированными преимущественно вдоль оси отливки.

С целью снятия остаточных напряжений и повышения стабильности свойств механически обработанные образцы и детали термообрабатывали на воздухе по следующему режиму: отжиг при температуре 1150±10°С в течение 1 ч, охлаждение на воздухе.

Свойства предлагаемого сплава с различным соотношением компонентов и сплава-прототипа, приведенные в таблице 2, определяли на стандартных образцах при соотношении l/d=5. Критерием являлись средние значения из 10 образцов на точку с доверительной вероятностью 0,8.

Из таблицы 2 видно, что свойства предлагаемого сплава на основе интерметаллида Ni3Al выше, чем свойства сплава-прототипа: жаропрочность при температуре 1000°C на базе испытания 100 часов (σ1000100) - на 11,0-18,5%; жаропрочность при температуре 1000°C на базе испытания 500 часов (σ1000500) - на 17,5-29,5%; жаропрочность при температуре 1000°С на базе испытания 1000 часов (σ10001000) - на 50,0-58,0%; жаропрочность при температуре 1050°C на базе испытания 100 часов (σ1050500) - на 10,5-24,5%; жаропрочность при температуре 1050°C на базе испытания 500 часов (σ1050500) - на 22,5-30,5%; жаропрочность при температуре 1050°C на базе испытания 1000 часов (σ10501000) - на 40-50%; выход годного отливок изделий по дендритной столбчатой структуре на 12,0-17,0%.

Использование предлагаемого сплава на основе интерметаллида Ni3Al повысит надежность изделий и увеличит ресурс их работы.

Таблица 1
Составы предлагаемого сплава и сплава-прототипа
Состав Содержание элементов, масс.%
Al Cr W Mo Ti Co С La Sc Hf Ni
1 8,7 5,0 3,4 3,4 0,6 7,0 0,05 0,010 - 0,5 ост.
2 8,4 5,5 3,8 3,0 0,8 6,5 0,02 0,0015 - 0,3 ост.
3 9,0 4,5 3,0 3,8 0,3 7,5 0,08 0,015 - 0,8 ост.
Прототип 8,5 5,0 2,1 5,0 0,9 4,0 0,05 0,010 0,02 - ост.
Таблица 2
Свойства предлагаемого сплава на основе интерметаллида Ni3Al и сплава-прототипа
Свойства σ1000100, МПа σ1000500, МПа σ10001000, МПа σ1050100, МПа σ1050500, МПа σ10501000, кгс/мм2 Выход годного при получении дендритной столбчатой структуры, %
1 152,0 103,0 88,5 110,0 78,5 68,5 90,0
2 157,0 108,0 93,0 103,0 83,5 73,5 87,5
3 147,0 98,0 88,5 98,0 78,5 68,5 85,0
Прототип 132,5 83,5 59,0 88,5 64,0 49,0 73,0

1. Сплав на основе интерметаллида Ni3Al, содержащий алюминий, хром, вольфрам, молибден, титан, кобальт, углерод, лантан, никель, отличающийся тем, что он дополнительно содержит гафний при следующем соотношении компонентов, мас.%:

Al 8,4-9,0
Cr 4,5-5,5
W 3,0-3,8
Mo 3,0-3,8
Ti 0,3-0,8
Co 6,5-7,5
С 0,02-0,08
La 0,0015-0,015
Hf 0,3-0,8
Ni остальное

2. Изделие из сплава на основе интерметаллида Ni3Al, отличающееся тем, что оно выполнено из сплава по п.1.



 

Похожие патенты:

Изобретение относится к области металлургии, в частности к никелевым сплавам, и может быть использовано при производстве сопловых и рабочих охлаждаемых лопаток газотурбинных двигателей и установок.

Изобретение относится к металлургии, в частности к литейным жаропрочным коррозионно-стойким сплавам на основе никеля, и может быть использовано для изготовления литьем деталей горячего тракта газотурбинных установок, например рабочих лопаток газотурбинного двигателя с равноосной, направленной и монокристаллической структурами, работающих в агрессивных средах при температурах 700-1000°C.

Изобретение относится к монокристаллическому суперсплаву на основе Ni и может быть использовано для изготовления из него лопаток турбины. Сплав имеет следующий состав по массе: 6,0 мас.% или более и 9,9 мас.% или менее Co, 6,5 мас.% или более и 10,0 мас.% или менее Cr, 1,0 мас.% или более и 4,0 мас.% или менее Mo, 8,1 мас.% или более и 11,0 мас.% или менее W, 4,0 мас.% или более и 9,0 мас.% или менее Та, 5,2 мас.% или более и 7,0 мас.% или менее Al, 0,1 мас.% или более и 2,0 мас.% или менее Ti, 0,05 мас.% или более и 0,3 мас.% или менее Hf, 0-1,0 мас.% Nb и 0-0,8 мас.% Re при остатке, включающем Ni и неизбежные примеси.

Изобретение относится к области металлургии, в частности, к дисперсно-упрочненному сплаву на основе никеля, образующему оксид алюминия на поверхности и предназначенному для применения при высоких температурах.
Изобретение относится к области металлургии, в частности к жаропрочным порошковым сплавам на основе никеля, обладающим повышенным сопротивлением к сульфидной коррозии, и может быть использовано для изготовления деталей газотурбинных двигателей.
Изобретение относится к области металлургии, а именно к сплавам на основе интерметаллида Ni3Al с монокристаллической структурой и выполненным из них изделиям, получаемым методом точного литья по выплавляемым моделям, таким как рабочие и сопловые лопатки, блоки сопловых лопаток и другие детали газотурбинных двигателей авиационной, автомобильной промышленности.
Изобретение относится к металлургии, в частности к конструкционным материалам для ядерных энергетических установок и к материалам для свариваемых деталей и конструкций, работающих при повышенных температурах в высокоагрессивных средах.

Изобретение относится к области металлургии, а именно к термической обработке заготовок из сплава Х65НВФТ на основе хрома. Для повышения жаростойкости сплава заготовку из сплава Х65НВФТ подвергают закалке путем нагрева до температуры 1270±10°C с выдержкой при этой температуре в течение 20 мин и охлаждают в масло.

Изобретение относится к области термической обработки. Техническим результатом изобретения является снижение твердости и стабилизация ее значений упрочненных заготовок из сплава Х65НВФТ.

Изобретение относится к области металлургии, а именно к жаропрочным, стойким к окислению сплавам, пригодным для сварки. Сплав содержит следующие компоненты, масс.%: 25-32 железа, 18-25 хрома, 3,0-4,5 алюминия, 0,2-0,6 титана, 0,2-0,4 кремния, 0,2-0,5 марганца, до 2,0 кобальта, до 0,5 молибдена, до 0,5 вольфрама, до 0,01 магния, до 0,25 углерода, до 0,025 циркония, до 0,01 иттрия, до 0,01 церия, до 0,01 лантана, никель и примеси - остальное.

Изобретение относится к области металлургии, в частности к сплавам на основе никеля защитных покрытий деталей газовой турбины. Сплав на основе никеля для защитного покрытия деталей газовой турбины содержит, мас.%: 24-26 кобальта, 16-25 хрома, 9-12 алюминия, 0,1-0,7 иттрия и/или по меньшей мере одного металла из группы, содержащей скандий и редкоземельные элементы, необязательно, 0,1-0,7 фосфора, необязательно, 0,1-0,6 кремния, не содержит рений, никель - остальное. Защитный слой имеет высокую устойчивость к коррозии и окислению при высокой температуре. 3 н. и 15 з.п. ф-лы, 5 ил.

Изобретение относится к области металлургии, в частности к металлическому покрытию с фазами γ- и γ'. Металлическое покрытие из сплава на основе никеля для деталей газовых турбин содержит γ- и γ'-фазы, при этом сплав содержит, мас.%: железо 0,5-5, кобальт по меньшей мере 1, хром по меньшей мере 1, алюминий по меньшей мере 1, и, при необходимости, тантал (Та) и/или иттрий (Y). Покрытие обладает длительным сроком службы, высокими механическими свойствами и улучшенной стойкостью к окислению. 2 н. и 11 з.п. ф-лы, 4 ил.

Изобретение относится к области металлургии, в частности к металлическому покрытию со связующим, и может быть использовано в качестве покрытия для детали газовой турбины. Металлическое покрытие из сплава на основе никеля для деталей газовых турбин содержит γ- и γ'-фазы и, необязательно, β-фазу, при этом сплав содержит, вес.%: тантал 0,1-7,0, кобальт по меньшей мере 1, хром от 12 до 22, предпочтительно от 15 до 19, алюминий от 5 до 15, предпочтительно от 8 до 12, причем сплав предпочтительно не содержит кремний (Si), и/или гафний (Hf), и/или цирконий. Покрытие характеризуется высокими термомеханическими свойствами и стойкостью к окислению, а также длительным сроком службы. 2 н. и 10 з.п. ф-лы, 5 ил.

Изобретение относится к металлургии, в частности к литейным жаропрочным коррозионностойким сплавам на основе никеля, и может быть использовано для изготовления литьем деталей горячего тракта газотурбинных установок, работающих в агрессивных средах при температурах 800-1000°C. Жаропрочный сплав на основе никеля для литья рабочих лопаток газотурбинных установок содержит, мас.%: углерод 0,001-0,12, хром 9,7-10,3, кобальт 3,3-4,3, вольфрам 5,8-6,5, молибден 0,15-0,3, алюминий 3,5-3,9, тантал 3,8-4,2, рений 4,5-4,9, бор 0,0003-0,01, ниобий 0,10-0,20, церий 0,002-0,012, иттрий 0,002-0,012, титан 3,0-3,4, гафний 0,10-0,20, магний 0,005-0,2, марганец 0,002-0,12, кремний 0,005-0,2, никель - остальное. Сплав характеризуется высокими показателями длительной прочности и сопротивления окислению, структурной стабильностью на ресурс. 2 табл.
Изобретение относится к области металлургии, в частности к высокопрочным сплавам на основе никеля для получения износостойких покрытий на металлические конструктивные элементы. Нанокомпозит на основе никеля для нанесения покрытий методами гетерофазного напыления содержит, мас.%: хром - 10,0-20,0, молибден - 25,0-45,0, кремний - 6,0-9,0, алюминий - 7,5-10,0, цинк - 1,5-2,0, TiC - 2,0-4,0, никель - остальное. Нанокомпозит получен при введении Al и Zn в виде лигатуры при соотношении компонентов 5:1 соответственно, а TiC - в виде наночастиц размером 60-80 нм. Повышается микротвердость и адгезионная прочность сплава на основе никеля. 1 з.п. ф-лы, 2 пр.

Изобретение относится к металлургии, в частности к литейным жаропрочным коррозионностойким сплавам на основе никеля, и может быть использовано для изготовления литьем деталей горячего тракта газотурбинных установок. Жаропрочный сплав на основе никеля для литья рабочих лопаток газотурбинных установок содержит, мас.%: углерод 0,001-0,12, хром 8,8-9,2, кобальт 4,8-5,2, вольфрам 6,1-6,5, молибден 0,15-0,3, алюминий 3,7-3,9, тантал 3,9-4,1, рений 3,4-3,6, бор 0,0003-0,01, ниобий 0,10-0,20, церий 0,002-0,012, иттрий 0,002-0,012, титан 2,9-3,1, гафний 0,15-0,25, марганец 0,002-0,12 и никель остальное. Сплав содержит церий и иттрий в равных количествах, а отношение содержания титана к содержанию алюминия составляет > 0,75. Сплав характеризуется повышенной длительной прочностью в сочетании с высоким сопротивлением окислению. 2 табл.

Изобретение относится к жаропрочному сплаву на основе никеля. Сплав содержит, мас. %: 7,7 - 8,3 Cr, 5,0 - 5,25 Co, 2,0 - 2,1 Mo, 7,8 - 8,3 W, 5,8 - 6,1 Та, 4,9 - 5,1 Аl, 1,0 - 1,5 Ti, 1,0 - 2,0 Re, 0 - 0,5 Nb, 0,11 - 0,15 Si, 0,1 - 0,7 Hf, 0,02 - 0,17 C, 50 - 400 частей на миллион В, остальное - никель и неизбежные примеси. Сплав характеризуется высокой стойкостью к окислению, коррозионной стойкостью и положительными свойствами ползучести при высоких температурах.18 з.п. ф-лы, 3 ил., 1 табл.
Изобретение относится к области металлургии, в частности к высокопрочным прецизионным сплавам на основе никеля для получения покрытий микроплазменным или холодным сверхзвуковым напылением. Сплав содержит, мас.%: хром 18,0-40,0, молибден 30,0-40,0, алюминий 0,45-0,63, цирконий 4,5-6,4, карбид кремния 1,4-2,6, церий 0,2-0,6, иттрий 0,1-0,5, лантан 0,5-0,8, никель - остальное. Алюминий и цирконий присутствуют в сплаве в виде интерметаллида AlZr3, содержание которого составляет 5-7 мас.%. Сплав характеризуется повышенной коррозионной стойкостью и улучшенными прочностными характеристиками. 2 пр.

Изобретение относится к области металлургии, а именно к производству литейных жаропрочных сплавов на никелевой основе. Сплав, мас.%: хром - 4,0-6,0; кобальт - 8,0-11,0; молибден - 2,5-3,5; вольфрам - 6,0-8,0; алюминий - 5,4-6,2; углерод 0,05-0,16; бор - 0,008-0,04; цирконий - 0,01-0,05; титан - 0,5-2,5; церий - 0,002-0,02; иттрий - 0,001-0,01; лантан - 0,002-0,02; рений - 1,0-2,0; тантал - 4,0-6,0; никель - остальное. Изделие, выполненное из заявленного сплава, может иметь поликристаллическую или монокристаллическую структуру. Технический результат - повышение характеристик фазовой стабильности, повышение длительной прочности и пластичности. 2 н. и 1 з.п. ф-лы., 2 табл., 1 пр.

Изобретение относится к металлургии, в частности к литейным коррозионностойким жаропрочным сплавам на основе никеля, и может быть использовано для изготовления литьем деталей горячего тракта газотурбинных установок (ГТУ), работающих в агрессивных средах природного газа при температурах 600-890°C. Жаропрочный сплав на основе никеля для изготовления лопаток газотурбинных установок содержит, мас.%: углерод 0,08-0,11; хром 14,6-15,1; кобальт 8,5-8,9; вольфрам 6,5-6,9; молибден 0,3-0,6; алюминий 3,9-4,1; титан 3,6-3,8; бор 0,010-0,013; кальций 0,01-0,20; кремний ≤0,1; марганец 0,15-0,30; сера ≤0,005; фосфор ≤0,005; магний 0,01-0,20; медь ≤0,05; азот 10-20 ppm; кислород 10-15 ppm, no меньшей мере, два элемента, выбранных из группы: железо ≤0,2; ванадий ≤0,10 и барий ≤0,01, никель - остальное. Сплав характеризуется повышенными значениями пластичности, коррозионной стойкости, обеспечивается высокая структурная стабильность. 2 табл., 3 пр.
Наверх