Способ контроля физического состояния железобетонных опор со стрежневой напрягаемой арматурой

Изобретение относится к методам неразрушающего контроля, а именно к виброакустическим методам, и может найти применение для физического контроля железобетонных опор со стержневой напрягаемой арматурой. Способ заключается в том, что на опору устанавливают акустический датчик, регистрируют акустическую эмиссию (АЭ), сравнивают ее с ранее полученной, по результатам сравнения судят о физическом состоянии опоры. При этом на опору устанавливают акселерометр, акустический датчик и акселерометр устанавливают на границе заделки опоры в фундамент или в грунт, на опоре закрепляют вибратор и подвергают опору нагрузке, изменяющейся по амплитуде и частоте. На первоначальном этапе определяют резонансную частоту опоры, на данной резонансной частоте регистрируют амплитуду колебаний опоры, суммарную энергию АЭ, количество импульсов АЭ, скорость счета импульсов АЭ от возникающих и развивающихся дефектов, образующихся под воздействием колебаний опоры на резонансной частоте за определенный период времени. Затем полученные результаты заносятся в персональный компьютер под номером опоры, на последующих этапах контроля строят графики изменения амплитуды колебаний опоры и параметров АЭ на ранее установленной резонансной частоте. По характеру изменения значений регистрируемых параметров судят о физическом состоянии опоры и фундамента, о жесткости закрепления опоры в фундаменте или грунте и принимают решение об устранении выявленных дефектов, или замене опоры, или усилении крепления оборудования на опоре. Технический результат заключается в возможности оценки и прогнозирования состояния опор, их остаточного ресурса железобетонной опоры, а также оценки надежности крепления оборудования на опорах. 1 ил.

 

Изобретение относится к методам неразрушающего контроля, а именно к виброакустическим методам, и может найти применение для физического контроля железобетонных опор со стержневой напрягаемой арматурой, предназначенных для применения в качестве промежуточных, анкерных и переходных консольных опор контактной сети на постоянном и переменном токе, опор высоковольтно-сигнальных линий автоблокировки железных дорог напряжением 6-10 кВ, железобетонных мачт светофоров, предназначенных для установки перегонных светофоров и переездного сигнала железных дорог, железобетонных стоек прожекторных мачт, а также фундаментов стаканных, предназначенных для установки железобетонных конических консольных опор контактной сети и опор с жесткими поперечинами с одиночными и спаренными стойками и фундаментов, предназначенных для анкерной установки раздельных железобетонных и металлических опор контактной сети на железнодорожных участках на постоянном и переменном токе.

Опоры, стойки, фундаменты контактной сети, мачты светофоров относятся к наиболее ответственным элементам системы энергоснабжения железных дорог. От их надежности и состояния зависит обеспечение бесперебойности энергоснабжения и безопасность движения поездов.

Железобетонные опоры со стержневой напрягаемой арматурой в условиях эксплуатации подвергаются воздействию не только механических нагрузок, но и воздействию токов, стекающих с рельсов через арматуру (электрокоррозия). Наиболее опасны повреждения подземной части опор, так как их невозможно обнаружить без откопки опор. Эта работа является трудоемкой и не позволяет своевременно выявлять начинающиеся процессы разрушения подземной части опоры. Опасны повреждения на границе заделки опор в фундаменты или непосредственно в грунт. В этой зоне возникают максимальные механические напряжения, которые могут приводить к катастрофическому разрушению опоры. Не менее опасным является ослабление закрепления оборудования на опорах, например светофорных головок. Такое ослабление (снижение жесткости креплений) может происходить на опорах, не имеющих физического повреждения.

Известен способ [1] (Сергеев Н.А. Современный метод обследования контактной сети. Локомотив, 1997, №4, стр.36-37), в соответствии с которым ударом слесарного молотка по опоре возбуждают в ней колебания, записывают колебания на магнитную ленту через приставленный к опоре микрофон, передают результаты записи на компьютер и анализируют внешний вид записи. Если колебания имеют форму биений, то считают опору дефектной.

Этот способ является недостаточно достоверным и широкого распространения не получил.

Известен способ (Указания по техническому обслуживанию и ремонту железобетонных опорных конструкций контактной сети. М.: Транспорт, 1984, стр.43-47), в соответствии с которым возбуждают низкочастотные колебания и вычисляют логарифмический декремент колебаний, по величине которого судят о состоянии подземной части опоры. Однако достоверность этого способа недостаточна, поскольку логарифмический декремент колебаний опоры определяется не только наличием или отсутствием трещин в подземной части опоры, но и качеством бетона, условиями заделки стойки в фундамент, ее жесткостью и качеством самого фундамента.

Наиболее близким, и принятым за прототип, является известный виброакустический метод диагностики подземной части железобетонных опор контактной сети (Указания по техническому обслуживанию и ремонту опорных конструкций контактной сети, г.Москва, 2003 г., стр.65-69). Для проведения измерений этим методом на опору устанавливают два пьезокерамических акустических датчика, низкочастотный и высокочастотный. Опору, тем или иным способом, приводят в колебания, определяют логарифмические декременты этих колебаний и по величине их отношения, сравнивая его с нормированным, судят о состоянии подземной части опоры.

Недостаток этого метода состоит в большой трудоемкости предлагаемого способа возбуждения низкочастотных колебаний. Для их возбуждения используют устройство, состоящее из сбрасывающего приспособления, троса и рычага. Трос одним концом закрепляется на опоре на высоте 3-4 м, а другим концом - на сбрасывающем приспособлении, закрепленном на рычаге. Поворотом рычага трос натягивается, срабатывает сбрасывающее приспособление и опора приходит в режим свободных колебаний. В связи с трудоемкостью такого способа низкочастотные колебания часто получают раскачкой опоры вручную. Во-первых, при этом трудно достигнуть необходимой амплитуды колебаний, а во-вторых, разные операторы проводят раскачку неодинаково и до разной амплитуды, что ведет к разбросу данных и уменьшает их достоверность. Невозможно оценить надежность (жесткость) закрепления оборудования на опоре, например светофорной головки.

Задачей предлагаемого способа является повышение безопасности движения железнодорожного движения.

Технический результат, достигаемый в процессе решения поставленной задачи, заключается в получении комплекта характеристик, отображающих физическое состояние железобетонной опоры со стержневой напрягаемой арматурой, позволяющих прогнозировать заблаговременную подготовку по замене опор, в прогнозировании остаточного ресурса железобетонной опоры со стержневой напрягаемой арматурой, а также жесткость (надежность) закрепления оборудования на опорах, например светофорных головок.

Технический результат достигается способом контроля физического состояния железобетонных опор со стержневой напрягаемой арматурой, заключающимся в том, что на опору устанавливают акустический датчик, регистрируют акустическую эмиссию (АЭ), сравнивают ее с ранее полученной, по результатам сравнения судят о физическом состоянии опоры, при этом на опору устанавливают акселерометр, акустический датчик и акселерометр устанавливают на границе заделки опоры в фундамент или в грунт, на опоре закрепляют вибратор и подвергают опору нагрузке, изменяющейся по амплитуде и частоте, на первоначальном этапе определяют резонансную частоту опоры, на данной резонансной частоте регистрируют амплитуду колебаний опоры, суммарную энергию АЭ, количество импульсов АЭ, скорость счета импульсов АЭ от возникающих и развивающихся дефектов, образующихся под воздействием колебаний опоры на резонансной частоте за определенный период времени, полученные результаты заносятся в персональный компьютер под номером опоры, на последующих этапах контроля строят графики изменения амплитуды колебаний опоры и параметров АЭ на ранее установленной резонансной частоте, по характеру изменения значений регистрируемых параметров судят о физическом состоянии опоры и фундамента, о жесткости закрепления опоры в фундаменте или грунте и принимают решение об устранении выявленных дефектах или замене опоры или усилении крепления оборудования на опоре.

Подвижной состав железнодорожного транспорта является мощным источником избыточного давления и разряжения головной воздушной волны, возникающей при его движении. Воздушная волна оказывает заметное воздействие на усталостное разрушение объектов, в частности на разрушение железобетонных опор контактной сети со стержневой напрягаемой арматурой, опор высоковольтно-сигнальных линий автоблокировки железных дорог, железобетонных мачт перегонных светофоров и светофоров переездного сигнала железных дорог, а также фундаменты, на которых они установлены, находящиеся в непосредственной близости от железнодорожного полотна. Помимо этого подвижной состав железнодорожного транспорта является и источником вибрации. Вибрация в широком частотном диапазоне передается, видоизменяясь, через рельсовые пути на шпалы и далее в грунт, окружающие здания, элементы верхнего и нижнего строения железнодорожного пути. Длительное воздействие переменных напряжений, в совокупности с вибрационным воздействием, приводят к постепенному накоплению напряжений, приводящих к образованию трещин в бетоне, отслаиванию арматуры от бетона и в итоге к разрушению. Данный процесс зарождения и развития дефектов длительный, т.е. можно говорить о разрушении опор как о разрушении при циклической усталости. Способность материла опоры противостоять усталостным явлениям является его выносливостью. Вес железобетонной опоры создает ощутимые статические нагрузки на нижнюю часть опоры, которая находится в фундаменте опоры, т.е. фундаменты дополнительно испытывают большие статические нагрузки. Сочетание постоянной статической нагрузки и периодической вибрационной могут приводить к катастрофическому разрушению фундаментов. Участок опоры, наиболее вероятного накопления повреждений, расположен на границе заделки опоры с фундаментом или с поверхностью грунта, поэтому здесь предлагается устанавливать акселерометр, для регистрации частоты и амплитуды колебаний и датчик регистрации параметров АЭ. Это позволит контролировать физическое состояние фундамента и опоры (стойки). Поскольку процесс накопления повреждений, приводящих к разрушению фундаментов и опор, длительный, может длиться не один год, то необходимости вести постоянный непрерывный контроль физического состояния опор нет. Тем не менее периодический контроль должен выявлять динамику изменения свойств железобетонной опоры и фундамента. Поэтому предлагается, при периодическом контроле, подвергать опору кратковременным колебаниям в резонансной области. Период воздействия при резонансной частоте определяется в каждом конкретном случае индивидуально, зависит от вида опоры и фундамента. Но, безусловно, он должен быть, с одной стороны, кратковременным, с другой, достаточным, чтобы получить необходимую информацию для анализа. В дальнейшем, при повторных обследованиях, при таком же воздействии на опору, позволят получить зависимости изменения физических свойств опоры от времени. Полученные зависимости, по интенсивности изменения контролируемых параметров, как в отдельности, так и по совокупности, позволят создать комплект характеристик, отображающих физическое состояние железобетонной опоры со стержневой напрягаемой арматурой, позволяющих прогнозировать заблаговременную подготовку по замене опор, спрогнозировать остаточный ресурс железобетонной опоры.

Акустические датчики, установленные на опоре в наиболее опасной области, позволяют по интенсивности изменения контролируемых параметров, при колебаниях опоры в резонансной частоте, оценить нарастающую деградацию физического состояния обследуемой опоры и определить ее несущую способность.

Оценка собственных резонансных колебаний конструкции опоры по амплитуде и частотному спектру и характеру их изменения от времени позволят судить о жесткости закрепления опоры, о степени дефектности опоры и фундамента, о надежности закрепления оборудования на опоре, и, следовательно, о физическом состоянии опоры и ее несущей способности в целом. Изменение характера резонансных частот позволяет оценить не только жесткость закрепления опоры в фундаменте и прочность самого фундамента, но надежность закрепления устройств на опоре, например светофорных головок. Первоначальными дефектами при разрушении опоры является отслаивание арматуры от бетона. Это происходит по ряду причин, основной является коррозия арматуры. Возникновение данных дефектов приводит к увеличению амплитуды колебаний и изменению резонансной частоты. Получение зависимостей изменения резонансной частоты опоры от времени в совокупности с другими характеристиками позволит создать комплект характеристик, отображающих физическое состояние железобетонной опоры со стержневой напрягаемой арматурой, позволяющих прогнозировать заблаговременную подготовку по замене опор, спрогнозировать остаточный ресурс железобетонной опоры, а также жесткость (надежность) закрепления оборудования на опорах, например светофоров.

Аппаратная реализация способа показана на чертеже, где стойка опоры 1 установлена в основание опоры 2 (дополнительное оборудование, закрепленное на опоре, не показано). На стойку 1 крепится с помощью крепления 3 вибратор 4 на высоту L (1,4-1,6 м). Частота и сила воздействия вибратора 4 управляется с помощью регулятора 8. Регулятор 8 питается переменным напряжением от генератора. Акустический датчик 5 подключен к системному блоку 7 через предусилитель 6. Индикация и обработка сигналов АЭ производится на персональном компьютере 9. Акселерометр 10 подключен к осциллографу 11. Данные, полученные с акселерометра 10, сохраняются в ПЗУ осциллографа 11.

Способ реализуется следующим образом. На стойку 1 устанавливают акустический датчик 5, и акселерометр 10, акустический датчик 5 и акселерометр 6 устанавливают на границе заделки стойки 1 в основание 2 или в грунт, на опоре 1 закрепляют вибратор 4 и подвергают опору нагрузке, изменяющейся по амплитуде и частоте. На первоначальном этапе определяют резонансную частоту опоры, на данной резонансной частоте регистрируют амплитуду колебаний опоры 1 и суммарную энергию АЭ, количество импульсов АЭ, скорость счета импульсов АЭ от возникающих и развивающихся дефектов, образующихся под воздействием резонансных колебаний опоры за определенный период времени, полученные результаты заносятся в персональный компьютер 9 под номером опоры. На последующих этапах строят графики изменения амплитуды колебаний опоры на резонансной частоте и параметров АЭ, по характеру изменения значений регистрируемых параметров судят о жесткости закрепления опоры и дефектности опоры.

При резких изменениях контролируемых параметров судят о начале деградации физических свойств опоры и проводят мероприятия по ее замене, при этом проводят более частый контроль всех параметров. При контроле физического состояния опор, на которых установлено дополнительное оборудование, дополнительно контролируют характер изменения резонансной частоты опоры. При ее изменении, в первую очередь, обращают внимание на жесткость (надежность) крепления оборудования на опоре, при закреплении оборудования, контролируют изменения всех остальных параметров.

Способ контроля физического состояния железобетонных опор со стержневой напрягаемой арматурой, заключающийся в том, что на опору устанавливают акустический датчик, регистрируют акустическую эмиссию (АЭ), сравнивают ее с ранее полученной, по результатам сравнения судят о техническом состоянии опоры, отличающийся тем, что на опору устанавливают акселерометр, акустический датчик и акселерометр устанавливают на границе заделки опоры в фундамент или в грунт, на опоре закрепляют вибратор и подвергают опору нагрузке, изменяющейся по амплитуде и частоте, на первоначальном этапе определяют резонансную частоту опоры, на данной резонансной частоте регистрируют амплитуду колебаний опоры, суммарную энергию АЭ, количество импульсов АЭ, скорость счета импульсов АЭ от возникающих и развивающихся дефектов, образующихся под воздействием колебаний опоры на резонансной частоте за определенный период времени, полученные результаты заносят в персональный компьютер под номером опоры, на последующих этапах строят графики изменения амплитуды колебаний опоры и параметров АЭ на ранее установленной резонансной частоте, по характеру изменения значений регистрируемых параметров судят о физическом состоянии опоры, фундамента, о жесткости закрепления опоры в фундаменте или грунте, о надежности закрепления оборудования на опоре и принимают решение об устранении выявленных дефектов, или замене опоры, или усилении крепления оборудования на опоре.



 

Похожие патенты:

Использование: для выявления шумоподобных источников акустической эмиссии во время диагностирования, мониторинга, оценки состояния и ресурса объектов контроля с применением локационных методов акустической эмиссии.

Использование: для исследования деформации и напряжений в хрупких тензоиндикаторах. Сущность: что проводят акустико-эмиссионнные измерения сигналов образования трещин в хрупком тензопокрытии, при этом дополнительно измеряют концентрацию аэрозолей в приповерхностном слое хрупкого тензопокрытия, при этом при скорости изменения нагрузки до 0,1 кН/с с учетом 30-секундной поправки на задержку регистрации диагностируют процесс разрушения оксидной пленки тензоиндикатора и материала подложки.

Использование: для неразрушающего контроля технического состояния промышленных объектов. Сущность: заключается в том, что преобразователь акустической эмиссии содержит корпус и установленный в нем пьезоэлемент с протектором, а также, по меньшей мере, один пьезотрансформатор, соединенный последовательно с пьезоэлементом.

Использование: для определения координат источника акустической эмиссии. Сущность: заключается в том, что на контролируемом изделии на некотором расстоянии друг от друга устанавливают два преобразователя акустической эмиссии, изделие нагружают, принимают сигналы акустической эмиссии, генерируемые дефектом изделия, регистрируют моды волн Лэмба в виде волнового пакета, после представления которого частотно-временной зависимостью на спектрограммах выделяют энергетические максимумы антисимметричных и симметричных мод, по разнице во времени прихода энергетических максимумов на выбранных частотах определяют расстояния между преобразователем и источником акустической эмиссии, после чего по полученным результатам рассчитывают координаты дефекта изделия.

Изобретение относится к области методов контроля качества сталей и сплавов. Технический результат - повышение точности измерений.

Использование: для контроля прочности железобетонного изделия в условиях чистого изгиба. Сущность: заключается в том, что изделие циклически нагружают от нуля с постепенно возрастающей амплитудой до появления сигналов акустической эмиссии перед окончанием разгружения, и по среднему для максимальных нагрузок двух последних циклов судят о максимальной неразрушающей нагрузке изделия, причем при появлении сигналов акустической эмиссии перед окончанием разгружения определяют координаты ее источника (дефекта), амплитуды и нагрузки возникновения этих сигналов, после чего продолжают циклическое нагружение с повышением амплитуды, после каждого разгружения определяют координаты новых источников сигналов акустической эмиссии, амплитуды и нагрузки возникновения сигналов, контролируют изменение амплитуды и нагрузки возникновения сигналов для каждого источника от цикла к циклу, а при их возрастании у одного из источников прекращают нагружения.

Использование: для контроля качества материала образца методом акустической эмиссии. Сущность: способ заключается в том, что выполняют термическое с возрастающей температурой воздействие на образец и регистрацию возникающих в нем сигналов акустической эмиссии, при этом термическому воздействию подвергают серию однотипных из одного материала образцов до температуры 90°C и для каждого из них определяют среднее значение активности акустической эмиссии в диапазоне 30÷90°C, каждый из серии образцов подвергают одноосному механическому нагружению, по результатам которого определяют его предел прочности при сжатии, строят тарировочную кривую, описывающую взаимосвязь между средней активностью акустической эмиссии и пределом прочности материала для всей серии испытанных образцов, по которой определяют прочность материала вновь испытываемых образцов того же типа, по их средней активности термоакустической эмиссии, в диапазоне от 30°C до 90°C.

Изобретение относится к области неразрушающего контроля и предназначено для выявления трещиновидных дефектов в образцах скальных геоматериалов. .
Изобретение относится к исследованию деформаций и напряжений и может быть использовано для исследования деформаций и напряжений в деталях, например в элементах металлических конструкций инженерных сооружений.

Изобретение относится к машиностроению, преимущественно к термической обработке металлов, и может использоваться при контроле параметров сталей акустическими методами.

Изобретение относится к области измерительной техники, в частности к средствам мониторинга технического состояния различных сооружений, и может быть использовано для текущей оценки и прогноза безопасной эксплуатации зданий и/или сооружений при возможных неблагоприятных воздействиях на объект.

Изобретение относится к испытательной технике, в частности к испытательным устройствам, и предназначено для проведения испытаний плоских конструкций. Устройство включает силовой пол, надувную камеру, по контуру которой установлены ограничительные элементы, опорные элементы, прикрепленные к силовому полу и компрессор.

Изобретение относится к области испытательной техники, в частности к резонансным испытаниям механических конструкций, и может быть использовано в машиностроении для определения характеристик собственных колебаний испытываемого объекта.

Изобретение относится к испытательной технике, в частности к устройствам для испытания линейным ускорением электромагнитных реле с самовозвратом, и может быть использовано для испытания на центрифуге одновременно более двух реле.

Изобретение относится к испытательной технике, в частности к способам испытания электромагнитных реле с самовозвратом на центрифуге. Согласно способу на центрифугу устанавливают одновременно все испытываемые реле, измерение и контроль параметров реле совмещают и проводят одновременно у всех реле без коммутации проводов за одно увеличение напряжения только одного источника тока Е1 питания катушек одновременно всех реле до напряжения срабатывания всех реле и за одно уменьшение до напряжения возврата всех реле.

Изобретение относится к области строительства и эксплуатации дорожных конструкций, а именно к оценке жесткости и прочности мостовых сооружений как автодорожных, так и железнодорожных.

Изобретение относится к области строительства и эксплуатации автомобильных дорог, а именно к методам и средствам диагностики состояния конструкций. При реализации способа на поверхности дорожной конструкции производится ударное воздействие, измерение реакции дорожной конструкции производится датчиками - пьезокерамическими виброакселерометрами, установленными на полосе наката в контрольных точках на различных расстояниях от центра области контакта на поверхности покрытия параллельно оси автомобильной дороги.

Изобретение относится к испытательной технике и может быть использовано для вибрационных испытаний различных изделий. .

Изобретение относится к испытательной технике, в частности к вибрационным испытаниям конструкций, и может быть использовано в машиностроении для определения динамических характеристик и динамической устойчивости при испытаниях на вибростойкость и исследованиях поведения конструкций при переменных нагрузках и идентификации распределенных механических систем по экспериментальным данным.

Изобретение относится к области испытательной техники, в частности к резонансным испытаниям механических конструкций, и обеспечивает экспериментальное определение характеристик собственных колебаний испытываемого объекта и может быть использовано в машиностроении.

Стенд содержит раму (1) с установленным на ней с помощью плоских наклонных рессор (4, 5) желобом (2) с закрепленными на его нижней поверхности ребрами жесткости (3). Желоб связан с установленным на раме кривошипно-шатунным приводом с регулируемой частотой вращения его двигателя. Высота передних сменных рессор (5) равна или меньше высоты задних рессор (4). Желоб выполнен с постоянно закрепленной на нем ограничительной задней стенкой (8) и шарнирно закрепленной на его нижней части передней стенкой (10) с возможностью ее фиксации в исходном вертикальном положении фиксатором (11). Под передней стенкой на раме размещен приемный короб (12) для разгрузки в него пробы транспортируемого груза (7). Стенд снабжен прибором для измерения времени разгрузки пробы транспортируемого груза из желоба в приемный короб. Обеспечивается оптимизация параметров проектируемого виброконвейера. 1 ил.
Наверх