Способ обнаружения возможности наступления катастрофических явлений

Изобретение относится к способам прогнозирования катастрофических явлений. Сущность: измеряют вариации магнитного поля, магнитную индукцию электромагнитного поля, электрическую составляющую электромагнитного поля, акустические шумы, сейсмические шумы, гидродинамический шум моря в зонах тектонических разломов. Судят о возможности наступления катастрофических явлений при достижении величины глобального максимума, равного среднему значению между амплитудами, характеризующими уровни геофизического и гидрофизического полей в естественном состоянии и в период нахождения cолнца и луны на одной небесной линии. Дополнительно выполняют двумерную или трехмерную реконструкцию распределения электронной концентрации в ионосфере, контролируют вертикальное распределение озона от приземного слоя до стратосферы, измеряют плотности, температуры, скорости ветра, исследуют аэрозоли, в атмосфере контролируют активизацию разломов - изменения проницаемости, миграцию газов, включая эманацию радона, ионизацию воздуха α-частицами, гидратацию ионов - формирование крупных кластерных ионов, конвективный подъем ионов, разделение зарядов, дрейф в электронном поле, формирование линейных облачных структур, формирование аномалий температуры и давления, реактивные потоки, в ионосфере также контролируют изменения проводимости пограничного слоя, рост атмосферного электрического поля, эффекты аномального электрического поля, захват ОНЧ шумов, высыпание электронов высоких энергий, в магнитосфере измеряют продольные неоднородности электронной концентрации. Технический результат: расширение функциональных возможностей, повышение достоверности прогноза.

 

Изобретение относится к геофизике, а более конкретно к способам обнаружения возможности наступления катастрофических явлений преимущественно на море, и может быть использовано при решении следующих фундаментальных задач: изучение строения земной коры в акваториях мирового океана, исследование совокупности проявления геофизических полей в зонах тектонических разломов непосредственно на дне океана, исследование состояния морской среды в придонной зоне и ее взаимодействие с тектоническими процессами, геофизический мониторинг сложных гидротехнических сооружений, оперативная оценка сейсмического и гидродинамического состояния районов и прогноза возможных сейсмических и экологических последствий, а также при заблаговременном оповещении о землетрясениях и цунами.

Известен способ обнаружения возможности наступления катастрофических явлений [1], включающий измерение параметра геофизического поля в контролируемом районе и суждение по полученным данным о возможности наступления катастрофических явлений, в котором измерения проводят непрерывно, выявляют колебания измеряемого параметра и при обнаружении синусоидальных колебаний возрастающей частоты, имеющих амплитуду, статистически достоверно отличающуюся от фоновой для контролируемого района, и период от 100 до 1000000 с, судят о наличии возможности наступления катастрофических явлений.

Недостатком способа является то, что он имеет низкую достоверность прогноза, так как измеряют только один параметр геофизического поля. Кроме того, синусоидальные колебания измеряемого параметра при наложении на них акустических и гидродинамических шумов техногенного характера могут быть как периодическими, так и апериодическими, что требует получения многочисленных массивов измеряемого параметра для выявления амплитуды, статистически достоверно отличающейся от фоновой для достижения положительного технического результата.

Известен способ сейсмического микрорайонирования [2], включающий размещение исследуемых и опорных пунктов наблюдений на участках с различными инженерно-геологическими условиями, регистрацию в них сейсмических колебаний от землетрясений из потенциально опасных и других очаговых зон, определение динамических параметров сейсмических колебаний и их вариаций в каждом исследуемом пункте наблюдений относительно опорных в заданном частотном диапазоне исследований, в котором с целью повышения достоверности за счет учета влияния латеральной неоднородности скального основания и более глубоких горизонтов геологического разреза дополнительно проводят трехкомпонентную регистрацию сейсмических колебаний по ортогональной ориентированной на потенциально опасные очаговые зоны сети профилей, при этом расстояние между пунктами наблюдений не превышает 1/3-1/4 длины волны наиболее высокочастотных сейсмических колебаний, образующих информативные вариации амплитуд, а расстояние между профилями составляет 1/3-1/4 минимального пространственного периода информативных амплитудных вариаций высокочастотного диапазона сейсмических колебаний.

Выполнение трехкомпонентной регистрации сейсмических колебаний по ортогональной ориентированной на потенциально опасные очаговые зоны сети профилей действительно повышает достоверность классификации возможного землетрясения. Однако ввиду того, что в известном способе определение динамических параметров осуществляется путем анализа только наиболее высокочастотных сейсмических колебаний, то достижение технического результата, заключающегося в повышении достоверности прогноза, возможно только при стабильных во времени колебательных процессах и при отсутствии помех, обусловленных акустическими и гидродинамическими шумами природного и техногенного характера. И если в наземных условиях с некоторыми допущениями данный способ имеет положительный технический эффект, то в морских условиях он практически не применим. Кроме того, существенную роль в повышении точности измерения сигналов, по которым устанавливают предвестники катастрофических явлений играет база измерений и ориентация средств измерения относительно источника. Так, например, разнос измерителей в высоких и экваториальных широтах на более чем 10 километров при измерении электрических и магнитных компонент приводит к большим (до 50%) погрешностям измерений импеданса.

Аналогичные недостатки имеют также известные способы и устройства, предназначенные для регистрации сигналов сейсмического происхождения в морских условиях [3-19]. В известных способах существенное значение погрешности обусловлено тем, что при обработке зарегистрированных сигналов используют среднее поле распространения сигналов, в то время как максимальные отклонения реального поля от среднего отличаются именно на горизонтах максимальных градиентов. При этом реальное поле резко отличается от идеальной модели. При влиянии внешних факторов с использованием акустических средств регистрации сигналов образуется зона тени, расположенная в полосе от 5 до 16 километров от источника. Причем ее протяженность в разных направлениях неодинакова и может отличаться в 5 раз и более, а с увеличением дистанции между приемником и источником сигналов погрешности возрастают. Для морских условий до 15 километров они находятся в пределах 2 дБ, далее в промежутке от 15 до 30 километров наблюдается их резкий рост до 6 дБ. В дальнейшем в промежутке от 30 до 60 километров величина погрешности монотонно увеличивается до 7,5 дБ.

Известно также техническое решение, техническим результатом которого является расширение функциональных возможностей известных способов [1-15] с повышением достоверности прогноза (патент RU №2346300 C1, 10.02.2009 [16] - прототип).

Для достижения технического результата в способе обнаружения возможности наступления катастрофических явлений [16], включающем измерение параметров геофизического поля в контролируемом районе и суждение по полученным данным о возможности наступления катастрофических явлений путем непрерывных измерений с выявлением колебаний измеряемого параметра с обнаружением синусоидальных колебаний возрастающей частоты, имеющих амплитуду, статистически достоверно отличающуюся от фоновой для контролируемого района, по которым судят о наличии возможности наступления катастрофических явлений, дополнительно измеряют вариации магнитного поля на частотах 0,01-1,0 Гц, магнитную индукцию электромагнитного поля на частотах 1-200 Гц, электрическую составляющую электромагнитного поля на частотах 1-500 Гц, акустические шумы на частотах 5-50000 Гц, сейсмические шумы на частотах 0,01-20 Гц, гидродинамический шум моря на частотах 0,01-100 Гц в зонах тектонических разломов с получением временной зависимости для каждого поля, по измеренным параметрам выполняют факторный анализ на уровнях естественного геофизического фона и геофизического фона в период фазы нахождения солнца и луны на одной небесной линии путем построения графика амплитуд градиентов сейсмических, геодеформационных, геохимических, гидрофизических предвестников катастрофических явлений, при этом база измерений не превышает 50-100 километров в средних широтах и 8-10 километров в высоких и экваториальных широтах соответственно, а средства измерения ориентированы по восьми румбам.

Новые отличительные признаки, заключающиеся в измерении вариации магнитного поля на частотах 0,01-1,0 Гц, магнитной индукции электромагнитного поля на частотах 1-200 Гц, электрической составляющей электромагнитного поля на частотах 1-500 Гц, акустических шумов на частотах 5-50000 Гц, сейсмических шумов на частотах 0,01-20 Гц, гидродинамического шума моря на частотах 0,01-100 Гц в зонах тектонических разломов, по измеренным параметрам выполняют факторный анализ на уровнях естественного геофизического фона и геофизического фона в период фазы нахождения солнца и луны на одной небесной линии путем построения графика амплитуд градиентов сейсмических, геодеформационных, геохимических, гидрофизических предвестников катастрофических явлений при базе измерений, не превышающей 50-100 км в средних широтах и 8-10 км в высоких и экваториальных широтах соответственно, с ориентацией средств измерения по восьми румбам позволяют оценить изменение строения земной коры в акваториях мирового океана, состояние морской среды в придонной зоне и ее взаимодействие с тектоническими процессами, выполнить геофизический мониторинг путем обобщенного моделирования сейсмического и экологического состояния исследуемого района, получить оперативную оценку сейсмического и гидродинамического состояния исследуемых районов с более достоверным прогнозом возможных сейсмических и экологических последствий, а также осуществить более раннее оповещение о приближающихся землетрясениях и цунами.

Известные способы [1-15] позволяют достичь технического результата, заключающегося в повышении достоверности, только в условиях изотропного поля, так как характер убывания интенсивности звукового сигнала по мере удаления от источника в горизонтально неоднородном поле (особенно в океане) резко отличается от той же зависимости в условиях изотропного поля. Мезомасштабные неоднородности океана (фронты, ринги) резко перестраивают звуковое поле, вызывая колебания интенсивности сигнала до 5 дБ при прогнозе дальности их действия (Д) до 10 км. Поэтому для эффективного прогноза гидрологоакустических условий в аномальных районах необходимо четкое установление центров и границ, а также определение параметров возмущающих образований. Неопределенность в расчете звукового поля по климатическим данным или опорному полю выражается в стандартных отклонениях реального уровня от опорного в 4-9 дБ при Д=90 км, что соответствует погрешности в прогнозе ожидаемой дальности действия гидроакустических систем на 60-90%. Использование единственной кривой вертикального распределения скорости звука для акустических расчетов допустимо лишь на малых дистанциях (до 10 км), что крайне редко встречается в реальных условиях. По величине и направлению (знаку) горизонтального градиента вдоль трассы распространения сигнала можно судить о степени изменчивости интенсивности звукового поля на горизонте приема относительно фиксированного источника. Для расчетов акустического поля параметром является профиль скорости звука, точно совпадающий с фактическим профилем в месте расположения источника. Однако при использовании режимной информации среднеквадратический профиль, как правило, не совпадает с фактическим, что приводит к дополнительным случайным погрешностям в конечном результате. Кроме того, в известных способах обработка сигналов осуществляется с использованием детермированного метода интерполяции, для которого достаточно иметь только результаты измерений с некоррелированными погрешностями. При этом путем интерполяции измеренных значений определяют среднее значение параметра на середину отрезка, соединяющего точки измерения.

В известном способе [16] статистическая обработка полученных результатов по нескольким разнородным полям позволяет количественно оценить погрешность в определении уровня звукового поля, возникающую при замене реальных условий единственным опорным профилем.

Однако, при прогнозе катастрофических явлений желательно иметь полное электронное содержание (ПЭС). Возмущения (неоднородности) проявляются в вариациях различных параметров среды: локальной электронной концентрации, температуры ионов и электронов. ПЭС можно найти с помощью пространственно временного распределения электронной концентрации I=∫NedS. Использование ПЭС, восстановленного по фазовым измерениям псевдодальности на 2-х частотах, позволяет, используя методы радиометрии, проводить двумерную или трехмерную (пространственно-временную) реконструкцию распределения электронной концентрации в ионосфере.

Облучая ионосферу набором частот, в заданном азимутальном диапазоне можно получать дистанционно-частотную характеристику в широком азимутальном секторе, характеризующем состояние ионосферы над всей той областью на земле, ионосфера над которой влияет на распределение радиоволн.

Выполняя трансионосферное зондирование посредством станций вертикального и наклонного зондирования, можно получить такие характеристики ионосферы, как изменения проводимости пограничного слоя, рост атмосферного электрического поля, эффекты аномального электрического поля в ионосфере, продольные неоднородности электронной концентрации в магнитосфере, захват ОНЧ шумов, высыпание электронов высоких энергий, по изменению параметров которых можно прогнозировать катастрофические явления.

Кроме того, используя лидар дифференциального поглощения для контроля вертикального распределения озона от приземного слоя до стратосферы, можно измерить плотности, температуры, скорости ветра, концентрацию аэрозолей.

Исследуя в литосфере такие характеристики, как уменьшение влажности воздуха, выделение скрытой теплоты испарений, аномалии OLP, позволяет повысить достоверность прогноза вероятного катастрофического явления.

Исследуя в атмосфере такие процессы, как активизация разломов - изменения проницаемости, миграция газов, включая эманацию радона, ионизация воздуха α-частицами - результат распада радона, гидратация ионов - формирование крупных кластерных ионов, конвективный подъем ионов, разделение зарядов, дрейф в электронном поле, формирование линейных облачных структур, формирование аномалий температуры и давления, реактивные потоки, также позволяет повысить достоверность прогноза вероятного катастрофического явления.

Зная распределение температуры по высоте и его суточный ход, можно строить краткосрочные прогнозы погоды, прогнозировать опасные метеорологические явления. Сложные рельефы островов, например Новая Земля, или сложные рельефы материковых прибрежных гор способствуют возникновению в полосе прибрежных районов боры - сильного порывистого холодного ветра, срывающего со склонов гор. В сторону моря бора распространяется на 20-30 миль. Развивается бора очень быстро: за 30-50 мин скорость ветра увеличивается до 32 м/с. По мере удаления от берега скорость ветра резко уменьшается. Обычно она возникает при пониженном атмосферном давлении и небольшой облачности, а иногда и при безоблачном небе.

Существуют следующие признаки появления боры. Примерно за 12 ч до ее начала отмечается порывистый ветер, дующий с суши на море, а над прибрежными горами появляются кучевые облака. За 6-10 ч до начала боры количество облаков резко уменьшается, а затем снова увеличивается. Давление воздуха медленно падает, ветер усиливается, относительная влажность уменьшается и достигает минимума (25-40%) за 2-4 ч до начала боры.

Длительность боры может составлять до 5 суток, причем скорость ветра может достигать 60-80 м/с, а при порывах до 100 м/с. Порывистость боры (например, с Новоземельских гор в проливе Маточкин Шар) объясняется образованием на подветренной стороне гор вихрей с горизонтальной осью и пульсационным обвалом объемов холодного воздуха, накопившегося на высокогорье. В прибрежной зоне, в заливах и бухтах во время боры развивается очень сильное волнение, резкие порывы ветра могут сорвать судно с якоря и выбросить его на берег (Лоция Баренцевого моря. Л.: ГУНиО МО РФ, 1998, адм. №, с.23.).

Задачей заявляемого технического решения является расширение функциональных возможностей известных способов с повышением достоверности прогноза.

Поставленная задача решается за счет того, что в способе обнаружения возможности наступления катастрофических явлений, включающем измерение параметров геофизического поля в контролируемом районе и суждение о возможности наступления катастрофических явлений при достижении величины глобального максимума, равного среднему значению между амплитудами, характеризующими уровни состояния естественного геофизического и гидрофизического полей и гидрофизического и геофизического полей в период нахождения Солнца и Луна на одной небесной линии, с получением временной зависимости для каждого поля, для чего измеряют вариации магнитного поля на частотах 0,01-1,0 Гц, магнитную индукцию электромагнитного поля на частотах 1-200 Гц, электрическую составляющую электромагнитного поля на частотах 1-500 Гц, акустические шумы на частотах 5-50000 Гц, сейсмические шумы на частотах 0,01-20 Гц, гидродинамический шум моря на частотах 0,01-100 Гц в зонах тектонических разломов, по измеренным параметрам выполняют факторный анализ на уровнях естественного геофизического фона и геофизического фона в период фазы нахождения солнца и луны на одной небесной линии путем построения графика амплитуд градиентов сейсмических, геодеформационных, геохимических, гидрофизических предвестников катастрофических явлений при базе измерений, не превышающей 50-100 км в средних широтах и 8-10 км в высоких и экваториальных широтах соответственно, с ориентацией средств измерения по восьми румбам, дополнительно выполняют двумерную или трехмерную (пространственно-временную) реконструкцию распределения электронной концентрации в ионосфере посредством облучения ионосферы набором частот в заданном азимутальном диапазоне, посредством средств вертикального и наклонного зондирования контролируют вертикальное распределение озона от приземного слоя до стратосферы, измеряют плотности, температуры, скорости ветра, исследуют аэрозоли посредством лидара дифференциального поглощения, в атмосфере контролируют активизацию разломов - изменения проницаемости, миграцию газов, включая эманацию радона, ионизацию воздуха α-частицами, гидратацию ионов - формирование крупных кластерных ионов, конвективный подъем ионов, разделение зарядов, дрейф в электронном поле, формирование линейных облачных структур, формирование аномалий температуры и давления, реактивные потоки, в ионосфере также контролируют изменения проводимости пограничного слоя, рост атмосферного электрического поля, эффекты аномального электрического поля в ионосфере, продольные неоднородности электронной концентрации в магнитосфере, захват ОНЧ шумов, высыпание электронов высоких энергий.

Сущность способа заключается в следующем. Как и в прототипе [16] посредством измерительной аппаратуры, установленной, например, на подводной обсерватории, которая, в свою очередь,установлена на морском дне в зонах тектонических разломов, измеряют вариации магнитного поля на частотах 0,01-1,0 Гц, магнитной индукции электромагнитного поля на частотах 1-200 Гц, электрической составляющей электромагнитного поля на частотах 1-500 Гц, акустических шумов на частотах 5-50000 Гц, сейсмических шумов на частотах 0,01-20 Гц, гидродинамического шума моря на частотах 0,01-100 Гц.

При этом измерения градиентов полей производятся датчиками, работающими на разных физических принципах, по сигналам, вызванным различными источниками, и являются соответственно некоррелированными, что позволяет выделить составляющие полезных сигналов на фоне помех, и, как следствие, сигналы поступают на средства обработки очищенными от помех.

В качестве измерительных датчиков могут быть использованы акустические сейсмические датчики для регистрации акустических сигналов, протонные или квантовые вариометры и магнитометры для измерения электрической и магнитной компоненты естественного электромагнитного поля земли с выделением магнитотеллурической составляющей на фоне помех с разносом электрических и магнитных датчиков на величину r<(0,013…0,025)r, (где r - расстояние между приемником и источником). При этом выделение магнитотеллурической составляющей на фоне помех существенно упрощается, так как помехи по электрическому и магнитному каналам вызваны различными источниками (являются некоррелированными) ввиду разноса датчиков на определенную величину. При этом магнитные составляющие естественного магнитного поля меньше, чем электрические, зависят от характера геоэлектрического разреза вдали от горизонтальных неоднородностей.

В качестве датчика магнитного поля, предназначенного для измерения абсолютного значения магнитной индукции поля земли в морских акваториях до глубин 6000 м, применен датчик с диапазоном измеряемой величины магнитной индукции 20000-100000 нТ.

В качестве сейсмических датчиков для реализации заявляемого способа применены акустический сейсмодатчик, представляющий собой трехкомпонентный сейсмоакустический датчик, который предназначен для преобразования третьей производной колебания грунта в электрический сигнал в частотном диапазоне 5-50000 Гц, динамический диапазон которого в полосе 1/3 октавы и центральной частотой 30 Гц составляет не менее 60 дБ, а также сейсмоприемник типа СМ-5 (велосиметр), включающий три сейсмических датчиков с частотным диапазоном регистрации сейсмических сигналов 0,01-40 Гц, полный динамический диапазон не менее 120 дБ.

Определение состава морской воды осуществляют по измеренным спектрам комбинационного рассеивания оптического излучения в спектральном диапазоне 0,52-0,78 мкм с полосой пропускания 0,54 нм на 0,783 мкм с применением спектроанализатора с числом спектральных каналов, равным 4096. Для измерения скорости и направления течения, температуры воды, гидродинамического давления, электропроводности и солености морской воды применен гидрофизический модуль, включающий соответствующие датчики.

Для регистрации гидрофизических полей использован модуль регистрации гидрофизических полей, включающий датчики хемилюминесцентного, хроматографического, ионселективного и радиометрического анализа, аналогом которого является устройство, приведенное в описании к патенту РФ №2030747 C1.

Динамический шум моря определяется в диапазоне частот от 5 до 10 Гц посредством измерительного модуля, включающего последовательно соединенные гидрофон, предварительный усилитель, линию связи, широкополосный усилитель, анализатор спектра. Полученные сигналы о динамическом шуме моря подвергаются дискретизации и квантованию, а потом проходят спектральную обработку по алгоритму модифицированных периодограмм.

Динамический шум моря совпадает с частотой примерно на 5 дБ. Для решения такого рода задач необходимо непрерывную область акватории дискретизировать с помощью узлов регулярной сетки. Затем определяется граф путем задавания связи (ребра графа) на этой сетке. Возможные связи определяются путем специального индексирования узлов регулярной сетки с помощью дерева Фарея-Коши. При этом коэффициенты аппроксимации по флуктуационным полям выражаются аналитически через интегралы по фрагментам опорного поля в отдельных ячейках сетки.

Зарегистрированные сигналы, характеризующие вариации магнитного поля на частотах 0,01-1,0 Гц, магнитную индукцию электромагнитного поля на частотах 1-200 Гц, электрическую составляющую электромагнитного поля на частотах 1-500 Гц, акустические шумы на частотах 5-50000 Гц, сейсмические шумы на частотах 0,01-20 Гц, гидродинамический шум моря на частотах 0,01-100 Гц в зонах тектонических разломов, подвергаются обработке для каждого конкретного момента времени для получения временной зависимости в границах, характеризующих уровни состояния естественного геофизического поля и геофизического поля в период фазы нахождения солнца и луны на одной небесной линии, как геофизического поля, подверженного в данный период наибольшим максимальным возмущениям по всем составляющим геофизических и гидрофизических полей.

При обработке сигналов в качестве решающей статистики используется сумма квадратов амплитуд, имеющая максимальное значение для сигнала ожидаемой структуры. Вычисления выполняются для каждого момента времени для получения временной зависимости для каждого поля. Присутствие в ней максимума означает наличие в источнике ожидаемой структуры возбуждения того или иного поля. Глобальный максимум соответствует времени прихода совокупного принятого сигнала. При достижении величины глобального максимума, равного среднему значению между амплитудами, характеризующими уровни состояния естественного геофизического и гидрофизического полей и геофизического поля и гидрофизического поля в период фазы нахождения солнца и луны на одной небесной линии, судят о возможности наступления катастрофического явления.

В отличие от прототипа [16] в предлагаемом способе обнаружения возможности наступления катастрофических явлений дополнительно выполняют двумерную или трехмерную (пространственно-временную) реконструкцию распределения электронной концентрации в ионосфере посредством облучения ионосферы набором частот, в заданном азимутальном диапазоне посредством средств вертикального и наклонного зондирования контролируют вертикальное распределение озона от приземного слоя до стратосферы, измеряют плотности, температуры, скорости ветра, исследование аэрозолей, посредством лидара дифференциального поглощения, в литосфере контролируют уменьшение влажности воздуха, выделение скрытой теплоты испарений, аномалии OLP, в атмосфере контролируют активизацию разломов - изменения проницаемости, миграцию газов, включая эманацию радона, ионизацию воздуха α-частицами, гидратацию ионов - формирование крупных кластерных ионов, конвективный подъем ионов, разделение зарядов, дрейф в электронном поле, формирование линейных облачных структур, формирование аномалий температуры и давления, реактивные потоки, в ионосфере также контролируют изменения проводимости пограничного слоя, рост атмосферного электрического поля, эффекты аномального электрического поля в ионосфере, продольные неоднородности электронной концентрации в магнитосфере, захват ОНЧ шумов, высыпание электронов высоких энергий.

Контроль в ионосфере изменения проводимости пограничного слоя, роста атмосферного электрического поля, эффектов аномального электрического поля в ионосфере, продольных неоднородностей электронной концентрации в магнитосфере, захват ОНЧ шумов, высыпание электронов высоких энергий, а в атмосфере контроль активизации разломов - изменения проницаемости, миграции газов, включая эманацию радона, ионизацию воздуха α-частицами - результат распада радона, гидратация ионов - формирование крупных кластерных ионов, конвективный подъем ионов, разделение зарядов, дрейф в электронном поле, формирование линейных облачных структур, формирование аномалий температуры и давления, реактивные потоки, позволяет повысить достоверность прогноза, при этом среднее время упреждения составляет 12 ч, что обусловлено полусуточным интервалом между луно-солнечным приливом, с максимумом приливных воздействий в местные полдень и полночь.

Кроме того, зная распределение температуры по высоте и его суточный ход, можно строить краткосрочные прогнозы погоды, прогнозировать опасные метеорологические явления (такие, как, например, бора), посредством, например, микроволнового температурного профилемера типа МТП-5 для мониторинга термического режима атмосферного пограничного слоя (Комплекс для мониторинга термической стратификации планетарного пограничного слоя атмосферы / Фоломеев В.В., Миллер Е.А., Воробьева Е.А., Кадыгров Е.Н. // Труды института прикладной геофизики имени академика Е.К.Федорова, вып. 88. - М., 2010, с.185-190).

Определять поля ветра посредством доплеровского метеорологического локатора или посредством микроволнового радиометрического приемника с использованием климатических моделей ионосферы IRI-2007 (Bilitza D., Reinich B.W. International reference ionosphere 2007: Improvements and new parameters // Advances in Spase Research. 2008. № 42, p.599-609).

Устройства для реализации способа в широком ассортименте имеются на рынке, что позволяет сделать вывод о соответствии заявляемого технического решения условию патентоспособности "промышленная применимость".

Источники информации.

1. Патент RU №2030769.

2. Авторское свидетельство SU №1251694.

3. Патент EP №0525391.

4. Патент NL №9120014.

5. Патент EP №0509062.

6. Патент ЕР №0512756.

7. Патент US №5131489.

8. Патент US №5128907.

9. Патент NO №923269.

10. Патент NO №923364.

11. Патент NO №169985.

12. Патент EP №0516662.

13. Патент US №5142501.

14. Патент NO №923269.

15. Патент EP №0519810.

16. Патент RU №2346300С1, 10.02.2009.

Способ обнаружения возможности наступления катастрофических явлений, включающий измерение параметров геофизического поля в контролируемом районе, суждение о возможности наступления катастрофических явлений при достижении величины глобального максимума, равного среднему значению между амплитудами, характеризующими уровни состояния естественного геофизического и гидрофизического полей и геофизического и гидрофизического полей в период нахождения Солнца и Луны на одной небесной линии, с получением временной зависимости для каждого поля, для чего измеряют вариации магнитного поля на частотах 0,01-1,0 Гц, магнитную индукцию электромагнитного поля на частотах 1-200 Гц, электрическую составляющую электромагнитного поля на частотах 1-500 Гц, акустические шумы на частотах 5-50000 Гц, сейсмические шумы на частотах 0,01-20 Гц, гидродинамический шум моря на частотах 0,01-100 Гц в зонах тектонических разломов, по измеренным параметрам выполняют факторный анализ на уровнях естественного геофизического фона и геофизического фона в период фазы нахождения Солнца и Луны на одной небесной линии путем построения графика амплитуд градиентов сейсмических, геодеформационных, геохимических, гидрофизических предвестников катастрофических явлений при базе измерений, не превышающей 50-100 км в средних широтах и 8-10 км в высоких и экваториальных широтах соответственно, с ориентацией средств измерения по восьми румбам, отличающийся тем, что дополнительно выполняют двумерную или трехмерную (пространственно-временную) реконструкцию распределения электронной концентрации в ионосфере посредством облучения ионосферы набором частот в заданном азимутальном диапазоне, посредством средств вертикального и наклонного зондирования контролируют вертикальное распределение озона от приземного слоя до стратосферы, измеряют плотности, температуры, скорости ветра, исследуют аэрозоли посредством лидара дифференциального поглощения, в атмосфере контролируют активизацию разломов - изменения проницаемости, миграцию газов, включая эманацию радона, ионизацию воздуха α-частицами, гидратацию ионов - формирование крупных кластерных ионов, конвективный подъем ионов, разделение зарядов, дрейф в электронном поле, формирование линейных облачных структур, формирование аномалий температуры и давления, реактивные потоки, в ионосфере также контролируют изменения проводимости пограничного слоя, рост атмосферного электрического поля, эффекты аномального электрического поля в ионосфере, продольные неоднородности электронной концентрации в магнитосфере, захват ОНЧ шумов, высыпание электронов высоких энергий.



 

Похожие патенты:

Изобретение относится к области гидрофизических исследований и может быть использовано для исследований, проводимых в океане. Сущность: станция содержит плавучесть (1) из синтактика, внутри которой закреплены автономные модули (2, 3) с датчиками (4).

Изобретение относится к нефтяной промышленности и может найти применение при определении нефтенасыщенных пластов в разрезе скважины. Техническим результатом является повышение точности определения нефтенасыщенного пласта в разрезе скважины.

Изобретение относится к области нефтяной промышленности, а именно к разработке нефтяных залежей, и может использоваться при проведении геолого-технических мероприятий по увеличению добычи нефти.

Изобретение относится к области нефтяной промышленности и, более конкретно, к поиску и добыче нефти. Обеспечивает возможность создания системы разработки, обеспечивающей добычу нефти непосредственно из нефтеподводящего канала, соединяющего глубинный резервуар с нефтяной залежью.

Изобретение относится к области геофизики и может быть использовано для определения насыщения флюидом порового пространства пород исследуемых пластов. Способ определения насыщения водой в подземном пласте включает в себя определение глубины проникновения в пласт на основании множества измерений, выполняемых в стволе скважины, пробуренном сквозь пласт.

Изобретение относится к области геофизики и может быть использовано для построения структурных планов на акваториях: от фундамента до границы М. Для реализации способа используют магнитные, гравитационные поля и рельеф дна моря.
Изобретение относится к области геофизики и может быть использовано для поиска месторождений нефти и газа. Сущность: проводят геологическую и сейсмическую съемки, а также дистанционный оптический газовый анализ с помощью дистанционного лидара.
Изобретение относится к геофизике и может быть использовано с целью поиска и разведки нефтяных и газовых подводных месторождений. Согласно заявленному способу регистрации сейсмических сигналов при поиске подводных залежей углеводородов осуществляют регистрацию сейсмических колебаний поверхности Земли с использованием приемников сейсмических колебаний, способных регистрировать сейсмические колебания в диапазоне от 0,1 до 20 Гц.

Изобретение относится к области геофизики и может быть использовано при разведке месторождений углеводородов (УВ) с использованием измерений параметров геофизических полей различной природы при обработке данных для определения детальных (тонкослоистых) фильтрационно-емкостных свойств коллекторов и типа их насыщения в межскважинном и околоскважинном пространстве.

Изобретение относится к области геофизики и может быть использовано при разведке месторождений газовых гидратов. .

Изобретение относится к области геохимической разведки полезных ископаемых и может быть использовано при поиске нефтяных и газовых месторождений преимущественно в морских условиях. Способ геохимической разведки включает отбор проб горных пород и растительности вдоль водотоков, разделение проб горных пород на фракции и их анализ на содержание химических элементов. Пробы пород разделяют на две фракции. Первую анализируют на Si, Al, Ti, Y, а вторую на Hg. Пробы растительности анализируют на Ba, Cu, Pb, Zn, Ag, а также на Sr, Cd, Hg. Результаты анализа пересчитывают на соответствующие аддитивные показатели нормированных концентраций, строят карты распределения указанных аддитивных показателей и отождествляют объекты, характеризующиеся распределением аномальных значений аддитивных показателей, с нефтегазовыми перспективными участками. Причем при превышении фоновых уровней содержания тяжелых металлов в растительности дополнительно выполняют магнитометрическую съемку с выделением ферромагнитных объектов на фоне подводных объектов естественного происхождения. Технический результат - повышение точности разведочных данных. 1 табл.

Изобретение относится к области геофизики и может быть использовано, в частности, для обнаружения залежей углеводородов. Заявлен способ геофизической разведки залежей углеводородов, включающий возбуждение упругих колебаний в процессе многократного возбуждения электромагнитного поля. Измерения электромагнитного поля осуществляют во множестве точек в окрестности источника электромагнитного поля до, во время и после упругого воздействия. По совокупности полученных данных строят последовательность геоэлектрических разрезов, в которых отражают релаксацию удельного электрического сопротивления, обусловленную упругим воздействием. По совокупным данным строят 3D отображение участка опоискования, с выделением в разрезе аномальных зон с релаксацией сопротивления. По величине аномального эффекта и характеру указанной релаксации судят о наличии и свойствах залежей углеводородов. Технический результат - повышение точности разведочных данных. 7 ил.

Изобретение относится к области геофизики и может быть использовано при проведении каротажных работ. Заявлены способы и системы для скважинной телеметрии с использованием прибора, сконфигурированного или спроектированного для развертывания в буровой скважине, пересекающей подземный пласт. Прибор включает в себя скважинный телеметрический модуль, наземный телеметрический модуль и линию передачи данных между скважинным и наземным модулями, сконфигурированную или спроектированную для передачи данных по одному или нескольким каналам передачи данных с использованием по меньшей мере одной телеметрической схемы, выбранной из множества телеметрических схем на основании по меньшей мере одного скважинного параметра. Технический результат - повышение качества передачи разведочных данных. 5 н. и 21 з.п. ф-лы, 7 ил.

Группа изобретений относится к технике изучения океана с помощью автономных и автоматических подводных станций заякоренного типа. Способ заключается в том, что для движения зонда в составе буя используют изменение и управление соотношением действия разнонаправленных сил - водоизмещения и веса, которые воздействуют на аппарат по вертикали. Эти же силы разворачивают буйреп − тросовую связь элементов сборки в тросовую вертикаль в процессе погружения − постановки. Устройство содержит корпус с деформируемой балластной емкостью, привод зонда, состоящий из устройства загрузки и выгрузки балласта с микроконтроллером, источник электроэнергии. Устройство выгрузки состоит из подвижной части в виде опорного клапана в нижнем основании корпуса. Устройство загрузки содержит в верхнем основании корпуса штуцер загрузки, который в верхнем положении для загрузки балласта через зев входит в неподвижную часть устройства загрузки - сфинктер, соединенный с инжектором балласта, неподвижно закрепленным на поплавке и управляемым микроконтроллером. Сфинктер герметично охватывает штуцер для герметичного соединения с напорной магистралью инжектора, выполненного в виде гидроаккумулирующего цилиндра-дозатора. Обеспечивается многократное использование оборудования при гидрофизических измерениях. 2 н. и 1 з.п. ф-лы, 4 ил.

Изобретение относится к области геофизики и может быть использовано при каротажных работах. Сущность: устройство содержит следующие элементы: датчики (1-3) геоакустических сигналов, первый коммутатор (4), первый усилитель (5), блок фильтров (6), блок выпрямителей (7), второй коммутатор (8), аналого-цифровой преобразователь (9), блок (10) передачи цифрового сигнала, датчик (11) магнитной восприимчивости, измерительная схема (12) магнитометра, аналоговые запоминающие устройства (13, 14), вычитающий усилитель (15), генератор (16) прямоугольного напряжения, ферритовая антенна (17), третий коммутатор (18), три конденсатора (19), второй усилитель (20), смеситель (21), фильтр нижних частот (22), переключаемый генератор (23), выпрямитель (24), блок (25) управления, блок (26) питания. Технический результат: повышение информативности исследований. 1 ил.

Группа изобретений относится к области геофизики и может быть использована при разноцелевых полевых исследованиях. Сущность: каждый из комплексов включает датчики (1-1 - 1-3) ускорения свободного падения по трем компонентам, датчики (2-1 - 2-3) магнитного поля по трем компонентам, датчики (3-1 - 3-3) сейсмических колебаний почвы по трем компонентам, блок (15) определения координат комплекса и точного времени, а также блок (11) управления, обработки и регистрации, соединенный со всеми вышеуказанными устройствами. Блок (11) управления, обработки и регистрации выполнен с функцией измерения параметров ускорения свободного падения и параметров магнитного поля синхронно с измерением параметров сейсмических колебаний. Датчики (1-1 - 1-3) ускорения свободного падения, датчики (2-1 - 2-3) магнитного поля, датчики (3-1 - 3-3) сейсмических колебаний почвы размещены в блоке (4) датчиков, в котором находится также датчик (21) температуры. При этом все датчики в блоке (4) датчиков, кроме датчика температуры (21), помещены в пространстве, геометрические размеры которого соизмеримы с суммой геометрических размеров этих датчиков. В одном из вариантов комплекс содержит регулируемый нагреватель (22), осуществляющий функцию поддержания температуры в блоке датчиков (4) с использованием сигнала, поступающего с датчика температуры (21). В другом варианте датчик (21) температуры соединен с блоком (11) управления, обработки и регистрации, который выполнен с функцией коррекции измеренных параметров в соответствии с изменениями температуры в блоке (4) датчиков. Технический результат: повышение точности определения физических характеристик исследуемой породы в пространстве измерений, уменьшение габаритных размеров комплексов. 2 н. и 10 з.п. ф-лы, 4 ил.

Изобретение относится к области геофизики и может быть использовано для прогнозирования скрытых рудных полезных ископаемых, связанных с гранитоидами. Сущность: для перспективных рудоносных участков на базе данных по физическим свойствам пород, слагающих модельный разрез, и материалов мелкомасштабных гравиразведочных и магниторазведочных съемок осуществляют построение «нулевой» глубинной модели. «Нулевую» глубинную модель выполняют в виде глубинных разрезов, на которых всем выявленным телам присваивают соответствующие интервалы изменений плотностных и магнитных характеристик. Затем путем решения серии обратных задач осуществляют в интерактивном режиме подбор глубинной модели. В процессе подбора глубинной модели меняют как форму отдельных тел модели, так и их физические параметры (плотность и намагниченность) до практически полного совпадения расчетных гравитационного и магнитного полей с наблюденными. Полученное неоднородное распределение плотности пород и намагниченности интерпретируют, используя эталонные генетические модели рудно-магматических систем, с построением геолого-геофизических разрезов. На геолого-геофизических разрезах по резкой смене или по смещению изолиний полей плотности и намагниченности выделяют крупные разломы и области низкоплотных немагнитных пород как остаточные очаги котектических гранитов (источников флюидов, рудного вещества и энергии), а отходящие от них апофизы оконтуривают как прогнозируемые зоны рудоотложения. Технический результат: прогнозирование с высокой степенью достоверности скрытого оруденения, связанного с гранитоидами. 8 ил.

Изобретение относится к области геофизики и может быть использовано для определения структурных особенностей, литологии и типа флюидонасыщения коллекторов. Согласно заявленному способу получают пространственно-временные и/или пространственно-частотные данные электромагнитных измерений с последующей реконструкцией объемного распределения проводимости геологической модели среды. После чего осуществляют расчет интервальной суммарной продольной электрической проводимости среды, выделение в среде пластов-коллекторов, обладающих аномальной суммарной продольной электрической проводимостью, определение положения осевых поверхностей пластов-коллекторов, определение толщин пластов-коллекторов, соответствующих положениям осевых поверхностей, определение удельного сопротивления через величину интервальной суммарной продольной проводимости пленки внутри пласта для каждой точки измерений. Осуществляют верификацию первоначальной геоэлектрической модели среды и корректировку несоответствий. Определяют вариации интервальных значений удельного электрического сопротивления. В зоне резкого уменьшения удельного сопротивления определяют коэффициент пористости выделенных пластов, с помощью которого определяют емкость пласта-коллектора, а также характер насыщающего флюида на основе интервального удельного сопротивления ρп и петрофизических или статистических данных. Технический результат - повышение точности разведочных данных. 4 з. п. ф-лы, 8 ил., 1 табл.

Изобретение относится к области геофизики и может быть использовано для получения сейсмических разрезов изображений геологической среды. Способ включает последовательные действия, при которых получают и подготавливают данные методов общей глубинной точки, сейсмического каротажа, вертикального сейсмического профилирования, акустического каротажа, плотностного гамма-гамма каротажа и проверяют качество этих данных, а также получают эталонные значения интервальных скоростей. Получают исходный годограф и рассчитывают синтетическую сейсмограмму. Затем проводят контроль качества и вводят постоянную временную поправку для посадки на верхний опорный горизонт литолого-стратиграфического комплекса. Затем вновь рассчитывают синтетическую сейсмограмму и вновь проводят контроль качества. Вслед за этим рассчитывают и вводят поправку для посадки на нижний опорный горизонт литолого-стратиграфического комплекса. После этого вновь рассчитывают синтетическую сейсмограмму и осуществляют контроль качества. Переносят точки полученного годографа на ближайшие акустически слабые границы. Повторно рассчитывают синтетическую сейсмограмму с последующим контролем качества и получают априорный годограф. Технический результат - повышение достоверности и точности соответствия горизонтов временного разреза и геологических отметок скважины. 10 з.п. ф-лы, 2 ил.
Изобретение относится к области морских геофизических исследований и может быть использовано для поисков газогидратов на дне акваторий. Сущность: на берегу в зоне разлома устанавливают датчик акустической эмиссии. Регистрируют суточные изменения упругих колебаний акустической эмиссии. По энергии упругих колебаний определяют время максимального проявления приливных сил в районе работ. Определяют время активизации зоны разлома и время «затишья». В период активизации разлома на поверхности воды выполняют съемку импульсов магнитной составляющей электромагнитного поля. Выделяют аномалии импульсов электромагнитного поля. Отбирают пробы в центрах каждой аномалии или группы идентичных аномалий. Анализируют пробы на наличие и содержание полезного компонента. По контурам аномалии или групп аномалий, в которых обнаружено аномальное содержание газогидратов, определяют границы залежи. Технический результат: упрощение поиска залежей газогидратов.
Наверх