Теплотрубный контур охлаждения лопатки турбины

Теплотрубный контур охлаждения турбины включает расположенную в радиальном направлении между хвостовиком и торцом лопатки по крайней мере одну полость охлаждения, соединенную с полостью подвода воздуха и выпускными отверстиями, стенки которой снабжены размещенными в шахматном порядке полусферическими углублениями. Полусферические углубления противоположных стенок полости охлаждения расположены друг против друга, в них расположены верхние и нижние полусферы бисферических тепловых трубок. Каждая из бисферических тепловых трубок состоит из верхней и нижней сфер. Сферы выполнены из термостойкого материала с высокой теплопроводностью, соединены между собой через отверстие, в котором пропущен транспортный фитиль. Фитиль выполнен из пористого материала и примыкает к противоположным участкам внутренних поверхностей верхней и нижней сфер бисферической тепловой трубки, покрытых решеткой, выполненной из полос пористого материала. Нижняя и верхняя полусферы верхней и нижней сфер бисферических тепловых трубок расположены в полости охлаждения. Поры пористого материала фитиля и решетки заполнены рабочей жидкостью. Изобретение направлено на повышение эффективности теплотрубного контура охлаждения лопатки турбины. 4 ил.

.

 

Предлагаемое изобретение относится к турбостроению и может быть использовано в высокотемпературных турбинах для создания контуров охлаждения лопаток турбин.

Известна лопатка газовой турбины турбомашины, имеющая контур охлаждения, содержащий по меньшей мере одну полость охлаждения вытянутой формы, расположенную в радиальном направлении между хвостовиком лопатки и ее торцом, и по меньшей мере одно впускное отверстие, расположенное в нижнем радиальном конце полости и предназначенное для подачи в нее охлаждающего воздуха. На боковых стенках полости охлаждения по всей ее высоте выполнены турбулизаторы в виде сферических углублений с тангенциальными канавками, расположенными вдоль направления охлаждающего потока, со стороны натекания потока охлаждающего воздуха [Патент РФ №2062886, МПК F01D 5/18, 1996].

Недостатком известного контура охлаждения лопатки является необходимость формирования углублений, снабженных тангенциальными канавками, имеющими специальную ориентацию, и распределенных по всей длине обеих боковых стенок полости лопатки, что существенно усложняет конструкцию и изготовление известной лопатки.

Более близким к предлагаемому изобретению является контур охлаждения лопатки газовой турбины, содержащий по меньшей мере одну полость охлаждения вытянутой формы, расположенную в радиальном направлении между хвостовиком лопатки и ее торцом, и по меньшей мере одно впускное отверстие, расположенное в нижнем радиальном конце полости и предназначенное для подачи в нее охлаждающего воздуха. При этом по меньшей мере одна из стенок полости охлаждения в своей нижней части (примыкающей к хвостовику) снабжена углублениями, обеспечивающими возмущение потока охлаждающего воздуха в указанной полости и увеличение теплообмена. Углубления в полости охлаждения могут иметь максимально простую сферическую или коническую форму без каких-либо дополнительных элементов и могут быть расположены до радиальной высоты, составляющей приблизительно 30% полной радиальной высоты пера лопатки от ее хвостовика до торца [Патент РФ №2062886, МПК F01D 5/18, 1996].

Основным недостатком известного контура охлаждения газовой турбины является невозможность интенсивного охлаждения лопаток турбин высокого давления, в которых температура газов, поступающих из камеры сгорания, значительно превышает уровень, который рабочие лопатки турбины могут выдерживать без повреждения, что приводит к сокращению срока их службы. Этот недостаток обусловлен невозможностью создания достаточного расхода охлаждающего воздуха или достаточно высокой скорости отвода тепла от тела лопатки турбин этим воздухом путем обычного конвективного теплообмена, что снижает эффективность известного контура охлаждения.

Техническим результатом предлагаемого изобретения является повышение эффективности теплотрубного контура охлаждения лопатки турбины.

Технический результат достигается теплотрубным контуром охлаждения турбины, содержащим расположенную в радиальном направлении между хвостовиком и торцом лопатки по крайней мере одну полость охлаждения, стенки которой снабжены размещенными в шахматном порядке, друг против друга, полусферическими углублениями, в которых расположены верхние и нижние полусферы бисферических тепловых трубок, каждая из которых состоит из верхней и нижней сфер, выполненных из термостойкого материала с высокой теплопроводностью, соединенных между собой через отверстие, в котором пропущен транспортный фитиль, выполненный из пористого материала, примыкающий к противоположным участкам внутренних поверхностей верхней и нижней сфер бисферической тепловой трубки, покрытых решеткой, выполненной из полос пористого материала, причем нижняя и верхняя полусферы верхней и нижней сфер бисферических тепловых трубок расположены в полости охлаждения, а поры пористого материала фитиля и решетки заполнены рабочей жидкостью.

Предлагаемый теплотрубный контур охлаждения лопатки турбины (ТТКОЛТ) представлен на фиг 1-4 (на фиг 1, 2 показаны поперечный и продольный разрезы ТТКОЛТ, на фиг.3, 4 - узел бисферической тепловой трубки и его разрез).

ТТКОЛТ содержит расположенные в радиальном направлении между хвостовиком и торцом (на фиг.1-4 не показаны) лопатки 1, по крайней мере одну полость охлаждения 2, соединенную с полостью подвода воздуха и выпускными отверстиями (на фиг.1-4 не показаны), стенки полости охлаждения 2 снабжены размещенными в шахматном порядке, друг против друга, полусферическими углублениями 4 и 5, в которых расположены верхние и нижние полусферы бисферических тепловых трубок 6, каждая из которых состоит из верхней 7 и нижней 8 сфер, выполненных из термостойкого материала с высокой теплопроводностью, соединенных между собой через отверстие 9, через которое пропущен транспортный фитиль 10, выполненный из пористого материала, проходящий по центральной оси бисферической тепловой трубки 6 и примыкающий к противоположным участкам внутренних поверхностей верхней и нижней сфер 7 и 8, покрытых решеткой 11, выполненной из полос пористого материала, причем нижняя и верхняя полусферы верхней 7 и нижней 8 сфер бисферических тепловых трубок 6 расположены в полости охлаждения 2, а поры пористого материала фитиля 10 и решетки 11 заполнены рабочей жидкостью (на фиг.1-4 не показана).

В основе работы предлагаемого ТТКОЛТ лежит высокая эффективность передачи теплоты в тепловых трубах, частично заполненных рабочей жидкостью-переносчиком теплоты, в качестве которой используются вода, спирты, хладоны, металлы и т.д. (по сравнению с обычной передачей тепла конвекцией скорость передачи тепла тепловыми трубками выше на порядки) [В.В. Харитонов и др. Вторичные теплоэнергоресурсы и охрана окружающей среды. - Минск: Выш. школа, 1988, с.106].

Охлаждение лопатки турбины осуществляется следующим образом. Предварительно перед пуском турбины поры пористого материала фитиля 10 и решетки 11 бисферических тепловых трубок 6 и 7 заполняют рабочей жидкостью через питательные капиллярные трубки (на фиг.1-4 не показаны), расположенные в полости охлаждения 2.

При работе турбины тело лопатки 1 в результате контакта с горячими газами нагревается, в связи с чем нагреваются верхняя и нижняя полусферы верхней и нижней сфер 7 и 8 бисферических тепловых трубок 6, расположенных в полусферических углублениях 4 и 5 и примыкающих к телу лопатки 1, которые образуют верхнюю и нижнюю зоны испарения тепловой трубки 6. На внутренней поверхности верхней и нижней полусфер верхней и нижней сфер 7 и 8 бисферических тепловых трубок 6 происходит испарение рабочей жидкости, находящейся в пористом материале решетки 11, которая предотвращает образование паровой пленки на внутренней поверхности стенки сфер 7, 8 и таким образом интенсифицирует процесс испарения [Тепловые трубы и теплообменники: от науки к практике. Сборник научн. тр. - М.: 1990, с.22]. Образовавшийся пар перемещается из верхней и нижней зон испарения (верхняя и нижняя полусферы верхней и нижней сфер 7 и 8) в нижнюю и верхнюю полусферы верхней и нижней сфер 7 и 8, которые образуют верхнюю и нижнюю зоны конденсации, расположенные в полости охлажения 2. В это же время охлаждающий сжатый воздух поступает из полости подвода воздуха (на фиг.1-4 не показана) в полость охлаждения 2 лопатки 1, охлаждает при этом наружную поверхность нижней и верхней полусфер верхней и нижней сфер 7 и 8 (верхнюю и нижнюю зоны конденсации) и воспринимает тепло конденсации поступающего пара, который конденсируется на внутренней поверхности стенок верхней и нижней зон конденсации сфер 7, 8 тепловых трубок 6, после чего нагретый воздух выводится из полости 2 (выпускные отверстия на фиг.1-4 не показаны). Образовавшийся конденсат всасывается пористым материалом решетки 11 верхней и нижней зон конденсации, откуда он транспортным фитилем 10 за счет капиллярных сил транспортируется снова в пористый материал решетки 11 верхней и нижней зон испарения, после чего вышеописанный цикл переноса тепла от материала лопатки 1 к охлаждающему воздуху повторяется. При этом один транспортный фитиль 10 в бисферической тепловой трубке 6 обслуживает две зоны испарения, расположенные в теле лопатки 1, и две зоны конденсации, расположенные в верхней и нижней сторонах полости охлаждения 2. Бисферическая конструкция тепловой трубки 6 позволяет перераспределять расход рабочей жидкости в зависимости от изменения температур на лобовой и тыльной сторонах лопатки 1 и таким образом автоматически регулировать скорость их охлаждения, предотвращая возникновение местных перегревов лопатки 1, ведущих к ее разрушению. Кроме того, конструкция корпуса тепловой трубки в виде двух сфер 7 и 8, сообщающихся между собой, значительно увеличивает поверхность зон испарения и конденсации, что увеличивает площадь и скорость теплопередачи процессов испарения и конденсации и в конечном итоге также повышает эффективность охлаждения лопатки.

Таким образом, конструкция предлагаемого ТТКОЛТ по сравнению с известными контурами охлаждения обеспечивает значительное повышение эффективности охлаждения лопаток турбин высокого давления, работающих в высокотемпературной газовой среде.

Теплотрубный контур охлаждения турбины, включающий расположенную в радиальном направлении между хвостовиком и торцом лопатки по крайней мере одну полость охлаждения, соединенную с полостью подвода воздуха и выпускными отверстиями, стенки которой снабжены размещенными в шахматном порядке, полусферическими углублениями, отличающийся тем, что полусферические углубления противоположных стенок полости охлаждения расположены друг против друга, в них расположены верхние и нижние полусферы бисферических тепловых трубок, каждая из которых состоит из верхней и нижней сфер, выполненных из термостойкого материала с высокой теплопроводностью, соединенных между собой через отверстие, в котором пропущен транспортный фитиль, выполненный из пористого материала и примыкающий к противоположным участкам внутренних поверхностей верхней и нижней сфер бисферической тепловой трубки, покрытых решеткой, выполненной из полос пористого материала, причем нижняя и верхняя полусферы верхней и нижней сфер бисферических тепловых трубок расположены в полости охлаждения, а поры пористого материала фитиля и решетки заполнены рабочей жидкостью.



 

Похожие патенты:

Охлаждаемая турбина газотурбинного двигателя содержит наружный корпус, установленные в нем надроторную вставку и сопловой аппарат с периферийными отверстиями, соединенными с системой подвода охлаждающего воздуха, ротор с рабочими лопатками с каналами охлаждения и выступом по периметру торцевой поверхности, образующим открытую торцевую полость.

Узел турбины содержит первое устройство (200) направляющих лопаток, второе устройство (210) направляющих лопаток, и отражатель (100), образованный из пластинчатого элемента.

Охлаждаемая турбина содержит сопловые лопатки, теплообменник. Каждая из сопловых лопаток выполнена в виде конструктивного элемента, ограниченного верхней и нижней полками, и пространства между ними, ограниченного вогнутой и выпуклой стенками пера лопатки, в виде расположенных вдоль ее оси раздаточного коллектора входной кромки и раздаточной полости с транзитным дефлектором.

Охлаждаемая турбина содержит сопловые лопатки, каждая из которых выполнена в виде конструктивного элемента, ограниченного верхней и нижней полками, и пространства между ними, ограниченного вогнутой и выпуклой стенками пера лопатки, в виде расположенных вдоль ее оси раздаточного коллектора входной кромки и раздаточной полости с транзитным дефлектором, образующим вдоль внутренних поверхностей стенок пера охлаждающие каналы, сообщенные с проточной частью турбины, теплообменник.

Охлаждаемая турбина содержит рабочее колесо с установленными на нем рабочими лопатками с двумя контурами охлаждения, последовательно соединенными с воздушными каналами в рабочем колесе, с независимыми кольцевыми диффузорными каналами, образованными на поверхности рабочего колеса, соединенными с сопловыми аппаратами закрутки и транзитными воздуховодами на их входе, сопловые лопатки, теплообменник, транзитные воздуховоды.

Кольцевой неподвижный элемент для использования с паровой турбиной (100). Неподвижный элемент содержит радиально наружное первое кольцо (228), радиально внутреннее второе кольцо (226) и, по меньшей мере, одну аэродинамическую поверхность (212).

Изобретение относится к газотурбостроению, а именно к производству рабочих лопаток турбины газотурбинных двигателей. Охлаждаемая рабочая лопатка газовой турбины содержит хвостовик и перо, выполненные с внутренним трактом охлаждения в виде продольного канала от хвостовика к торцу пера и связанным с этим каналом комплексом поперечных каналов, ориентированных в направлении выходной кромки пера.

Лопатка турбины простирается радиально между хвостовиком лопатки и венцом лопатки. В венце лопатки выполнена открытая полость, которая образована замкнутой концевой стенкой и боковым ободом.

Охлаждаемая лопатка выполнена из упругопористого нетканого материала металлорезина. В нетканом материале выполнены полости для подвода охлаждающей среды через его поры к внешней поверхности профиля лопатки.

Система жидкостного охлаждения лопаток, по меньшей мере, одной высокотемпературной ступени газовой турбины, закрепленных хвостовой частью на ободе несущего диска указанной ступени ротора турбины, содержит с одной из сторон несущего диска осесимметричный ему открытый вниз кольцевой желоб, по меньшей мере, две неподвижные форсунки, а также расположенные по периметру профиля лопатки в ее подповерхностном слое продольные охлаждающие каналы.

Устройство для охлаждения рабочих лопаток турбины двухконтурного газотурбинного двигателя, у которых внутренняя полость каждой лопатки разделена перегородкой на полость у входной кромки и остальную полость и содержит последовательно установленные воздухо-воздушный теплообменник, управляющие клапаны, воздуховод, аппарат закрутки статора турбины, воздушные каналы в рабочем колесе, соединенные с остальными полостями рабочих лопаток, дополнительный воздуховод, дополнительный аппарат закрутки статора турбины, дополнительные воздушные каналы в рабочем колесе. Воздухо-воздушный теплообменник размещен в наружном контуре, соединен своим входом с воздушной полостью камеры сгорания, а выходом с воздушным коллектором. Воздуховод проходит через внутренние полости сопловых лопаток. Полости у входных кромок лопаток соединены с источником воздуха через дополнительные управляющие клапаны. Дополнительный воздуховод проходит через дополнительные внутренние полости сопловых лопаток. В качестве источника воздуха для охлаждения полостей у входных кромок лопаток выбран воздушный коллектор. Входы управляющих и дополнительных управляющих клапанов соединены с воздушным коллектором. Выходы дополнительных управляющих клапанов сообщены с дополнительным аппаратом закрутки через дополнительный воздуховод, проходящий через внутренние полости сопловых лопаток и дополнительный воздуховод статора турбины. При снижении оборотов двигателя и температуры газа перед турбиной уменьшают расход охлаждающего воздуха путем уменьшения площади проходного сечения управляющих клапанов и дополнительных управляющих клапанов. Вследствие этого расход охлаждающего воздуха, проходящего через воздухо-воздушный теплообменник, уменьшается и при сохранении расхода воздуха, идущего через наружный контур, увеличивается эффективность воздухо-воздушного теплообменника, вследствие чего дополнительно уменьшается температура охлаждающего воздуха, идущего на охлаждение рабочей лопатки. Изобретение позволяет снизить температуру охлаждающего воздуха, идущего на охлаждение внутренних полостей рабочих лопаток турбины и, в частности, полостей, расположенных у входных кромок рабочих лопаток. 2 н. и 1 з. п. ф-лы, 2 ил.

абочая лопатка турбины газотурбинного двигателя содержит верхнюю торцевую бандажную полку, с размещенными на ней зубцами лабиринтного уплотнения. Бандажная полка имеет сквозную полость для охлаждающего воздуха и выполнена в виде параллелограмма, две стороны которого ориентированы в направлении вращения, а две другие имеют противоположно направленные вырезы с контактными поверхностями и охватывающими их компенсаторами напряжений. Бандажная полка снабжена подпорным и управляющим ребрами. Подпорное ребро выполнено между компенсаторами напряжений длиной (0,7…0,9)H и на расстоянии (0,1…0,9)L от вершины выреза. Управляющее ребро выполнено по боковой кромке бандажной полки со стороны выпуклой поверхности профильной части между компенсатором напряжения и зубцом лабиринтного уплотнения высотой (0,7…0,85)h высоты зубца уплотнения. Высота компенсаторов напряжения и подпорного ребра соответственно составляет (1…2)d и (1,5…3)d, где H - расстояние между компенсаторами напряжений; L - расстояние от вершины выреза до задней стороны бандажной полки, ориентированной в направлении вращения; h - высота зубца уплотнения; d - толщина бандажной полки. Увеличивается ресурс работы лопатки турбины двигателя при сохранении потребного расхода воздуха через систему охлаждения рабочей лопатки и несущественном увеличении массы. 2 з.п. ф-лы, 5 ил.

Охлаждаемая лопатка для газовой турбины содержит аэродинамическую секцию, которая проходит в радиальном направлении турбины или проходит в продольном направлении лопатки между бандажной полкой и периферической частью лопатки, которая обеспечивается законцовкой. Аэродинамическая секция ограничивается перпендикулярно по отношению к продольному направлению с помощью передней кромки и задней кромки и имеет рабочую поверхность и поверхность разрежения с охлаждающими каналами, проходящими, по существу, в радиальном направлении между бандажной полкой и периферической частью лопатки во внутреннюю часть аэродинамической секции. Через эти охлаждающие каналы протекает охлаждающая среда. Первые охлаждающие отверстия для конвекционного охлаждения выполнены на рабочей поверхности лопаток. Вторые охлаждающие отверстия для пленочного охлаждения выполнены на поверхности разрежения лопаток, в области периферической части лопатки и функционально связаны с охлаждающими каналами, при этом они распределены по ширине лопатки. Охлаждающая среда выводится наружу в области законцовки и/или через законцовку лопатки. Первые охлаждающие отверстия открыты в окружающее лопатку пространство с помощью веерообразной секции канала. Первые охлаждающие отверстия, которые располагаются снаружи задней кромки лопатки, открыты в окружающее лопатку пространство с помощью веерообразной секции канала, которая имеет трехмерную симметрию. Веерообразная секция канала с трехмерной симметрией имеет первый угол отверстия, имеющий диапазон от 10° до 50° и предпочтительно составляющий около 24°, и второй угол (φ2) отверстия, перпендикулярный вышеуказанному первому углу (2φ1) отверстия. Второй угол отверстия имеет диапазон от 5° до 25° и предпочтительно составляет около 12°. Первые охлаждающие отверстия, которые располагаются на задней кромке лопатки, открыты в окружающее лопатку пространство с помощью веерообразной секции канала, которая имеет двухмерную симметрию. Веерообразная секция канала с двухмерной симметрией имеет третий угол (2φ3) отверстия, имеющий диапазон от 10° до 40° и предпочтительно составляющий около 20°. Изобретение направлено на улучшение охлаждения в области периферии лопатки. 14 з.п. ф-лы, 12 ил.

Охлаждаемая лопатка газовой турбины содержит перо, расположенное в направлении потока между передней кромкой и задней кромкой и ограниченное со стороны всасывания и со стороны нагнетания соответствующими стенками. Между стенками расположено внутреннее пространство, в котором охлаждающий воздух протекает в направлении потока к задней кромке и выходит наружу в зоне задней кромки. Стенка на стороны нагнетания оканчивается в направлении потока с образованием закраины на стороне нагнетания на расстоянии от задней кромки. Охлаждающий воздух выходит из внутреннего пространства на стороне нагнетания. Внутреннее пространство разделено на расстоянии от задней кромки множеством ребер, ориентированных параллельно направлению потока, на множество параллельных, вызывающих перепад давления охлаждающих каналов, в которых дополнительно расположены завихрители для увеличения охлаждающего действия. Непосредственно перед выходом охлаждающего воздуха из внутреннего пространства на пути потока охлаждающего воздуха расположено некоторое число перемычек потока, распределенных поперечно направлению потока, линейная плотность которых меньше линейной плотности ребер. Между охлаждающими каналами и перемычками потока расположено в виде двухмерной решетчатой структуры множество штифтов, проходящих через внутреннее пространство поперечно направлению потока между стенкой на стороне всасывания и стенкой на стороне нагнетания. Изобретение направлено на снижение аэродинамических потерь на задней кромке и расхода охлаждающего воздуха. 3 з.п. ф-лы, 2 ил.

Охлаждаемый элемент газовой турбины для охлаждения термически нагруженной на передней стороне стенки содержит на обратной стороне стенки с распределением по поверхности множество выступающих из стенки шипов, а также средства для формирования направленных струй охлаждающей среды в зоне шипов на обратную сторону стенки, предназначенных для ударного охлаждения. Распределение шипов в пределах критических зон (Ас) элемента имеет более высокую плотность, чем на его остальных участках. Средства для создания направленных на обратную сторону стенки струй содержат ударно-охлаждающую пластину с распределенными ударно-охлаждающими отверстиями. Плотность ударно-охлаждающих отверстий коррелированна с плотностью шипов. Изобретение направлено на создание охлаждаемого элемента газовой турбины, охлаждение которого оптимально согласовано с локально изменяющейся термической нагрузкой, не вызывая дополнительного расхода охлаждающего воздуха. 3 з.п. ф-лы, 4 ил.

Рабочая лопатка газовой турбины содержит профильную часть, проходящую в продольном направлении, и хвостовик лопатки, служащий для крепления рабочей лопатки на валу ротора газовой турбины. Профильная часть рабочей лопатки выполнена с внутренними каналами охлаждения. Каналы охлаждения предпочтительно проходят вдоль продольного направления и могут быть обеспечены охлаждающим воздухом с помощью средств подачи охлаждающего воздуха, имеющихся внутри хвостовика рабочей лопатки. Хвостовик рабочей лопатки снабжен каналом, проходящим в поперечном направлении через указанный хвостовик рабочей лопатки и сообщающийся с каналами охлаждения. В канал лопатки введена вставка для установления окончательной конфигурации и характеристик соединений между каналом лопатки и каналами охлаждения. Канал лопатки представляет собой цилиндрический канал. Вставка имеет трубчатую конфигурацию так, что она полностью размещается в цилиндрическом канале. В стенке вставки имеется, по меньшей мере, одно сопло, через которое один из каналов охлаждения соединен с каналом рабочей лопатки и которое определяет массовый расход охлаждающего воздуха, поступающего в один канал охлаждения. Изобретение направлено на оптимизирование распределения и подачи охлаждающего воздуха, не жертвуя при этом простотой изготовления лопатки. 3 н. и 6 з.п. ф-лы, 8 ил.

Рабочая лопатка или лопатка направляющего аппарата турбины с по меньшей мере одним внутренним радиальным каналом для циркуляции охлаждающего агента, ограниченным стенкой высокого давления на поверхности высокого давления и стенкой низкого давления на поверхности низкого давления, соединяющимися в радиально ориентированной передней кромке вверху по течению и в задней кромке внизу по течению, содержит по меньшей мере одно выходное отверстие, расположенное в по меньшей мере в одном из следующих мест - в стенке на стороне повышенного давления или в стенке на стороне пониженного давления для выпуска охлаждающего агента из внутреннего радиального канала в окружающую среду. Вдоль задней кромки расположено по меньшей мере одно выходное отверстие, выходящее на поверхность высокого давления задней кромки. На поверхности высокого давления рабочей лопатки/направляющего аппарата задняя кромка содержит уступ в сторону поверхности низкого давления. По меньшей мере одно выходное отверстие на задней кромке по меньшей мере частично сообщается с окружающей средой в районе данного уступа. Выходное отверстие на задней кромке выполнено так, что охлаждающий агент подводится к нему по каналу, лишь частично открывающемуся в радиально расположенной поверхности передней кромки уступа. Канал проходит по крайне мере частично по длине нижней поверхности уступа с образованием отверстия со срезом. Изобретение направлено на усовершенствование пленочного охлаждения задней кромки лопатки. 2 н. и 12 з.п. ф-лы, 12 ил.

Охлаждаемая перфорированная лопатка турбины содержит перфорированную оболочку с охлаждающими отверстиями малого диаметра. В перфорированной оболочке лопатки в местах расположения отверстий выполнены разделительные полости овальной формы с шириной овала, равной диаметру отверстия, и высотой овала, несколько большей диаметра отверстия, расположенные с ориентацией высоты овала в радиальном направлении. Изобретение повышает эффективность охлаждения лопатки турбины. 3 ил.

Охлаждаемая турбина авиационного газотурбинного двигателя содержит рабочее колесо с установленными на нем рабочими лопатками с двумя контурами охлаждения, последовательно соединенные с воздушными каналами в рабочем колесе, с независимыми кольцевыми диффузорными каналами, сопловые лопатки и теплообменник. Кольцевые диффузорные каналы образованы на поверхности рабочего колеса, соединены с сопловыми аппаратами закрутки и транзитными воздуховодами на их входе. Каждая из сопловых лопаток выполнена в виде конструктивного элемента, ограниченного верхней и нижней полками, и пространства между ними, ограниченного вогнутой и выпуклой стенками пера сопловой лопатки, в виде расположенных вдоль ее оси раздаточного коллектора входной кромки и раздаточной полости. Раздаточный коллектор входной кромки соединен на входе с воздушной полостью камеры сгорания, а на выходе через перфорационные отверстия во входной кромке сопловой лопатки - с проточной частью турбины. Теплообменник соединен на входе с воздушной полостью камеры сгорания, а на выходе последовательно сообщен с воздушным коллектором и раздаточной полостью. Охлаждающая турбина снабжена раздаточным коллектором для охлаждающего воздуха, охлаждающим дефлектором и двумя транзитными дефлекторами, установленными в раздаточной полости вдоль ее оси с зазором относительно друг друга и с зазором между вогнутой и выпуклой стенками пера сопловой лопатки с образованием вдоль стенок охлаждающих каналов. Охлаждающий дефлектор выполнен с перфорационными отверстиями на двух его противоположных стенках, установлен в раздаточной полости на стенке раздаточного коллектора входной кромки и направлен стенками с перфорационными отверстиями в направлении вогнутой и выпуклой стенок пера сопловой лопатки. В верхней и нижней полках сопловой лопатки выполнены воздуховоды, соединенные на выходе с проточной частью турбины. Раздаточный коллектор для охлаждающего воздуха соединен с источником воздуха, с входом воздуховода верхней полки и с входом охлаждающего дефлектора. Вход воздуховода в нижней полке соединен с выходом охлаждающего дефлектора. Воздушный коллектор соединен с входом транзитных дефлекторов, а раздаточная полость соединена с проточной частью турбины. Изобретение позволяет повысить эффективность охлаждения турбины, а также повысить ее экономичность. 6 з.п. ф-лы, 5 ил. .

Лопатка содержит внутренние полости для циркуляции охлаждающего газа. Полости разделены перегородками, проходящими в радиальном направлении. Одна из перегородок, наиболее близкая к задней кромке лопатки, отклонена от радиального направления в направлении к задней кромке, начиная, по меньшей мере, с 70% высоты лопатки, считая от полки лопатки до радиуса внешней кромки. Одна из полостей, ограниченная в направлении задней кромки лопатки указанной перегородкой, наиболее близкой к задней кромке лопатки, содержит ряд просверленных каналов, ведущих к боковой стороне лопатки. Просверленные каналы открываются в указанную полость через отверстия, расположенные по линии, параллельной указанной перегородке. Изобретение направлено на повышение эффективности охлаждения в верхней части лопаток в углу между задней кромкой и внешней кромкой. 1 з.п. ф-лы, 4 ил.
Наверх