Микросферический катализатор крекинга "октифайн" и способ его приготовления

Изобретение относится к области нефтеперерабатывающей и нефтехимической промышленности, а именно к приготовлению катализаторов глубокого каталитического крекинга нефтяных фракций для производства олефинов С24 и высокооктанового бензина. А именно, изобретение относится к микросферическому катализатору крекинга, полученному из суспензии, включающей в своем составе по сухому остатку 25-35% масс. мелкодисперсного цеолита ReНУ, 30-40% масс. каолина, 25-44% масс. источников оксида алюминия и 1-10% масс. мелкодисперсного диоксида кремния. Также изобретение относится к способу получения микросферического катализатора крекинга, включающему стадии приготовления суспензии мелкодисперсного цеолита ReНУ, каолина, источников оксида алюминия и мелкодисперсного диоксида кремния с концентрацией суспензии по сухому веществу 450-600 г/л, формовку при распылении суспензии в среде дымовых газов с температурой 140-170°C и прокалку полученных микросфер при температуре 550-650°C во вращающейся прокалочной печи. Технический результат заключается в получении микросферического катализатора крекинга с высокими показателями по стойкости к истиранию и каталитической активности. 2 н. и 2 з.п. ф-лы, 1 табл., 5 пр.

 

Изобретение относится к области нефтеперерабатывающей и нефтехимической промышленности, а именно к приготовлению катализаторов глубокого каталитического крекинга нефтяных фракций ,для производства олефинов С24 и высокооктанового бензина. Предлагаемый катализатор для глубокого крекинга нефтяных фракций содержит цеолит Y в смешанной ионно-обменной форме и матрицы, состоящей из оксида алюминия, каолина и диоксида кремния.

Из литературных данных известно, что микросферический катализатор крекинга состоит из активного компонента и матрицы. Активным компонентом является цеолит Y, отличающийся решеточным модулем и представленный в различной катион-декатионированной форме, в частности HY, ReHY и ReY. Матрица катализатора выполняет роль носителя, в котором равномерно распределен активный компонент.

Эффективная работа катализатора определяется не только его каталитической активностью, но и стабильностью эксплуатационных характеристик в процессе крекинга углеводородов. Одним из таких показателей является стойкость гранул микросфер к истиранию, которая во многом определяется матрицей катализатора.

Известен способ получения катализатора крекинга на основе ультрастабильного цеолита, каолина, источников оксидов алюминия и кремния [US 6114267, B01J 29/06, 05.09.2000]. В указанном способе ультрастабилизацию цеолита осуществляют с применением гексафторсиликата аммония. Решеточный модуль цеолита при этом составляет 12,5 и содержание редкоземельных элементов 4% масс. Недостатком указанного способа является снижение кристалличности цеолита при взаимодействии с гексафторсиликатом аммония и низкая активность получаемого на основе такого цеолита катализатора. А также используется токсичный реагент гексафторсиликат.

Известен способ получения катализатора крекинга на основе ультрастабильного цеолита, глины и связующего, включающего псевдобемит, золь окиси алюминия, золь двуокиси кремния и фосфорсодержащий золь окиси алюминия [Патент РФ 2005116227 А, Патент РФ 2007140281 А, Патент РФ 2399415 С2, Патент РФ 2317143 С2]. При газофазной ультрастабилизации цеолита Y используется реагент SiCl4. Данный реагент является ядовитым. Указанные способы получения катализаторов имеют много стадий, в том числе таких длительных и трудоемких, как фильтрование и промывка, и большое количество сточных вод, содержащих ядовитые химические вещества.

Известен способ получения катализатора [патент РФ 2021012 С1], который содержит ультрастабильный цеолит Y, деалюминированный путем изоморфного замещения алюминия на кремний до молярного отношения 7-15, с кристалличностью 90-100%, параметром ячейки 24,44-24,55 и содержанием оксида натрия 0,14-0,56 % масс. Цеолит диспергирован в оксидной матрице на основе каолина и кремнезоля. Сухие каолин и цеолит растирают, суспендируют в дистиллированной воде. В суспензию добавляют кремнезоль, гомогенизируют в течение 1 ч. Суспензию подвергают распылительной сушке. Прокаливают катализатор при 700°C 6 ч. Стабилизируют паром при 775°C 6 ч. Для снижения в кремнезоле остаточного содержания оксида натрия, который оказывает негативное воздействие на катализатор, используются многостадийный процесс кислотной обработки и фильтрации кремнезоля.

Известен способ получения катализатора [патент РФ 2300420], который содержит ультрастабильный цеолит Y, ультрастабилизацию которого проводят в две стадии:

- на первой стадии в среде водяного пара проводят ультрастабилизацию непосредственно с цеолитом У;

- на второй стадии осуществляют ультрастабилизацию цеолита в составе матрицы катализатора при прокалке готового катализатора. Данный способ получения катализатора имеет много стадий, является энергозатратным и трудоемким.

Ближайшим известным решением аналогичной задачи по технической сущности является способ получения катализатора крекинга [патент РФ 2064835], включающим смешение цеолита Y, глины, воды и связующего, формовку, сушку и прокалку, в котором в качестве связующего используют тригидрат оксида алюминия, который прокаливают при 800-1100°C в течение 0,5-2,0 с, обрабатывают азотной кислотой из расчета 0,1-0,2 молей HNO3 на 1 моль Al2O3 при 150-180°C в течение 4-18 ч и смешивают с цеолитом и глиной в массовом соотношении связующее: цеолит : глина 1:(2-10):(15-44). Цеолит Y используют в редкоземельной, аммонийной, водородной или смешанной ионно-обменной форме.

Недостатком данного способа является дополнительный процесс подготовки связующего из тригидрата алюминия, который требует проведения процесса под давлением при температурах 150-180°C в течение 4-18 ч.

Основной задачей предлагаемого решения является разработка безотходной, бессточной и достаточно простой технологии приготовления катализатора крекинга с высокой каталитической активностью и стойкостью к истиранию.

Поставленная цель достигается предлагаемым способом получения катализатора крекинга, включающим стадию приготовления суспензии смешением мелкодисперсного цеолита ReНУ, каолина, источников оксида алюминия и мелкодисперсного диоксида кремния, формовка при распылении суспензии в среде дымовых газов с температурой 140-170°C и дальнейшей прокалкой полученных микросфер при температуре 550-650°C во вращающейся прокалочной печи.

Отличительными чертами предлагаемого способа получения катализатора крекинга являются:

- концентрация суспензии по сухому веществу 450-600 г/л.

- соотношение компонентов в суспензии по сухому остатку 25-35% масс. мелкодисперсного цеолита ReНУ, 30-40% масс. каолина, 25-44% масс. источников оксида алюминия и 1-10% масс. мелкодисперсного диоксида кремния.

- формовка при распылении суспензии в среде дымовых газов с температурой 140-170°C.

- дальнейшей прокалкой полученных микросфер при температуре 550-650°C во вращающейся прокалочной печи.

- цеолит Y используют в смешанной ионно-обменной форме, представляющий собой мелкодисперсный ReНУ (содержание Re2O3 3-10%, Na2O 0,01%, решеточный модуль цеолита 6-10).

- диоксид кремния представляет собой мелкодисперсную белую сажу марки БС 200.

Оксид алюминия в составе катализатора, обеспечивающий прочность микросферы и термостабильность, в условиях проведения процесса крекинга проявляет также каталитическую активность, которая приводит к образованию побочных продуктов реакции. Использование мелкодисперсной белой сажи приводит к тому, что на стадии прокалки микросферы в интервале температур 550-650°C происходит взаимодействие с частью оксида алюминия в составе катализатора с образованием аморфного алюмосиликата. Образовавшийся в объеме микросферы аморфный алюмосиликат приводит к упрочнению самой гранулы и проявляет меньшую каталитическую активность.

Таким образом, применение мелкодисперсной белой сажи в качестве модифицирующей добавки при получении микросферического катализатора в заявляемом способе соответствует критерию "новизна".

Промышленная применимость предлагаемого способа приготовления микросферического катализатора крекинга подтверждается следующими примерами.

Сырье:

1. Мелкодисперсный цеолит ReНУ (содержание Re2O3 3-10%, Na2O 0,1-1%, решеточный модуль цеолита 6-10). ППП (потери при прокаливании)=6,04%

2. Каолин. ППП (потери при прокаливании)=14,67%

3. Источник оксида алюминия - моногидрат алюминия псевдобемитной модификации. ППП (потери при прокаливании)=23,15%

4. Источник оксида алюминия - основной хлорид алюминия (содержание сухого остатка в пересчете на Al2O3 - 19,5-21,0%)

5. Мелкодисперсная белая сажа марки БС-200

6. Вода химически очищенная (ХОВ)

Оборудование:

1. Емкость с мешалкой на 1 м3

2. Распылительная сушилка (PC) с мощностью до 250 л/ч по испаренной влаге

3. Вращающаяся прокалочная печь с верхним пределом температур на 800°C

Все расчеты в примерах приводятся с учетом того, что рабочим объемом емкости с мешалкой принято до 80% объема от исходного.

В емкость предварительно набирается расчетное количество ХОВ, при включенной мешалке засыпаются расчетные количества сухих компонентов. Веса компонентов указаны с учетом влаги.

Пример 1

Для приготовления суспензии берут 53,21 кг мелкодисперсного цеолита ReНУ, 70,32 кг каолина, 78,07 кг моногидрат алюминия в псевдобемитной модификации, 150 кг основного хлорида алюминия. После засыпки всех компонентов суспензия перемешивается в емкости в течение 1 ч, затем осуществляется формовка микросфер в распылительной сушилке в среде дымовых газов с температурой 140-170°C, после - прокалка микросфер при температуре 550-650°C во вращающейся прокаленной печи.

Состав непрокаленного катализатора по сухим веществам представляет 25% мелкодисперсный цеолит ReНУ, 30% каолин и 45% оксида алюминия, где соотношение моногидрат алюминия в псевдобемитной модификации к основному хлориду алюминия 1:0,5.

Пример 2

Для приготовления суспензии берут 53,21 кг мелкодисперсного цеолита ReНУ, 70,32 кг каолина, 80,68 кг моногидрат алюминия в псевдобемитной модификации, 130 кг основного хлорида алюминия и 2 кг мелкодисперсной белой сажи марки БС-200. После засыпки всех компонентов суспензия перемешивается в емкости в течение 1 ч, затем осуществляется формовка микросфер в распылительной сушилке в среде дымовых газов с температурой 140-170°C, после - прокалка микросфер при температуре 550-650°C во вращающейся прокалочной печи.

Состав непрокаленного катализатора по сухим веществам представляет 25% мелкодисперсный цеолит ReНУ, 30% каолин, 44% оксида алюминия и 1% мелкодисперсного оксида кремния, где соотношение моногидрат алюминия в псевдобемитной модификации к основному хлориду алюминия 1:0,4 и соотношение основного хлорида алюминия к мелкодисперсному оксиду кремния 1:0,1.

Пример 3

Для приготовления суспензии берут 53,21 кг мелкодисперсного цеолита ReНУ, 93,75 кг каолина, 57,25 кг моногидрат алюминия в псевдобемитной модификации, 100 кг основного хлорида алюминия и 6 кг мелкодисперсной белой сажи марки БС-200. После засыпки всех компонентов суспензия перемешивается в емкости в течение 1 ч, затем осуществляется формовка микросфер в распылительной сушилке в среде дымовых газов с температурой 140-170°C, после - прокалка микросфер при температуре 550-650°C во вращающейся прокалочной печи.

Состав непрокаленного катализатора по сухим веществам представляет 25% мелкодисперсный цеолит ReНУ, 40% каолин, 32% оксида алюминия и 3% мелкодисперсного оксида кремния, где соотношение моногидрат алюминия в псевдобемитной модификации к основному хлориду алюминия 1:0,5 и соотношение основного хлорида алюминия к мелкодисперсному оксиду кремния 1:0,3.

Пример 4

Для приготовления суспензии берут 53.21 кг мелкодисперсного цеолита ReНУ, 70,32 кг каолина, 78,07 кг моногидрат алюминия в псевдобемитной модификации, 100 кг основного хлорида алюминия и 10 кг мелкодисперсной белой сажи марки БС-200. После засыпки всех компонентов суспензия перемешивается в емкости в течение 1 ч, затем осуществляется формовка микросфер в распылительной сушилке в среде дымовых газов с температурой 140-170°C, после - прокалка микросфер при температуре 550-650°C во вращающейся прокалочной печи.

Состав непрокаленного катализатора по сухим веществам представляет 25% мелкодисперсный цеолит ReНУ, 30% каолин, 40% оксида алюминия и 5% мелкодисперсного оксида кремния, где соотношение моногидрат алюминия в псевдобемитной модификации к основному хлориду алюминия 1:0,3 и соотношение основного хлорида алюминия к мелкодисперсному оксиду кремния 1:0,5.

Пример 5

Для приготовления суспензии берут 53.21 кг мелкодисперсного цеолита ReНУ, 93,75 кг каолина, 49,45 кг моногидрат алюминия в псевдобемитной модификации, 90 кг основного хлорида алюминия и 14 кг мелкодисперсной белой сажи марки БС-200. После засыпки всех компонентов суспензия перемешивается в емкости в течение 1 ч, затем осуществляется формовка микросфер в распылительной сушилке в среде дымовых газов с температурой 140-170°C, после - прокалка микросфер при температуре 550-650°C во вращающейся прокалочной печи.

Состав непрокаленного катализатора по сухим веществам представляет 25% мелкодисперсный цеолит ReНУ, 40% каолин, 28% оксида алюминия и 7% мелкодисперсного оксида кремния, где соотношение моногидрат алюминия в псевдобемитной модификации к основному хлориду алюминия 1:0,5 и соотношение основного хлорида алюминия к мелкодисперсному оксиду кремния 1:0,8.

У полученных образцов затем определяли их насыпную плотность, прочность на истирание и показатели каталитической активности в крекинге керосино-газойлевой фракции в соответствии ASTM D 3907-03: t 482°C, СТО 3.0, WHSV 16 ч-1.

Таблица 1
Наименование Пример 1 Пример 2 Пример 3 Пример 4 Пример 5
Насыпная плотность, г/см3 0,84 0,83 0,85 0,84 0,83
Стойкость к истиранию, %/ч 0,19 0,22 0,20 0,21 0,24
Каталитическая активность, % 68 72 72 75 78

Из результатов таблицы 1 следует, что в составе катализатора изменение соотношения мелкодисперсной белой сажи и источников алюминия оказывает существенное влияние на показатели каталитической активности и прочности на истирание.

Анализ представленных материалов позволяет сделать вывод о том, что предлагаемое техническое решение дает возможность получать микросферический катализатор по бессточной и достаточно простой технологии приготовления с высокой каталитической активностью и стойкостью к истиранию.

1. Микросферический катализатор крекинга, который получен из суспензии, включающей в своем составе по сухому остатку 25-35% масс. мелкодисперсного цеолита ReНУ, 30-40% масс. каолина, 25-44% масс. источников оксида алюминия и 1-10% масс. мелкодисперсного диоксида кремния.

2. Способ получения микросферического катализатора крекинга по п.1, включающий стадии приготовления суспензии мелкодисперсного цеолита ReНУ, каолина, источников оксида алюминия и мелкодисперсного диоксида кремния с концентрацией суспензии по сухому веществу 450-600 г/л, формовка при распылении суспензии в среде дымовых газов с температурой 140-170°C и прокалкой полученных микросфер при температуре 550-650°C во вращающейся прокалочной печи.

3. Способ по п.2 отличающийся тем, что источник оксида алюминия представлен в виде смеси компонентов моногидрат оксида алюминия псевдобемитной модификации и основным хлоридом алюминия в весовом соотношении 1:(0,2-1,2).

4. Способ по п.2 отличающийся тем, что мелкодисперсный диоксид кремния представлен в виде мелкодисперсной белой сажи, вводимое количество которого - основной хлорид алюминия и мелкодисперсная белая сажа соотносятся в пропорции 1:(0,1-0,8).



 

Похожие патенты:

Изобретение относится к производству металл-углерод содержащих тел. Описан способ производства металл-углерод содержащих тел, включающих ферромагнитные металлические частицы, капсулированные слоями графитового углерода, который включает пропитывание целлюлозных, целлюлозоподобных или углеводных тел или тел, полученных из них путем гидротермальной обработки, водным раствором по меньшей мере одного соединения металла, где металл или металлы выбраны из ферромагнитных металлов или сплавов, и последующую термическую карбонизацию пропитанных тел путем нагревания в инертной и практически лишенной кислорода атмосфере при температуре выше примерно 700°С с восстановлением по меньшей мере части по меньшей мере одного соединения металла до соответствующего металла или металлического сплава.

Изобретение относится к области катализа. Описан катализатор полимеризации олефинов, включающий: (I) подложку катализатора с оболочкой, содержащую (a) ядро, которое включает частицы оксида алюминия и (b) около 1-40% масс.

Изобретение относится к области катализа. Описаны способы приготовления предшественника катализатора, включающие на первой стадии приготовления пропитку частиц носителя для катализатора органическим соединением кобальта в пропиточной жидкости с образованием пропитанного промежуточного продукта, прокаливание пропитанного промежуточного продукта при температуре прокаливания не выше 400°C с получением прокаленного промежуточного продукта; и затем на второй стадии приготовления пропитку прокаленного промежуточного продукта первой стадии неорганической солью кобальта в пропиточной жидкости с образованием пропитанного носителя и прокаливание пропитанного носителя с получением предшественника катализатора, причем ни одну из неорганических солей кобальта, использованных на второй стадии приготовления, не используют на первой стадии приготовления.
Данное изобретение относится к нанесенному на мезопористый уголь катализатору на основе меди, к способу его получения и применению в каталитическом дегидрировании соединения с алкильной цепью C2-C12 для превращения соединения с алкильной цепью C2-C12 в соединение с соответствующей алкенильной цепью.

Изобретение относится к области катализа. Описан способ получения оксида металла на подложке и восстановленного оксида металла на подложке, пригодного для использования в качестве предшественника для катализатора или сорбента, включающий стадии: (i) импрегнирования материала подложки раствором нитрата металла в растворителе, (ii) выдерживания импрегнированного материала в газовой смеси, содержащей оксид азота, при температуре в пределах 0-150°C для удаления растворителя из импрегнированного материала с одновременным высушиванием и стабилизацией нитрата металла на подложке, с получением диспергированного на подложке нитрата металла и (iii) кальцинирования диспергированного на подложке нитрата металла для осуществления его разложения и образования оксида металла на подложке, где кальцинирование осуществляют в газовой смеси, которая состоит из одного или нескольких инертных газов и оксида азота и концентрация оксида азота в газовой смеси находится в пределах 0,001-15% об.

Изобретение относится к области катализа. Описан способ получения катализатора, включающий импрегнирование металлоксидного материала подложки соединением платины, сушку ниже точки разложения этого соединения платины, обжиг в газовом потоке, содержащем NO и инертный газ.

Изобретение относится к области катализа. Описан способ создания эффективного бесплатинового каталитического покрытия на керамических блоках для нейтрализации отработавших газов автотракторных дизелей, включающий формирование подложки с большим значением удельной поверхности на керамических сотовых носителях.

Изобретение относится к области катализа. Описаны способы активации хромового катализатора, включающие повышение температуры хромового катализатора в, по меньшей мере, билинейном изменении, содержащем повышение температуры хромового катализатора с первой скоростью в течение первого периода времени до первой температуры на первом участке изменения билинейного изменения; и повышение температуры хромового катализатора со второй скоростью в течение второго периода времени от указанной первой температуры до второй температуры на втором участке изменения билинейного изменения, который непосредственно следует за первым участком изменения, при этом первая скорость больше, чем вторая скорость, и причем первый период предшествует второму периоду; причем первая температура находится в диапазоне от примерно 650°C до примерно 750°C, а вторая температура находится в диапазоне от примерно 750°C до примерно 850°C.
Изобретение относится к области катализа. Описан катализатор избирательного окисления монооксида углерода в смеси с аммиаком, содержащий золото - 0,7-1,2 мас.%, Fe3+ - 0,8-5,0 мас.% и кристаллическую тэта-модификацию оксида алюминия (θ-Al2O3) - остальное.
Изобретение относится к области катализа. Описан катализатор избирательного окисления монооксида углерода в смеси с аммиаком, содержащий золото - 0,5-1,0 мас.%, рутений - 1,0-5,0 мас.% и оксид алюминия остальное.
Изобретение относится к области катализа. Описан способ получения наноструктурного катализатора демеркаптанизации нефти и газоконденсата на основе производных фталоцианина кобальта и его хлорзамещенных продуктов, в котором полученные путем размола исходных фталоцианинов в шаровой мельнице при 100-120°C в присутствии спиртов общей формулы R-(OCH2- CH2)n-OH, где при n=1 R=С6H5, C4H9; при n=2 R=Н, C2H5, наночастицы фталоцианина кобальта и его хлорзамещенных производных обрабатывают концентрированными водными растворами алканоламмониевых солей дисульфокислот фталоцианина кобальта и его хлорзамещенных производных с последующей стабилизацией катализатора линейными полиэфирами (полиэтиленгликолями).
Данное изобретение относится к нанесенному на мезопористый уголь катализатору на основе меди, к способу его получения и применению в каталитическом дегидрировании соединения с алкильной цепью C2-C12 для превращения соединения с алкильной цепью C2-C12 в соединение с соответствующей алкенильной цепью.

Изобретение относится к нефтеперерабатывающей и нефтехимической промышленности, а именно к приготовлению каталитической добавки для повышения октанового числа бензина каталитического крекинга.
Изобретение относится к области катализа. Описан способ приготовления катализатора для получения ароматических углеводородов путем конверсии углеводородных газов, включающий нанесение молибдена на носитель, представляющий собой цеолит HZSM-5, путем пропитки его водным раствором соли молибдена с последующей прокалкой на воздухе при температуре 500-600°С, причем цеолит HZSM-5 в виде порошка предварительно подвергают деалюминированию путем его термопаровой обработки в токе воздуха с парциальным давлением паров воды 10-60 кПа при температуре 450-550°С, и полученный цеолит HZSM-5 с суммарным содержанием молибдена 2-5 мас.% смешивают с инертным материалом, активно поглощающим СВЧ энергию, на основе оксида или карбида металла при массовом соотношении компонентов 2-4:1, соответственно.

Изобретение относится к области катализа. Описан способ приготовления катализатора для окислительной конденсации метана (ОКМ) до C2+ углеводородов, включающий нанесение марганца и вольфрамата натрия на носитель диоксид кремния путем его последовательной пропитки водными растворами нитрата марганца и затем вольфрамата натрия с последующей прокалкой на воздухе при температуре 800°C, в котором полученную композицию Mn - Na2WO4/SiO2 с суммарным содержанием марганца 1-2 мас.% и вольфрамата натрия 3-5 мас.% смешивают с инертным материалом, активно поглощающим СВЧ энергию, на основе карбида металла при массовом соотношении компонентов 2-4:1, соответственно.

Изобретение относится к способам получения целлюлозы и низкомолекулярных кислородсодержащих соединений при переработке биомассы из отходов лесотехнической промышленности и сельского хозяйства.
Изобретение относится к области катализа. Описана каталитическая добавка для окисления оксида углерода в процессе регенерации катализаторов крекинга, включающая соединения марганца, оксид алюминия, природную бентонитовую глину и аморфный алюмосиликат, при следующем содержании компонентов, мас.%: марганец в пересчете на MnO2 10-15, бентонитовая глина 20-30, аморфный алюмосиликат 16-25, Al2O3 - остальное, имеющая сферическую форму частиц со средним размером 70-85 мкм, износоустойчивостью не менее 96%, насыпной плотностью 0,68-0,76 г/см3.

Настоящее изобретение относится к окислительному катализатору, способу его изготовления, способу обработки выбросов отработавших газов двигателей внутреннего сгорания, к системе выпуска отработавших газов и к транспортному средству.

Настоящее изобретение относится к катализаторам для процессов селективного каталитического восстановления соединений NOx в выхлопных газах и отходящих газах из процессов сгорания.

Изобретение относится к области катализа. Описан способ получения гранулированного катализатора крекинга, состоящий в смешении цеолита Y, глины и связующего с последующими формовкой, сушкой и прокалкой, в котором смешивают цеолит в виде окристаллизованной фазы или в составе смеси с аморфным алюмосиликатом и/или глиной, связующее, глину и отощающую добавку в массовом соотношении (25-40):(5-10):(40-50):(10-20), в качестве связующего используют оксихлорид алюминия, смесь формуют путем экструзии.
Изобретение относится к катализаторам крекинга. Описан шариковый катализатор крекинга, включающий в своем составе 10-35% масс.
Наверх