Морская технологическая ледостойкая платформа

Изобретение относится к области судостроения, в частности к морским технологическим ледостойким платформам для эксплуатации в арктических условиях. Морская технологическая ледостойкая платформа содержит надводную часть с горизонтальными площадками и установленным на них технологическим оборудованием, подводную часть, выполненную в виде водоизмещающего корпуса, якорную систему удержания, обеспечивающую возможность платформе разворачиваться относительно вертикальной оси, балластные цистерны, расположенные в водоизмещающем корпусе. Балластные цистерны расположены по всей длине водоизмещающего корпуса. Надводная часть выполнена в виде носовой и кормовой башен, причем верхняя часть башен в районе ледовой ватерлинии выполнена в виде ледоломного конуса, обращенного сужением вниз, а нижняя часть, например, в виде конуса, обращенного сужением вверх. Расстояние от уровня моря при работе в ледовой обстановке до верхней части водоизмещающего корпуса больше максимально возможной осадки ледовых образований. Ось якорной системы удержания расположена в районе носовой башни. Технический результат заключается в снижении нагрузки на корпус и якорную систему удержания платформы. 2 ил.

 

Изобретение относится к судостроению, в частности к морским технологическим ледостойким платформам для эксплуатации в арктических условиях.

Известна плавучая полупогружная ледостойкая платформа (Патент RU №2055773 С1, кл. МПК В63В 35/44, от 05.07.1993), содержащая нижний понтон с установленными на нем стабилизирующими колоннами, несущими палубу платформы с закрепленными на ней кожухом водоотделяющей колонны, причем в верхней части стабилизирующих колонн и кожуха водоотделяющей колонны установлены конические ледоломы, нижний понтон закреплен от смещения радиально расходящимися якорными цепями, нижние концы которых присоединены к якорям, установленным на дне моря, а конические ледоломы стабилизирующих колонн установлены с возможностью вертикального перемещения относительно стабилизирующих колонн и соединены с якорными цепями, каждая из которых пропущена сквозь палубу платформы, соответствующую ей стабилизирующую колонну и нижний понтон, выполненный с нишами, в которых расположены ролики роульса, направляющую якорную цепь, причем конические ледоломы стабилизирующих колонн оснащены амортизаторами, несущими стопорные устройства для фиксации якорных цепей, каждая из которых верхним концом присоединена к соответствующей якорной лебедке, установленной на палубе платформы, при этом угол между образующей конуса конических ледоломов и вертикалью равен или больше угла наклона якорной цепи к горизонтальной плоскости.

Направление образующей конуса сужением вниз вызывает вертикальную составляющую ледового воздействия, направленную вверх, что способствует натяжению якорных связей. Однако для обеспечения плавучести и остойчивости указанная плавучая полупогружная ледостойкая платформа должна содержать как минимум два понтона с двумя рядами колонн. Недостатком данной платформы является то, что взаимодействие с ледовым полем осуществляется в общем случае с тремя колоннами с вероятным забиванием льдом пространства между колоннами, что приводит к увеличению нагрузки на платформу и якорную систему удержания. Другим недостатком данной платформы является то, что якорные линии, дно моря и основная плоскость понтонов образуют трапецию (на боковом виде), которая, как известно, является неустойчивой фигурой и будет способствовать наклонению платформы при ледовом воздействии.

Известны плавучие установки для добычи, хранения и отгрузки нефти FPSO (Суда и плавучие технические средства для освоения морских нефтегазовых месторождений. - СПб.: НИЦ «МОРИНТЕХ», 2009, стр.261) с корпусом судовой формы с ледовыми подкреплениями, имеющее якорную систему удержания (ЯСУ), закрепленную за внутреннюю турель с вертикальной осью, вокруг которой судно может свободно разворачиваться, выбирая наиболее благоприятный курс по отношению к внешним воздействиям.

Недостатком данного судна является трудность обеспечения в ледовых условиях так называемой флюгерной способности судна, т.е. курсовой устойчивости с удержанием судна носом против превалирующей нагрузки. Флюгерная способность обеспечивает реализацию регламентированного свойства носовой оконечности судна ледокольной формы - разрушать лед при минимальной ледовой нагрузке на судно. Вместе с тем, заостренная ледокольная форма носовой оконечности не позволяет разместить турель с ЯСУ достаточно близко к форштевню (испытывающему основное воздействие льда), что увеличивает плечо разворачивающего момента от горизонтальной силы и уменьшает флюгерную способность судна во льдах.

Известна взятая за прототип морская технологическая платформа (Патент RU №2225315 С1, кл. МПК В63В 35/44, 35/08, от 31.03.2003), содержащая надводную часть с одной или несколькими горизонтальными площадками, подводную часть, выполненную в виде полого водонепроницаемого корпуса, соединенные между собой, по крайней мере, одним полым водонепроницаемым пилоном, снабженным косыми ребрами жесткости (также являющимися вторичными средствами разрушения ледяного покрова), якорную систему, обеспечивающую возможность платформе разворачиваться относительно вертикальной оси в соответствии с направлением дрейфа льда, технологического оборудования, расположенного как на надводной, так и на подводной частях, балластные емкости с соответствующим пневматическим оборудованием, являющиеся активными средствами разрушения ледяного покрова.

Недостатком данной платформы является трудность обеспечения флюгерной способности при действии ледяного поля. Взаимодействие с ледяным полем происходит как с вертикальным полым водонепроницаемым пилоном, так и с остроконечным выступом, обращенным к нижней поверхности льда, расположенными по длине водоизмещающего корпуса по разные стороны от вертикали крепления ЯСУ к корпусу. При этом (по идее изобретения-прототипа) остроконечный выступ должен встречать лед первым, разрушая или ослабляя его за счет прорезания ледяного покрова с помощью вертикальных вынужденных колебаний корпуса так, что с пилоном будет взаимодействовать уже разрушенный (битый) лед. Однако при возможном изменении направления дрейфа ледяного поля, например из-за бокового ветра, появляется значительная поперечная сила на остроконечном выступе и с учетом появления также и на пилоне поперечного усилия уже от неразрушенного льда возникают разнонаправленные разворачивающие моменты относительно ЯСУ. Таким образом, данное расположение системы «выступ-ЯСУ-пилон» не может обеспечить разворот платформы носовой оконечностью к ледяному полю - флюгерную способность. Более того, пилон, захваченный ледяным полем, несмотря на попытки задать ему вертикальное движение с помощью циклического заполнения/осушения балластных цистерн, погружается за счет нагромождения разрушенного льда и теряет способность разрушать лед. Таким образом, способ снижения нагрузок на платформу от воздействия ледяного покрова, входящий в формулу прототипа (четыре пункта) является малоэффективным и применим только для слабого льда небольшой толщины. Также недостатком прототипа является невозможность его использования при действии значительного волнения.

Задачей предлагаемого изобретения является снижение нагрузок на корпус и ЯСУ морской технологической ледостойкой платформы (МТЛП) за счет уменьшения размеров поверхностей, контактирующих со льдом, обеспечения флюгерной способности курсовой устойчивости платформы при действии ледяного поля и волнения, а также за счет погружения основного водоизмещающего корпуса на достаточную глубину от поверхности моря, которая является источником как ледовых, так и штормовых воздействий.

Сущность предлагаемого изобретения заключается в том, что морская технологическая ледостойкая платформа содержит балластные цистерны, расположенные по всей длине водоизмещающего корпуса. МТЛП содержит надводную часть, выполненную в виде носовой и кормовой башен, причем верхняя часть башен в районе ледовой ватерлинии выполнена в виде ледоломного конуса, обращенного сужением вниз, а нижняя часть, например, в виде конуса, обращенного сужением вверх. Расстояние от уровня моря при работе в ледовой обстановке до верхней части водоизмещающего корпуса больше максимально возможной осадки ледовых образований. Ось якорной системы удержания расположена в районе носовой башни.

На фиг.1 и фиг.2 представлен внешний вид морской технологической ледостойкой платформы. МТЛП содержит основной водоизмещающий корпус 1, на котором установлены кормовая башня 3 и носовая башня 4. Расстояние от уровня моря при работе в ледовой обстановке до верхней части 14 водоизмещающего корпуса 1 больше максимально возможной осадки ледовых образований. МТЛП содержит якорную систему удержания (ЯСУ). ЯСУ содержит стационарные якоря 13, якорные связи 6, которые закреплены за нижнюю внешнюю часть турели 12, которая позволяет МТЛП осуществлять разворот относительно вертикальной оси. Ось турели 12 располагается на вертикальной оси в районе носовой башни 4. Внутри водоизмещающего корпуса 1 расположено оборудование 11, необходимое МТЛП для выполнения ее функционального назначения. Балластные цистерны 2, разделенные на две и более группы, расположены по всей длине водоизмещающего корпуса. Морская технологическая ледостойкая платформа содержит гибкие технологические линии (райзеры) 8, которые обеспечивают связь с коммуникациями подводной системы добычи 9.

Кормовая 3 и носовая 4 башни выполнены полыми. Башни в верхней части в районе ледовой ватерлинии имеют ледоломные конусы (обращенные сужением вниз). В нижней части кормовая 3 и носовая 4 башни имеют, например, форму конуса (обращенного сужением вверх). Кормовая 3 и носовая 4 башни содержат горизонтальные площадки 5, на которых расположено технологическое оборудование 10.

МТЛП работает следующим образом.

МТЛП имеет три эксплуатационные осадки:

1)походную - при переходе морем, проходе узкостей и мелководий;

2)волновую - при работе на чистой воде;

3)ледовую - при работе в ледовой обстановке.

МТЛП при осушенных балластных цистернах 2 находится в надводном крейсерском положении при походной осадке. При заполнении первой группы балластных цистерн 2 МТЛП погружается в эксплуатационное положение для чистой воды, имея волновую осадку, а при заполнении первой и второй групп балластных цистерн МТЛП погружается по ледовую осадку, соответствующую нахождению ледоломных конусов 7 на уровне ватерлинии.

МТЛП под действием сил волнового дрейфа и сопутствующего ветра, например, по направлению, указанному на фиг.1 стрелкой А, вследствие возникающего разворачивающего момента от сил, действующих на кормовую башню 3 (с плечом, равным ориентировочно расстоянию между осями башен), разворачивается вокруг оси турели 12 на курс, противоположный направлению возмущений, указанному на фиг.1, т.е. реализует флюгерную способность.

Данный курсовой угол МТЛП позволяет уменьшить поперечную волновую нагрузку на водоизмещающий корпус 1. При этом МТЛП испытывает преимущественно продольную качку, что в конечном итоге улучшает параметры качки МТЛП. В нижней части кормовая 3 и носовая 4 башни имеют, например, форму конусов (обращенного сужением вверх), предназначенных для уменьшения возмущающих волновых сил путем уравновешивания составляющей вертикального волнового воздействия от влияния ватерлинии (пропорциональной площади ватерлинии) и волновых сил инерционной природы (пропорциональных водоизмещению).

В ледовой обстановке МТЛП, плавая с ледовой осадкой, воспринимает воздействие льда ледоломным конусом 7 носовой башни 4. МТЛП смещается в направлении действия льда, при этом наибольшее натяжение испытывает носовая якорная связь 6 (пучок связей). С учетом того, что разворачивающий момент от кормовой башни 3 относительно оси турели 12 имеет большее плечо, чем разворачивающий момент от носовой башни 4, МТЛП разворачивается вокруг оси турели на курс носом к направлению возмущений, указанному на фиг.1 стрелкой А. Таким образом, и в ледовых условиях реализуется флюгерная способность МТЛП вставать носом к воздействию. Благодаря этой способности ледоломный конус 7 кормовой башни 3 взаимодействует с битым льдом, предварительно разрушенным носовой башней 4, испытывая существенно меньшее ледовое воздействие.

При этом взаимодействие обеспечивается только с носовой 4 и кормовой 3 башнями, так как расстояние от уровня моря при ледовой осадке до верхней части 14 водоизмещающего корпуса 1 больше максимально возможной осадки ледовых образований. Таким образом, заглубление водоизмещающего корпуса 1, использование носовой 4 и кормовой 3 башен с верхней частью, выполненной в районе ледовой ватерлинии в виде ледоломных конусов 7, а также якорной системы удержания, закрепленной по периферии нижней части турели под носовой башней 4, обеспечивают флюгерную способность, что позволяет снизить ледовую нагрузку на кормовую башню 3 и, соответственно, смещения МТЛП.

Использование предложенного варианта МТЛП позволяет снизить нагрузки от внешних воздействий и обеспечить коэффициенты безопасности якорной системы удержания как в суровых ледовых условиях, так и при действии значительного волнения.

Морская технологическая ледостойкая платформа, содержащая надводную часть с горизонтальными площадками и установленным на них технологическим оборудованием, подводную часть, выполненную в виде водоизмещающего корпуса, якорную систему удержания, обеспечивающую возможность платформе разворачиваться относительно вертикальной оси, балластные цистерны, расположенные в водоизмещающем корпусе, отличающаяся тем, что балластные цистерны расположены по всей длине водоизмещающего корпуса, надводная часть выполнена в виде носовой и кормовой башен, причем верхняя часть башен в районе ледовой ватерлинии выполнена в виде ледоломного конуса, обращенного сужением вниз, а нижняя часть, например, в виде конуса, обращенного сужением вверх, расстояние от уровня моря при работе в ледовой обстановке до верхней части водоизмещающего корпуса больше максимально возможной осадки ледовых образований, а ось якорной системы удержания расположена в районе носовой башни.



 

Похожие патенты:

Изобретение относится к средствам освоения континентального шельфа. Морская плавучая платформа содержит подводный водоизмещающий модуль, поддерживающий надводный модуль посредством жестких опорных колонн со связующими элементами, и натяжные связи, закрепленные на донных якорях.

Изобретение относится к плавучим средствам, а именно к понтонам, плавучим докам, плотам. Плавучая платформа содержит соединенные, по крайней мере, одним фиксирующим элементом, по крайней мере, два плавучих элемента, каждый из которых состоит из двух боковых граней с, по крайней мере, одним вертикальным выступом на каждой; из них с, по крайней мере, одной вертикальной впадиной на каждой, соответствующей вертикальному выступу; Вертикальный выступ выполнен с зауженной частью, переходящей в расширенную к периферии часть с образованием опорной площадки.

Изобретение относится к области судостроения, а именно к морским гравитационным платформам, устанавливаемым преимущественно на мелководье и эксплуатируемым в ледовых условиях.

Изобретение относится к области судостроения и касается создания ледостойких платформ для освоения месторождений нефти и газа на шельфе замерзающих морей. Морская технологическая ледостойкая плавучая платформа оборудована выносным турельным устройством, состоящим из блока и размещенной в нем турели, расположенным вне корпуса платформы и обеспечивающим ей возможность самопроизвольного разворота в направлении действия главного вектора внешних сил, и удерживается на месте с помощью якорной системы удержания, соединенной с турелью.

Изобретение относится к плавучим средствам, а именно к понтонам, плавучим докам, плотам. Плавучая платформа содержит соединенные, по крайней мере, одним фиксирующим элементом, по крайней мере, два плавучих элемента, состоящих из двух боковых граней с, по крайней мере, одним вертикальным выступом на каждой из них и двух боковых граней и с, по крайней мере, на каждой из них одной вертикальной впадиной, соответствующей вертикальному выступу, из верхней грани и днища, образующих вместе пустотелый корпус плавучего элемента.

Изобретение относится к плавучим средствам, предназначенным для специальных целей, а именно к понтонам, плавучим докам, плотам и другим плавучим сооружениям. Плавучая платформа содержит соединенные по крайней мере одним элементом крепления по крайней мере два плавучих элемента, состоящих каждый из по крайней мере двух боковых граней с по крайней мере одним вертикальным выступом на каждой, из по крайней мере двух боковых граней с по крайней мере одной вертикальной впадиной на каждой, соответствующей вертикальному выступу, из верхней грани и днища, образующих вместе пустотелый корпус с по крайней мере одной проушиной для размещения элемента крепления.

Изобретение относится к области геологоразведки и судов для геологоразведки, а именно к разведочному морскому бурению, и касается вопроса обеспечения защиты буровой шахты при значительном волнении (100-летний шторм) и райзера при буровых работах в ледовых условиях.

Изобретение относится к горному делу, в частности к комплексам промысловой разработки газовых и нефтяных месторождений арктического шельфа в сложных гидрометеорологических условиях.

Изобретение относится к системе активной и пассивной стабилизации судна, такого как корабли, суда для работ на мелководье, буровые вышки, баржи, платформы и подъемные краны, работающие на море.

Изобретение относится к плавучим средствам, предназначенным для специальных целей, а именно к конструкциям плавучих элементов, являющихся идентичными секциями для строительства плавучих платформ.

Изобретение относится к области судостроения, а именно к морским судам, предназначенным для транспортировки и хранения сжиженного природного газа (СПГ) при низких температурах, и решает задачу по повышению технико-экономической эффективности судна-газовоза для перевозки СПГ.

Изобретение относится к области судостроения и касается создания ледостойких платформ для освоения месторождений нефти и газа на шельфе замерзающих морей. Морская технологическая ледостойкая плавучая платформа оборудована выносным турельным устройством, состоящим из блока и размещенной в нем турели, расположенным вне корпуса платформы и обеспечивающим ей возможность самопроизвольного разворота в направлении действия главного вектора внешних сил, и удерживается на месте с помощью якорной системы удержания, соединенной с турелью.

Изобретение относится к области судостроения. Буксируемое устройство имеет корпус, который состоит из симметрично расположенных относительно диаметральной плоскости устройства двух боковых ледокольных корпусов и центрального вспомогательного ледокольного корпуса, который расположен в диаметральной плоскости устройства впереди боковых ледокольных корпусов так, что плоскость его мидель-шпангоута находится вблизи линии, проходящей через форштевни двух боковых ледокольных корпусов, а его ширина по миделю равна не менее 0,2 аналогичной ширины боковых ледокольных корпусов.

Изобретение относится к области судостроения, в частности к подводным судам, разрушающим ледяной покров резонансными изгибно-гравитационными волнами. Способ разрушения ледяного покрова осуществляют путем возбуждения во льду резонансных изгибно-гравитационных волн при движении подводного судна, при этом под ледяным покровом дополнительно создают гидравлический удар посредством резкого торможения подводного судна и образования в кормовой оконечности в момент торможения судна местного гидравлического сопротивления.

Изобретение относится к ледокольным работам. Сущность изобретения: судно на воздушной подушке движется по ледяному покрову и возбуждает во льду резонансные изгибно-гравитационные волны (ИГВ), при этом на лед создаются дополнительные нагрузки с помощью гидропушки, предварительно установленной на судне, выстреливающей порции воды с частотой, равной частоте резонансных ИГВ, в направлении движения судна на расстояние, равное ¾ длины резонансных ИГВ от места нахождения судна, вызывая у судна знакопеременный дифферент.
Изобретение может быть использовано при разрушении льда с использованием судов, в частности ледоколов. Способ разрушения льда заключается в том, что непосредственно перед раскалыванием льда в результате механического воздействия на лед судна, как минимум, одну выбранную область поверхности льда, а также незначительную часть его толщи вблизи упомянутой области облучают под заданным углом мощным сфокусированным инфракрасным излучением, энергия которого достаточна, по крайней мере, для расплавления поверхности льда с образованием проталины.

Изобретение относится к области судостроения и касается вопросов конструкции судна ледового плавания и компоновки его пропульсивного комплекса. Кормовая оконечность судна ледового плавания имеет корпус с кормовым подзором, размещенный в кормовом подзоре движительно-рулевой комплекс, включающий установленную в диаметральной плоскости судна центральную пропульсивную винтовую установку и побортно установленные и расположенные на площадке пропульсивные установки в виде полноповоротных винто-рулевых колонок с гребным винтом, и наклонный ахтерштевень.

Изобретение относится к ледокольным работам. Способ разрушения ледяного покрова основан на создания подо льдом гидроудара и включает подсоединение эластичной камеры с положительной плавучестью тросом к подводному судну.

Изобретение относится к области судостроения, в частности к танкерам ледового класса. Корпус танкера содержит днище, второе дно, вертикальные борта, балластные цистерны, верхнюю палубу, грузовую зону с размещенными последовательно грузовыми танками в виде ряда, ориентированного по длине судна, симметрично относительно его диаметральной плоскости, которые имеют продольные и поперечные переборки и днище плоской конструкции.

Изобретение относится к области судостроения, преимущественно к судам с атомной энергетической установкой, эксплуатируемых на трассах Северного Морского пути. .

Изобретение относится к области судостроения и касается защиты корпуса морских ледостойких платформ от внешнего ледового воздействия. Корпус морской ледостойкой платформы имеет усиленную, преимущественно вертикальную ледовую обшивку с подкрепляющим набором, снабжен жесткими элементами, имеющими в поперечном сечении треугольную форму, установленными на поверхности обшивки и размещенными по ее поверхности с образованием многозаходной спирали, которая имеет угол наклона образующей к горизонту 10÷70 градусов, и с шагом спирали - не более 1/3 максимальной толщины льда в районе эксплуатации платформы. При этом жесткие элементы установлены так, что горизонтальная плоскость, определяющая верхний конец спирали, находится выше конструктивной ватерлинии платформы, а горизонтальная плоскость, определяющая нижний конец спирали, находится ниже проектной ватерлинии, при этом расстояние по высоте между плоскостями верхнего и нижнего концов спирали составляет не менее 1/2 толщины льда в районе эксплуатации платформы. Технический результат заключается в снижении ледовых нагрузок на корпус платформы. 1 ил.
Наверх