Способ управления многолучевым покрытием зоны обслуживания в спутниковой системе с использованием спутников-ретрансляторов на высокоэллиптической орбите

Изобретение относится к области радиосвязи с применением спутников-ретрансляторов на высокоэллиптических орбитах. Технический результат состоит в повышении эффективности использования бортовой приемопередающей аппаратуры спутника-ретранслятора, участвующей в формировании многолучевого покрытия зоны обслуживания. Для этого на спутнике-ретрансляторе устанавливают угловой размер зоны покрытия многолучевой антенны не менее углового размера зоны обслуживания в самой широкой ее части, поддерживают в процессе движения спутника-ретранслятора направление оси центрального луча многолучевой антенны на центр зоны обслуживания, определяют активные лучи, зоны которых перекрываются с зоной обслуживания, и пассивные лучи, зоны которых не перекрываются с зоной обслуживания, подключают активные лучи к бортовой приемопередающей аппаратуре, осуществляют периодически контроль совпадения зон лучей с зоной обслуживания, по результатам контроля отключают от бортовой аппаратуры те активные лучи, зоны которых не перекрываются с зоной обслуживания, и подключают к бортовой приемопередающей аппаратуре те пассивные лучи, зоны которых перекрываются с зоной обслуживания. 5 ил.

 

Изобретение относится к области радиосвязи, а именно к способам управления многолучевым покрытием зоны обслуживания, созданным спутником-ретранслятором (CP), обращающимся по высокоэллиптической орбите (ВЭО) и оснащенным многолучевыми антеннами (МЛА) для связи с земными станциями, расположенными в зонах обслуживания произвольной формы.

Известен способ (патент РФ №2121225) управления многолучевым покрытием зоны обслуживания в спутниковой системе, включающий использование негеостационарных спутников, оснащенных МЛА и создающих на земной поверхности сотовую структуру. В процессе движения спутника по орбите производят управление зонами лучей многолучевой антенны, включают и отключают различные зоны лучей так, чтобы сохранить состояние антенного охвата без слишком большого перекрытия, когда спутники приближаются или отдаляются от полюсов.

Известен также способ (патент РФ №2265956) управления многолучевым покрытием зоны обслуживания в спутниковой системе, включающий использование CP, оснащенного МЛА, формирующими многолучевое покрытие зоны обслуживания. В процессе движения CP по орбите ведут запись данных по точкам прицеливания лучей МЛА и их зонам, а также хранят данные о зоне обслуживания, таким образом обрабатывают множество лучей, определяют размеры зон лучей и углов наведения лучей, при этом управляющее устройство обеспечивает управление одной или несколькими многолучевыми антеннами для изменения диаметра зон лучей и углов наведения лучей. Данный способ выбран в качестве прототипа как наиболее близкий к способу по предлагаемому изобретению.

Недостатком обоих способов является то, что они не обеспечивают оптимальное управление многолучевым покрытием зоны обслуживания применительно к системам связи, в которых в процессе движения CP по рабочему участку ВЭО (т.е. над заданной зоной обслуживания) происходит вращение CP, а вместе с ним МЛА, формирующей многолучевое покрытие, по отношению к зоне обслуживания. При отсутствии специальных способов управления многолучевым покрытием зоны обслуживания указанное покрытие должно иметь такой угловой размер и включать в себя такое число лучей, при которых за период нахождения CP над зоной обслуживания, последняя не выходила бы за пределы многолучевого покрытия вследствие перемещения CP относительно поверхности Земли. Это приводит к необходимости постоянного задействования большего числа лучей, чем это необходимо для покрытия зоны обслуживания в каждый конкретный момент времени.

Целью предлагаемого изобретения является обеспечение эффективного использования бортовой приемопередающей аппаратуры спутника-ретранслятора, участвующей в формировании многолучевого покрытия зоны обслуживания.

Поставленная цель достигается тем, что на спутнике-ретрансляторе, обращающемся по высокоэллиптической орбите, оснащенном многолучевыми антеннами для связи с земными станциями, формирующем многолучевое покрытие зоны обслуживания, ведущем в процессе движения по ВЭО запись данных по точкам прицеливания лучей МЛА и их зонам, а также хранящем данные о зоне обслуживания, устанавливают угловой размер зоны покрытия МЛА не менее углового размера зоны обслуживания в самой широкой ее части, видимой в момент нахождения CP в начале или конце рабочего участка ВЭО, поддерживают в процессе движения CP по рабочему участку ВЭО направление оси центрального луча МЛА на центр зоны обслуживания, определяют в начале рабочего участка ВЭО на основании хранящихся на борту CP данных по антенным лучам и зоне обслуживания активные лучи, зоны которых перекрываются с зоной обслуживания, и пассивные лучи, зоны которых не перекрываются с зоной обслуживания, подключают активные лучи к бортовой приемопередающей аппаратуре, осуществляют периодически контроль совпадения зон лучей с зоной обслуживания, по результатам указанного контроля отключают от бортовой приемопередающей аппаратуры те активные лучи, зоны которых не перекрываются с зоной обслуживания, и подключают к бортовой приемопередающей аппаратуре те пассивные лучи, зоны которых перекрываются с зоной обслуживания.

Сущность предлагаемого изобретения поясняется чертежами, где

- на фиг.1 представлен общий вид системы связи, реализующей предлагаемый способ;

- на фиг.2 показана трасса движения CP на рабочем участке ВЭО;

- на фиг.3 приведены зоны лучей МЛА и зона обслуживания в момент нахождения CP в начале рабочего участка ВЭО;

- на фиг.4 приведены зоны лучей МЛА и зона обслуживания в момент нахождения CP в некоторой произвольной точке рабочего участка ВЭО;

- на фиг.5 представлена функциональная схема бортовой аппаратуры CP, реализующей предлагаемый способ.

В соответствии с фиг.1 спутниковая система связи включает в себя спутник-ретранслятор 1, обращающийся по ВЭО 2 вокруг Земли 3 и оснащенный многолучевыми антеннами 4 (приемная) и 5 (передающая). (Хотя в «классических» системах связи на ВЭО в состав их орбитальных группировок входит несколько CP, действующим является только один CP, находящийся над заданной зоной обслуживания. Такой CP и рассматривается в дальнейшем). CP 1 находится над зоной обслуживания 6, для связи с которыми МЛА 4 и 5 формируют многолучевое покрытие из зон лучей 7, которые заполняют собой указанную зону обслуживания 6. Область формирования многолучевого покрытия ограничена конусом 8, проекция которого на земную поверхность ограничена окружностью 9. Максимальный угловой размер этого конуса определяется размерами зоны обслуживания 6, видимой с CP 1 в момент нахождения его в начале рабочего участка ВЭО 2 (подробнее см. ниже).

На фиг.2 в качестве примера показана трасса движения CP на рабочем участке ВЭО длительностью 8 часов (применительно к ВЭО типа «Тундра» с периодом обращения 24 часа). На данной фигуре введены следующие обозначения: 10 - начало рабочего участка, когда CP 1 входит в зону обслуживания 6, 11 - восходящая часть трассы, 12 - апогей ВЭО, 13 - нисходящая часть трассы и 14 - конец рабочего участка, когда CP 1 выходит из зоны обслуживания 6.

На фиг.2 как пример зоны обслуживания 6 рассматривается территория стран СНГ, располагающаяся между 20 и 180° в.д. и между 36 и 80° с.ш. Для суточной ВЭО высота над поверхностью Земли в апогее составляет 46700 км, в начале или в конце рабочего участка ВЭО - 42600 км. Поэтому угловой размер конуса 8 применительно к зоне обслуживания из фиг.2 должен определяться углом, под которым из точки 10 (14) видны крайние западная и восточная точки границы зоны обслуживания, поскольку угол визирования указанных точек границы из точки 12 (апогея) будет несколько меньше.

Современные системы спутниковой связи, в частности, с подвижными объектами оснащаются для получения требуемого энергопотенциала радиолиний крупногабаритными многолучевыми антеннами диаметром не менее 12 м (спутники «Турайя», «Гаруда», «Инмарсат-4» и др.), которые жестко связаны с корпусом спутника. Поскольку перечисленные спутники являются геостационарными, то расположение многолучевого покрытия относительно зоны обслуживания неизменно во времени ввиду достаточно жесткой привязки осей спутника к осям земной системы координат.

Другое дело, когда подобная система связи базируется на спутниках, обращающихся по высокоэллиптической орбите. Как видно из фиг.2, при движении по трассе CP довольно существенно перемещается относительно поверхности Земли как по широте, так и по долготе. Вместе с ним перемещается и антенна. Кроме того, при движении по ВЭО, в том числе и на рабочем участке, происходит и вращение CP вокруг его радиуса-вектора, направленного из центра притяжения (т.е. центра Земли) к центру масс СР.

Поэтому при жесткой привязке МЛА к корпусу CP резко возрастает сектор обзора, из поля зрения которого заданная зона обслуживания гарантированно не выйдет в период движения CP на рабочем участке. Соответственно возрастает и количество лучей, необходимых для покрытия в этот период заданной зоны обслуживания, хотя число лучей, требуемое в каждый конкретный момент времени будет существенно меньше. При этом в процессе движения CP требуется обеспечивать отключение лучей, уже не охватывающих заданную зону, и подключение новых лучей, в зоне которых появились участки заданной зоны.

Необходимо также подчеркнуть, что при движении CP, например, по восходящей части трассы 11 увеличивается высота CP над зоной обслуживания и сокращается необходимый сектор ее обзора со стороны СР. Одновременно увеличивается и размер зон обслуживания лучей МЛА. Это приводит к снижению в этот период числа лучей МЛА, требующихся для покрытия заданной зоны обслуживания.

Обеспечить условия, при которых для покрытия заданной зоны обслуживания требуется минимальное число лучей МЛА, можно было бы, если бы имелась возможность поддерживать необходимую пространственную ориентацию МЛА, т.е. созданием соответствующего противовращения антенны или ее элементов, компенсирующего вращение СР. Однако существующие приводы способны лишь перемещать геометрическую ось антенны в двух взаимно перпендикулярных направлениях. Поэтому в данных условиях наиболее целесообразным представляется обеспечить постоянное наведение продольной оси МЛА (точнее - оси ее центрального луча) на центр зоны обслуживания. Указанная мера позволит свести к минимуму необходимый сектор обзора.

Обратимся к фиг.3, на которой приведены зоны лучей МЛА и зона обслуживания в момент нахождения CP в начале рабочего участка ВЭО. На данной фигуре в качестве примера приведены произвольная зона обслуживания 6 и многолучевое покрытие, состоящее из 19 лучей МЛА с зонами 7. Размер области формирования многолучевого покрытия, проекция которой на фиг.3 представлена окружностью 9, определяется угловым размером зоны обслуживания 6, наблюдаемым из точки нахождения CP в начале рабочего участка ВЭО. Точка прицеливания центрального луча МЛА (на фиг.3 этот луч показан под номером №10) совпадает с центром зоны обслуживания 6. То есть угловой размер многолучевого покрытия выбирается таким, что при вращении МЛА вокруг оси центрального луча в процессе движения CP по рабочему участку ВЭО зона обслуживания 6 не выйдет за пределы границы области формирования многолучевого покрытия 9.

Пусть в начале рабочего участка ВЭО на CP зафиксированы координаты зоны обслуживания 6 и зон лучей 7 МЛА. Данные об этом хранятся в запоминающем устройстве бортового комплекса управления (БКУ) СР. С помощью вычислительных средств из состава БКУ CP производится анализ совпадения зоны обслуживания 6 с каждой из зон лучей 7 МЛА. Т.е. для зон лучей 7 и зоны обслуживания 6 вычисляются, например, матрицы координат, а затем производится сравнение этих матриц на предмет наличия совпадающих точек. Как видно из фиг.3, по результатам такого анализа делается вывод о том, что лучи под номерами №№4-16 (их зоны затемнены) частично или полностью участвуют в качестве активных лучей для покрытия зоны обслуживания 6. Указанные лучи должны быть подключены к бортовой ретрансляционной аппаратуре СР. В то же время лучи под номерами №№1-3 и №№17-19 квалифицируются как пассивные и к ретрансляционной аппаратуре CP не подключаются. Такая конфигурация активных и пассивных лучей устанавливается для начала рабочего участка ВЭО.

Спустя некоторое время после начала движения CP по восходящей части рабочего участка ВЭО вследствие поворота CP, а вместе с ним и МЛА, происходит взаимное смещение зон лучей 7 и зоны обслуживания 6. Т.е. происходит поворот многолучевого покрытия из зон лучей 7 относительно зоны обслуживания 6 вокруг продольной оси МЛА. Кроме того, из-за возрастания при этом движении высоты полета CP уменьшается угловой размер зоны обслуживания 6. Данная ситуация иллюстрируется на фиг.4. В этом случае по результатам сравнения матриц координат зоны обслуживания 6 и зон лучей 7 делается вывод, что активные до данного момента лучи под номерами №4, №8, №12 и №16 уже не участвуют в покрытии зоны обслуживания 6. Они переводятся в разряд пассивных и отключаются от бортовой ретрансляционной аппаратуры СР. Вместо этого к покрытию зоны обслуживания 6 привлекаются лучи под номерами №2, №3 и №17, бывшие до этого пассивными, а теперь переведенные в разряд активных с дальнейшим подключением к бортовой ретрансляционной аппаратуре СР.

Реализация предлагаемого способа возможна с помощью входящих в состав CP типовых устройств, приведенных на фиг.5.

Система навигации и управления движением центра масс CP (СНУД) 15 по данным о его местоположении, получаемым либо от центра управления полетом спутника-ретранслятора, либо от глобальной навигационной спутниковой системы (на фиг.5 не показано), применительно к CP на высокоэллиптической орбите осуществляет:

- определение параметров ВЭО спутника-ретранслятора;

- формирование временных меток;

- расчет матриц перехода от геоцентрической экваториальной системы координат к орбитальной системе координат;

- расчет текущего углового размера Земли;

- расчет текущей угловой скорости в плоскости ВЭО;

- расчет дальности до подспутниковой точки и углов наведения антенн, и другие баллистические параметры, необходимые для функционирования различных бортовых систем СР.

Программную реализацию алгоритмов управления и контроля бортовых систем CP, выполнение расчетных операций (в том числе и в интересах СНУД 15) и выдачу результатов расчета и управляющих воздействий в бортовые системы и исполнительные устройства CP осуществляет бортовой комплекс управления (БКУ) 16. Основным элементом БКУ 16 является входящий в его состав бортовой цифровой вычислительный комплекс (БЦВК) (на фиг.5 не показан). В состав БКУ 16 входит также программное обеспечение, необходимое для выполнения всех расчетных операций.

Для реализации предлагаемого способа БКУ 16 управляет коммутационной матрицей приемных антенных лучей (КМ) 17, которая из общего числа лучей N, формируемых приемной МЛА (на фиг.5 данная МЛА показана в виде рефлектора 18 и диаграммо-образующей схемы (ДОС) 19, формирующей N лучей), подключает к многоканальной ретрансляционной аппаратуре 20 только М лучей. М - максимальное число лучей, необходимое для покрытия заданной зоны обслуживания в период нахождения CP на рабочем участке ВЭО и М<N. Антенна 21 служит для передачи принятых от абонентских земных станций сигналов на центральную станцию.

Для простоты изложения на фиг.5 не показан тракт передачи от центральной станции к абонентским, т.к. управление коммутационной матрицей передающих лучей МЛА будет осуществляться аналогичным образом по командам БКУ 16.

На фиг.5 показана также система наведения антенны (СНА) 41, которая по командам из БКУ 16 управляет наведением продольной оси рефлектора 18 на центр зоны обслуживания в процессе движения CP по рабочему участку ВЭО. Данные о необходимых углах наведения поставляются в БКУ 16 из СНУД 15.

Как уже упоминалось при рассмотрении фиг.3 и 4, для реализации предлагаемого способа в начале рабочего участка CP в БЦВК БКУ 16 рассчитываются матрицы координат зоны обслуживания 6 и зон лучей 7 и фиксируются в запоминающем устройстве БЦВК. Эти данные могут быть представлены, например, в орбитальной системе координат. Затем производится сравнение этих матриц на предмет наличия совпадающих точек и определяются номера лучей МЛА, зоны которых частично или полностью покрывают зону обслуживания 6. На основании полученных данных в БКУ 16 формируются команды для КМ 17, которая обеспечивает подключение указанных лучей к многоканальной ретрансляционной аппаратуре 20. Кроме того, БКУ 16 на основании рассчитанных углов наведения МЛА выдает в СНА 22 команды на наведение продольной оси МЛА на центр зоны обслуживания 6. В ответ КМ 17 и СНА 22 выдают в БКУ 16 сигналы об исполнении команд управления.

Через заданный интервал времени, определяемый динамикой взаимного перемещения зон лучей 7 и зоны обслуживания 6, связанной в свою очередь с параметрами ВЭО CP, в БЦВК БКУ 16 рассчитываются новые матрицы координат зоны обслуживания 6 и зон лучей 7 и повторяется операция сравнения этих матриц с целью выявления новых лучей МЛА, участвующих или не участвующих на данный момент времени в покрытии зоны обслуживания 6. При наличии таких лучей БКУ 16 выдаются соответствующие команды для КМ 17.

Указанный процесс периодически повторяется до конца рабочего участка ВЭО СР. Затем ретрансляционная аппаратура CP отключается до нового его прихода в начало рабочего участка, после чего повторяется весь описанный выше цикл.

Использование предлагаемого способа обеспечивает задействование для покрытия заданной зоны обслуживания в системах связи с использованием высокоэллиптических спутников-ретрансляторов, оснащенных многолучевыми антеннами, только минимально необходимого в каждый данный момент времени числа лучей. Это позволяет более эффективно использовать бортовые ресурсы спутника-ретранслятора.

Из известных автору источников патентных и информационных материалов не известна совокупность признаков, эквивалентных (или совпадающих) с признаками данного предлагаемого изобретения, поэтому заявитель склонен считать техническое решение, отвечающим критерию «новизна».

Настоящее решение технически реализуемо, поскольку базируется на известных и отработанных устройствах, и предлагается к использованию в спутниковой системе связи, предназначенной для информационного обмена с подвижными земными станциями.

Способ управления многолучевым покрытием зоны обслуживания в спутниковой системе с использованием спутников-ретрансляторов на высокоэллиптической орбите, оснащенных многолучевой антенной для связи с земными станциями в течение периода нахождения спутника-ретранслятора над зоной обслуживания указанных станций, при котором на спутнике-ретрансляторе формируют многолучевое покрытие зоны обслуживания, в процессе движения спутника-ретранслятора по орбите ведут запись данных по точкам прицеливания лучей многолучевой антенны и их зонам, а также хранят данные о зоне обслуживания, отличающийся тем, что устанавливают угловой размер зоны покрытия многолучевой антенны не менее углового размера зоны обслуживания в самой широкой ее части, видимой в момент нахождения спутника-ретранслятора в начале или конце рабочего участка высокоэллиптической орбиты, поддерживают в процессе движения спутника-ретранслятора по рабочему участку высокоэллиптической орбиты направление оси центрального луча многолучевой антенны на центр зоны обслуживания, определяют в начале рабочего участка высокоэллиптической орбиты на основании хранящихся на борту спутника-ретранслятора данных по антенным лучам и зоне обслуживания активные лучи, зоны которых перекрываются с зоной обслуживания, и пассивные лучи, зоны которых не перекрываются с зоной обслуживания, подключают активные лучи к бортовой приемопередающей аппаратуре, осуществляют периодически контроль совпадения зон лучей с зоной обслуживания, по результатам указанного контроля отключают от бортовой приемопередающей аппаратуры те активные лучи, зоны которых не перекрываются с зоной обслуживания, и подключают к бортовой приемопередающей аппаратуре те пассивные лучи, зоны которых перекрываются с зоной обслуживания.



 

Похожие патенты:

Изобретение относится к технике связи и может использоваться в системах направленной передачи цифровых данных между воздушным судном и наземными станциями. Технический результат состоит в повышении качества передачи данных между воздушным судном и наземной станцией.

Изобретение относится к области систем связи для вызова служб неотложного реагирования с борта самолета. Техническим результатом является обеспечение оперативной связи со службами неотложного реагирования устройства связи, расположенного на борту самолета.

Изобретение относится к беспроводной связи, а именно к способу предоставления услуги факсимильной связи. Техническим результатом является обеспечение корректного использования услуги факсимильной связи в спутниковой линии связи.

Изобретение относится к области радиотехники, а именно к космической межспутниковой связи, и может быть использовано в космической спутниковой навигационной группировке ГЛОНАСС.

Изобретение относится к области радиосвязи с применением спутников-ретрансляторов на высокой, например, геостационарной орбите и предназначено для преимущественного использования в глобальных космических системах ретрансляции и связи, осуществляющих информационный обмен с космическими и наземными абонентами.

Изобретение относится к космической технике и может быть использовано в спутниковых системах связи и наблюдения. Спутниковая система связи и наблюдения содержит от 1 до 7 спутников с аппаратурой связи и наблюдения.

Изобретение относится к области телекоммуникаций в авиации и, более конкретно, к системе маршрутизации сообщений адресно-отчетной системы авиационной связи (ACARS) в направлении множества передающих сред, предназначенной для установки на борту летательного аппарата, содержащей: базу данных, содержащую множество профилей маршрутизации, при этом каждый профиль представляет собой список, указывающий уровень приоритета для каждой передающей среды; средства выбора для извлечения из запроса на отправку сообщения ACARS идентификатора профиля маршрутизации и для выбора в профиле маршрутизации, хранящемся в базе данных и соответствующем указанному идентификатору, передающей среды в зависимости от уровня приоритета, после чего выбранную таким образом указанную передающую среду используют для передачи указанного сообщения.

Изобретение относится к области дистанционного управления бортовой регистрирующей аппаратурой (БРА) космических аппаратов (КА). Техническим результатом является повышение удобства и надежности одновременного подключения к устройству различной бортовой регистрирующей аппаратуры.

Изобретение относится к области радиотехники, а именно к сбору и передаче спутниковых данных, и может быть использовано для передачи изображений на Землю и наблюдений Земли.

Изобретение относится к системам спутниковой связи, в частности к низкоорбитальной системе спутниковой связи, использующей легкие спутники, функционирующие на низких околоземных орбитах.

Изобретение относится к системам связи, которые используются в салоне летательных аппаратов (ЛА), и позволяет оптимизировать по пространству и массе решение для передачи ВЧ-сигнала для системы связи в ЛА. Изобретение раскрывает, в частности, цифровой сигнальный процессор для системы связи в салоне ЛА, который включает средство подачи задаваемого цифрового сигнала, подходящего для формирования соответствующей формы волны для преобразования заданного сигнала услуги и заданного шумового сигнала. 5 н. и 4 з.п. ф-лы, 5 ил.

Изобретение относится к системе спутниковой связи. Технический результат состоит в расширении связи между транспортным средством и спутником в зоне невидимости спутника. Для этого стационарная приемопередающая система содержит первую антенну, предназначенную для размещения вне зоны невидимости спутника, и вторую антенну, соединенную с первой антенной и предназначенную для размещения в зоне невидимости спутника. Стационарная система сконфигурирована для приема через первую антенну сигналов нисходящей линии связи, переданных спутником на одной несущей частоте нисходящей линии связи, и для передачи принятых сигналов нисходящей линии связи на одной несущей частоте нисходящей линии связи в зоне невидимости спутника через одну-вторую антенну. Мобильная система предназначена для установки на транспортном средстве, содержит третью антенну и четвертую антенну и сконфигурирована для приема через третью антенну сигналов нисходящей линии связи, переданных стационарной системой на одной несущей частоте нисходящей линии связи, для приема через четвертую антенну сигналов нисходящей линии связи, переданных спутником на одной несущей частоте нисходящей линии связи, для определения, находится ли транспортное средство в зоне невидимости спутника или в зоне видимости спутника, и для передачи сигналов восходящей линии связи на одной несущей частоте восходящей линии связи через третью антенну, если транспортное средство находится в зоне невидимости спутника, или через четвертую антенну, если транспортное средство находится в зоне видимости спутника. Стационарная система дополнительно сконфигурирована для приема через вторую антенну сигналов восходящей линии связи, переданных мобильной приемопередающей системой на одной несущей частоте восходящей линии связи, и для передачи принятых сигналов восходящей линии связи на спутник на одной несущей частоте восходящей линии связи через первую антенну.2 н. и 14 з.п. ф-лы, 10 ил.

Изобретение относится к области радиосвязи, в частности к устройству для калибровки многолучевой спутниковой системы, и предназначено для обеспечения калибровки на любой частоте в пределах диапазона рабочих частот спутниковой системы. Устройство содержит диаграммообразующую схему, обеспечивающую множество трактов сигнала, причем устройство содержит калибровочный процессор для определения фазового и амплитудного сдвигов тестового тракта множества трактов сигнала посредством коррелирования калибровочного тона, извлеченного из тестового тракта, с опорным калибровочным сигналом, причем калибровочный процессор конфигурирован для определения фазовых и амплитудных сдвигов тестового тракта для по меньшей мере двух калибровочных тонов по меньшей мере двух различных частот. Устройство также содержит средство для применения коррекции на основе определенных фазового и амплитудного сдвигов к тестовому тракту в диаграммообразующей схеме. Два калибровочных тона по меньшей мере двух различных частот могут быть калибровочными тонами, введенными на двух различных частотах, а также калибровочными тонами, преобразованными на две различные частоты посредством диаграммообразующей схемы. Изобретение позволяет вычислить фазовый и амплитудный сдвиги для любого тракта через диаграммообразующую схему для любой частоты в диапазоне рабочих частот многолучевой спутниковой системы и коррекции, применяемых для формирования или обработки требуемых лучей нисходящей или восходящей линии связи многолучевой спутниковой системы. 6 н. и 17 з.п. ф-лы, 11 ил.

Изобретение относится к области спутниковых телекоммуникаций. Техническим результатом является уменьшение плотности теплового потока на поверхности раздела канала, работающего в режиме вне полосы. Устройство мультиплексирования сверхвысокочастотных каналов содержит множество элементарных фильтров, подключенных параллельно к общему выходному органу доступа посредством поперечного волновода, причем каждый фильтр содержит нижний конец, закрепленный на общем для всех фильтров основании, и верхний конец, противоположный основанию, наружную периферийную стенку, по меньшей мере, одну внутреннюю полость, определяющую внутренний канал, сигнальный вход, подключенный к внутренней полости, и сигнальный выход, подключенный к поперечному волноводу. Это устройство мультиплексирования дополнительно содержит проводяще-излучающее устройство, соединенное механическим и термическим образом с, по меньшей мере, двумя фильтрами, причем это проводяще-излучающее устройство содержит, по меньшей мере, одну теплопроводную пластину и связано с наружными периферийными стенками каждого из, по меньшей мере, двух фильтров, причем пластина закреплена на уровне верхнего конца фильтров. 2 н. и 11 з.п. ф-лы, 13 ил.

Изобретение относится к технике связи и может использоваться в системах спутниковой связи. Технический результат состоит в повышении быстродействия передачи информации за счет компенсации изменения групповой задержки. Для этого система содержит средство для определения, по меньшей мере, одного из: отклонения фазы для частотного канала из множества частотных каналов, демультиплексированных из несущей, для компенсации изменения групповой задержки в несущей и отклонения коэффициента усиления для частотного канала для компенсации изменения коэффициента усиления с несущей; и средство для применения определенного, по меньшей мере, одного из: отклонения фазы и отклонения коэффициента усиления в частотном канале до восстановления несущей из указанного множества частотных каналов. Поэтому изобретение обеспечивает возможность цифровой компенсации любого нежелательного изменения групповой задержки и коэффициента усиления, внесенного, например, аналоговыми компонентами, такими как фильтры в системе спутниковой связи.3н и 5 з.п.ф-лы, 10 ил.

Изобретение относится к системе связи, использующей телекоммуникационные сети для установки радиочастотных соединений между одной главной наземной станцией, соединенной с центром управления сетью (ЦУС), и наземными терминалами посредством спутника многоточечной связи, и предназначено для снижения перекрестных помех. Изобретение раскрывает, в частности, телекоммуникационную сеть (100), которая состоит из зоны покрытия, состоящей из нескольких ячеек, в которой расположены терминалы (106), при этом каждая ячейка закреплена, по меньшей мере, за одним точечным лучом спутника, которому выделен диапазон частот. Центр ЦУС (105) содержит средства определения параметров передачи (108), характерных для координат терминалов в зоне покрытия, известные как средства оптимизации, при этом параметры охватывают всю зону покрытия и средства передачи всех параметров (107, LMA, LDA) каждому из указанных наземных терминалов (106). Каждый терминал (106) содержит средства хранения (112), по меньшей мере, части всех параметров, средства определения своих географических координат (113) в зоне покрытия и средства определения параметров передачи (114) для использования исходя из параметров и географических координат. 3 н. и 16 з.п. ф-лы, 5 ил.

Изобретение относится к технике связи и может использоваться в системе связи для летательного аппарата. Технический результат состоит в обеспечении летательного аппарата средствами связи. Для этого приемопередающее устройство (22) содержит по меньшей мере один передатчик (24), по меньшей мере один приемник (26, 28) и по меньшей мере одну антенну, с по меньшей мере одним устройством (12) обработки данных, соединенным с приемопередающим устройством (22) посредством устройства (20) передачи данных, и связанным с устройством (12) обработки данных устройством (14) управления, имеющим приводимые в действие вручную переключатели, клавиши и/или ручки (18) настройки, для ввода данных в по меньшей мере одно устройство (12) обработки данных. Устройство (14) управления соединено с одним устройством (12) обработки данных механически в единый конструктивный блок (16). 2 н. 9 з.п. ф-лы, 4 ил.

Настоящее изобретение относится к способу устранения помех в телекоммуникационной сети, содержащей многолучевой спутник, область покрытия, составленную из множества ячеек, в которых расположены терминалы, по меньшей мере две из указанных ячейки, называемые первой и второй ячейками, связаны с одной и той же частотной полосой, первую наземную станцию, состоящую из первого демодулятора, способного демодулировать сигналы, передаваемые терминалами, расположенными в первой ячейке, и вторую наземную станцию, состоящую из второго демодулятора, отличного от первого демодулятора, способного демодулировать сигналы, передаваемые терминалами, расположенными во второй ячейке. Способ преимущественно использует информацию, поставляемую терминалом, в частности его положение и параметры передачи, и позволяет устанавливать соответствующее значение G/T. Эта информация затем передается на демодулятор второй наземной станции и будет использоваться для воссоздания сигнала, содержащего сообщение, и удаления его из полученного сигнала. 8 з.п. ф-лы, 4 ил.

Изобретение относится к области космической техники и может быть использовано для постоянной устойчивой теле- и радиосвязи с участками Земли, находящимися вне зоны видимости одного спутника, с помощью системы связи, состоящей из двух унифицированных геостационарных спутников. Технический результат состоит в создании космической системы связи с географическими участками-антиподами, находящимися в разных условных полушариях относительно друг друга. Для этого ведомые спутники оборудуются аппаратурой радионавигации и системой навигации и управления движением, межспутниковую связь дополняют служебными двусторонними каналами связи, ведомые спутники располагают в зонах видимости адресных наземных пунктов связи, недоступных для ведущего спутника, управление ведомыми спутниками и контроль над их техническим состоянием производят посредством ведущего спутника, находящегося постоянно в зонах видимости хотя бы одного наземного командно-измерительного пункта и наземного пункта связи - антиподов адресным наземным пунктам связи. 1 ил.

Изобретение относится к технике связи и может использоваться в системах спутниковой связи. Технический результат состоит в повышении помехоустойчивости системы. Для этого установка (1) для распространения/приема спутниковых сигналов включает отражатель (3), пригодный для приема и распространения радиосигналов, модуль (2) распространения/приема, включающий LNB (4), пригодный для преобразования радиосигналов в электрические сигналы в первой полосе частот, фокусируемые отражателем (3), усиления электрических сигналов в первой полосе частот и понижения первой полосы частот до первой промежуточной полосы частот. Модуль (2) распространения/приема также включает излучатель (ТХ), пригодный для усиления электрических сигналов во второй промежуточной полосе частот, не имеющей общих частот с первой промежуточной полосой, повышения второй промежуточной полосы до второй полосы частот (S), преобразования в радиосигналы электрических сигналов во второй полосе частот и для передачи этих радиосигналов к отражателю (3). Установка (1) также включает корпус (21), который включает модулятор (25), пригодный для модуляции электрических сигналов во второй промежуточной полосе частот, выход (32), пригодный для передачи к декодеру (31) электрических сигналов в первой промежуточной полосе частот, и коаксиальный кабель (20), соединяющий модуль (2) и корпус (21). 17 з.п. ф-лы, 1 ил.
Наверх