Способ определения влагоемкости твердых гигроскопичных объектов

Изобретение относится к области методов проведения оперативного контроля и регулирования влажности в герметичных контейнерах с электронными приборами для обеспечения надежности их функционирования. Способ определения влагоемкости твердых гигроскопичных объектов включает помещение анализируемых объектов в герметичный контейнер и осушку до полного обезвоживания объектов. Также способ включает измерение температуры и влажности внутренней среды в контейнере и окончательное определение математических и графических зависимостей влагосодержания объектов от равновесной влажности внутренней среды. При этом в процессе хранения объектов в герметичном контейнере осушку до полного обезвоживания объектов производят путем последовательного введения в герметичный контейнер навесок адсорбентов и взвешивания их до установки в герметичный контейнер и после изъятия из него до момента установления стабильной массы очередной навески адсорбента. Затем в испаритель, вмонтированный внутри герметичного контейнера, последовательно вводят порции дистиллированной воды и выдерживают герметичный контейнер в стационарных температурных условиях до установления равновесной влажности в герметичном контейнере с вмонтированным в него датчиком температуры и влажности. После чего по измеренным параметрам влажности и массы порций введенной дистиллированной воды строят график зависимости суммарного влагосодержания в анализируемых объектах от равновесной влажности внутренней среды герметичного контейнера и определяют математически по известным зависимостям величину суммарной влагоемкости анализируемых объектов и ее зависимость от равновесной влажности в герметичном контейнере. Техническим результатом является разработка способа определения влагоемкости твердых гигроскопичных объектов, позволяющего определять суммарную влагоемкость группы гигроскопичных объектов (например, электронных приборов, содержащих гигроскопичные материалы). 4 ил., 1 пр.

 

Предлагаемое изобретение относится к области методов проведения оперативного контроля и регулирования влажности в герметичных контейнерах с находящимися в них электронными приборами для обеспечения надежности их функционирования.

Известен способ определения влагоемкости твердых гигроскопичных объектов (патент РФ №2306549, МПК G01N 5/00, опубл. 20.09.2007 г.), включающий помещение анализируемых проб гигроскопичных материалов (воска) в сосуде, осушку до полного обезвоживания проб гигроскопичных материалов при нагреве, многократное измерение температуры и влажности внутренней среды в замкнутом объеме, окончательное определение с использованием математической формулы влагосодержания гигроскопичных материалов взвешиванием проб.

Известен в качестве прототипа способ определения влагоемкости твердых гигроскопичных объектов (патент РФ №2115916, МПК G01N 25/56, опубл. 20.07.1998 г.), включающий помещение анализируемых проб сыпучих материалов в замкнутый объем, осушку до полного обезвоживания объектов, измерение температуры и влажности внутренней среды в замкнутом объеме, окончательное определение математических и графических зависимостей влагосодержания объектов от равновесной влажности внутренней среды в замкнутом объеме.

Недостатком аналога и прототипа является отсутствие возможности определения суммарной влагоемкости группы объектов, содержащих разнородные гигроскопичные материалы в герметичном контейнере, для обеспечения возможности учета влияния конструктивных факторов и взаимного влияния объектов на измеряемые параметры.

Задачей авторов изобретения является разработка способа определения влагоемкости твердых гигроскопичных объектов, позволяющего определять суммарную влагоемкость группы гигроскопичных объектов (например, электронных приборов, содержащих разнородные гигроскопичные материалы).

Новый технический результат, обеспечиваемый предлагаемым способом, заключается в обеспечении возможности определения суммарной влагоемкости одновременно всех объектов в герметичном контейнере для возможности учета влияния конструктивных факторов и взаимного влияния группы объектов на измеряемые параметры.

Указанные задача и новый технический результат обеспечиваются тем, что в отличие от известного способа, включающего помещение анализируемых объектов в герметичный контейнер, осушку до полного обезвоживания объектов, измерение температуры и влажности внутренней среды в герметичном контейнере, окончательное определение математических и графических зависимостей влагосодержания объектов от равновесной влажности внутренней среды герметичного контейнера, согласно предлагаемому способу, в процессе хранения объектов в герметичном контейнере осушку до полного обезвоживания объектов производят путем последовательного введения в герметичный контейнер навесок адсорбентов и взвешивания их до установки в герметичный контейнер и после изъятия из него до момента установления стабильной массы очередной навески адсорбента, затем в испаритель, вмонтированный внутри герметичного контейнера, последовательно вводят порции дистиллированной воды и выдерживают герметичный контейнер до установления равновесной влажности в нем, измеряемой датчиком температуры и влажности, после чего по измеренным параметрам влажности и массы порций введенной воды строят график зависимости влагосодержания в анализируемых объектах от равновесной влажности внутренней среды герметичного контейнера и определяют математически по известным зависимостям величину суммарной влагоемкости анализируемых объектов и ее зависимость от равновесной влажности в герметичном контейнере.

Предлагаемый способ поясняется следующим образом.

На фиг.1 представлено устройство для осуществления предлагаемого способа, где 1 - герметичный контейнер; 2 - крышка контейнера; 3 - фланец горловины контейнера для опоры крышки; 4 - герметизирующая прокладка; 5 - болты крепления крышки контейнера; 6 - гигроскопичные объекты (электронные приборы, содержащие гигроскопичные материалы); 7 - навеска адсорбента (осушителя); 8 - датчик температуры и влажности; 9 - электрический нагреватель; 10 - испаритель (емкость для воды); 11 - штуцер для заливки воды в контейнер; 12 - герметизирующая заглушка штуцера с силиконовой мембраной; 13 - силиконовая мембрана; 14 - электрический проходной соединитель; 15 - провод электрический.

В герметичный контейнер 1 с анализируемыми объектами 6 (с гигроскопичными материалами) помещают емкость (испаритель 10) для внесения дистиллированной воды без его разгерметизации, и датчик 8 для измерения влажности и температуры внутренней среды в контейнере.

Анализируемые объекты 6 с гигроскопичными материалами в герметичном контейнере 1 глубоко осушают путем многократной последовательной закладки в герметичный контейнер предварительно регенерированного адсорбента 7 (осушителя, например, силикагеля марки КСМГ ГОСТ 3956).

Герметичный контейнер с осушителем при каждой его закладке выдерживают в течение ≈1 месяца таким образом, чтобы привес очередной навески осушителя был близок к нулю, а относительная влажность воздуха в герметичном контейнере, измеряемая датчиком 8, длительное время была постоянной и близкой к нулю (фиг.2, показывающая зависимость текущей влажности в герметичном контейнере от времени хранения).

Затем герметичный контейнер 1 максимально герметизируют путем затяжки его резьбовых соединений, а осушенные объекты 6 с гигроскопичными материалами многократно увлажняют путем внесения через мембрану 13 в испаритель 10 герметичного контейнера 1 с помощью шприца медицинского определенной порции дистиллированной воды массой m.

Герметичный контейнер 1 с увлажняемыми таким образом анализируемыми объектами 6 с гигроскопичными материалами каждый раз после внесения очередной порции дистиллированной воды выдерживают в течение ≈3 месяцев в стационарных температурных условиях (фиг.3, показывающая зависимость текущей влажности в герметичном контейнере от времени хранения). При этом внесенная в контейнер вода должна полностью испариться и поглотиться гигроскопичными материалами в составе анализируемых объектов так, чтобы в контейнере установилась стабильная (равновесная) влажность внутренней среды, измеряемая датчиком 8.

Для ускорения процесса испарения воды из испарителя герметичного контейнера, его подогревают миниатюрным маломощным электрическим нагревателем 9, прикрепляемым ко дну испарителя 10.

Абсолютные (в граммах воды) или удельное (в граммах воды на грамм гигроскопичных материалов) значения влагопоглощения гигроскопичных материалов (m) и будут являться характеристикой их суммарной статической влагоемкости, а зависимость статической суммарной влагоемкости материалов m от равновесного значения относительной влажности воздуха в герметичном контейнере fr в виде математической зависимости m=f(к, fr), изображенная на фиг.4, будет являться изотермой сорбции воды этих гигроскопичных материалов.

Таким образом, использование предлагаемого способа позволяет определить суммарную влагоемкость всех объектов в герметичном контейнере и учесть влияние конструктивных факторов и взаимного влияния объектов на измеряемые параметры.

Возможность промышленной реализации предлагаемого способа подтверждается следующим примером конкретного исполнения.

Пример 1. В лабораторных условиях на опытном образце устройства, представляющего собой герметичный контейнер, изображенный на фиг.1, был реализован предлагаемый способ. В качестве твердых гигроскопичных объектов были взяты помещенные в герметичный контейнер 4 электронных прибора, содержащих гигроскопичные материалы в виде металлов и полимерных материалов, в числе которых брались пенопласты, полиамиды, полиэтилен и т.п. Для полного обезвоживания анализируемых объектов в герметичный контейнер путем последовательной загрузки помещались предварительно взвешенные навески регенерированного адсорбента (массой 100 г) в виде силикагеля марки КСМГ ГОСТ 3956. По истечении времени работы каждой из очередных навесок адсорбента (≈1 месяц) в процессе выдержки герметичных контейнеров в стационарных температурных условиях (температура ≈20°C) они извлекались из герметичного контейнера, и весовым методом определялось суммарное влагосодержание в анализируемых объектах (≈20 г). Результаты измерения температуры и влажности в герметичном контейнере, регистрируемые датчиком температуры и влажности, размещенным в герметичном контейнере (фиг.2), были заложены в основу определения начальных и текущих значений этих параметров в течение времени хранения герметичного контейнера с последовательно помещаемыми в него навесками адсорбента. Затем в испаритель, вмонтированный внутри герметичного контейнера, последовательно были введены порции дистиллированной воды (5 г, 10 г, 15 г) с суммарной массой 30 г, равной или несколько превышающей массу (20 г) поглощенной влаги в процессе осушки гигроскопичных объектов серией навесок адсорбента (фиг.4). Герметичный контейнер с каждой очередной порцией воды выдерживался до установления равновесной влажности, что регистрировалось датчиком температуры (20°С) и влажности (10%, 30%, 50% соответственно каждой из порций воды) (фиг.3).

После чего по измеренным параметрам влажности и массы порций введенной дистиллированной воды строился график зависимости влагосодержания в анализируемых объектах от равновесной влажности внутренней среды герметичного контейнера (фиг.3) и выводилась математическая зависимость суммарной влагоемкости анализируемых объектов от равновесной влажности в герметичном контейнере m=f(к, fr), где m - суммарная масса дистиллированной воды, сорбированная анализируемыми гигроскопичными объектами и соответствующая каждому из значений равновесной влажности fr среды в герметичном контейнере, к - константы уравнения математической зависимости.

Таким образом, примеры подтвердили, что использование предлагаемого способа позволяет определить суммарную влагоемкость всех объектов в герметичном контейнере и учесть влияние конструктивных факторов и взаимного влияния объектов на измеряемые параметры.

Способ определения влагоемкости твердых гигроскопичных объектов, включающий помещение анализируемых объектов в герметичный контейнер, осушку до полного обезвоживания объектов, измерение температуры и влажности внутренней среды в контейнере, окончательное определение математических и графических зависимостей влагосодержания объектов от равновесной влажности внутренней среды, отличающий тем, что в процессе хранения объектов в герметичном контейнере осушку до полного обезвоживания объектов производят путем последовательного введения в герметичный контейнер навесок адсорбентов и взвешивания их до установки в герметичный контейнер и после изъятия из него до момента установления стабильной массы очередной навески адсорбента, затем в испаритель, вмонтированный внутри герметичного контейнера, последовательно вводят порции дистиллированной воды и выдерживают герметичный контейнер в стационарных температурных условиях до установления равновесной влажности в герметичном контейнере с вмонтированным в него датчиком температуры и влажности, после чего по измеренным параметрам влажности и массы порций введенной дистиллированной воды строят график зависимости суммарного влагосодержания в анализируемых объектах от равновесной влажности внутренней среды герметичного контейнера и определяют математически по известным зависимостям величину суммарной влагоемкости анализируемых объектов и ее зависимость от равновесной влажности в герметичном контейнере.



 

Похожие патенты:

Устройство автоматизированного управления многоопорной дождевальной машиной фронтального действия для точного полива включает установленные на тележках с электроприводом трубопроводы правого и левого крыльев машины, блок синхронизации движения по курсу с направляющим тросом и блок управления скоростью движения машины.

Изобретение относится к области измерения влагосодержания газов. Способ заключается в том, что газ подвергают сжатию в замкнутой измерительной камере, в которой установлено равноплечевое коромысло, снабженное измерительным поплавком и противовесом, до давления, при котором плотность газа становится равной плотности измерительного поплавка, что определяют по всплытию поплавка и горизонтальному положению коромысла, фиксируют значения температуры и давления в замкнутой измерительной камере в момент всплытия поплавка и используя измеренные значения, определяют значение влагосодержания исследуемого газа по следующим соотношениям: где ρпара - плотность водяного пара, ρпара=0,803 г/литр ρсух - плотность сухого воздуха, ρсух=1,293 г/литр где Vпопл - объем поплавка (в литрах), mпопл - вес поплавка с учетом противовеса (в граммах), T0=273°C, tлаб - температура исследуемого воздуха, °C, P0 - нормальное атмосферное давление, P0=760 мм рт.ст., Pлаб - давление в лаборатории, мм рт.ст., ΔPизб - величина избыточного давления ΔPизб=(Pкамера-Pлаб), мм рт.ст. Pкамера - давление в измерительной камере в момент всплытия поплавка, мм рт.ст. Техническим результатом является снижение эксплуатационных затрат и повышение безопасности измерений. .

Изобретение относится к области измерения влагосодержания воздуха (газов), в частности может быть использовано для поверки гигрометров без демонтажа с места установки.

Изобретение относится к измерительной технике и может быть использовано для измерения относительной влажности воздуха от 0 до 100% в интервале температур (- 20÷50)°С.

Изобретение относится к контрольно-измерительной технике. .

Изобретение относится к средствам измерения обводненности жидких нефтепродуктов и может быть использовано для определения доли воды в нефтепродуктах при их переработке и/или сжигании и/или приготовлении водно-топливных эмульсий (ВТЭ).

Изобретение относится к устройствам для измерения содержания капельной жидкости в потоке природного и попутного газа диапазона применения устройства по давлению в газопроводе.

Изобретение относится к способу определения количества наносимой жидкости при выполнении процессов кожевенного и мехового производства намазными способами Способ характеризуется тем, что количество жидкости, которое может поглотить кожевая ткань, определяют по влагосодержанию в момент усадки образцов при сваривании в процентах.

Изобретение относится к измерительной технике и может быть использовано в системах технологического контроля влажности газов, особенно в производствах, в которых затруднен или невозможен доступ к датчикам влажности, например, в мощных турбогенераторах или ядерно-энергетических установках.

Изобретение относится к области контроля качества подготовки природного и попутного газов к транспорту в нефтегазодобывающей промышленности и может быть использовано на топливно-энергетических, химических и др.

Изобретение относится к качественному и количественному определению воды во внутренней сфере координационных соединений (КС) и может найти применение в координационной химии и фармации. Представлен способ определения воды в КС в твердом состоянии, при котором молекулы воды во внутренней сфере КС, находящихся в твердом состоянии, идентифицируют по температуре дегидратации образцов в области 150-165°С на термических кривых - дериватограммах, полученных в интервале температур 20-1000 °С при скорости нагревания образцов 10 град/мин, а также - по образованию гидроксокомплекса в результате алкалиметрического титрования водных растворов КС, предварительно дегидратированных при температуре 120°С в течение 8 час, путем выявления на дифференциальной кривой титрования точки эквивалентности, соответствующей значению рН в области 4,87-4,95, далее для дегидратированных высушиванием при температуре 120°С в течение 8 час твердых образцов КС по характерным площадкам на термогравиграмме в графической системе «Количество удаленной воды, ммоль - Температура дегидратации, °С» находят количественное содержание воды во внутренней сфере КС твердого образца. Достигается повышение информативности и надежности, а также - упрощение анализа. 5 табл., 11 ил.

Изобретение относится к геологии и может быть использовано при проектировании зданий и сооружений для определения количества незамерзшей воды в мерзлых грунтах. Для этого осуществляют бурение скважин с отбором керна, оттаивают полученный образец замороженного грунта и определяют суммарное содержание влаги по непрерывному изменению информативного показателя в ходе оттаивания. В качестве информативного показателя используют отношение активности акустической эмиссии из контролируемой области массива к активности акустической эмиссии наиболее водонасыщенного участка полностью оттаявшего керна; для обоих показателей учитывают удельный по массе грунт и усредненные, последовательные и соизмеримые по продолжительности интервалы времени для определения распределения суммарного содержания влаги по глубине. Регистрацию акустической эмиссии осуществляют с помощью преобразователей, размещаемых по глубине скважин массива. Количество незамерзшей воды на различных участках массива рассчитывают из произведения указанного информативного показателя и суммарного содержания влаги в кернах, полученных на той же глубине и в той же скважине, что и соответствующее значение данного показателя. Изобретение обеспечивает способ контроля геологической среды. 4 ил.

Изобретение относится к способам оценки состояний теплоизоляции стен зданий и сооружений с учетом степени их увлажнения, которая изменяется в процессе эксплуатации зданий и сооружений. Способ заключается в том, что измеряют температуру стены, причем в качестве температуры стены измеряют температуру наружной поверхности стены, температуру внутренней поверхности стены и температуру между слоями материалов, образующих стену, и дополнительно измеряют среднюю температуру наружного воздуха для периода с отрицательной среднемесячной температурой и температуру внутри помещения, после этого строят ломаную линию изменения температуры по толщине стены, после чего сравнивают значение температуры на границах в каждом из слоев стены с температурой в плоскости максимального увлажнения для каждого слоя материала стены путем построения графика изменения температуры по толщине слоя материала и графика температуры в плоскости максимального увлажнения по толщине слоя материала, представляющего горизонтальную линию постоянной температуры по толщине стены, и если линия температуры в плоскости максимального увлажнения пересекается с линией изменения температуры по толщине стены, то устанавливают, что плоскость максимального увлажнения слоя материала стены проходит вдоль стены через точку пересечения указанных выше линий, если в двух соседних слоях отсутствует плоскость максимального увлажнения и при этом в наружном слое материала стены линия максимального увлажнения лежит выше линии изменения температуры в этом слое, во внутреннем слое линия температуры в плоскости максимального увлажнения лежит ниже линии изменения температуры во внутреннем слое, то устанавливают, что плоскость максимального увлажнения стены лежит в плоскости стыка двух слоев данной стены, а если плоскость максимального увлажнения в соответствии с двумя вышеизложенными вариантами не определена, то устанавливают, что она расположена вдоль наружной поверхности наружного слоя стены. Достигается упрощение прогнозирования защиты от переувлажнения. 4 ил.

Использование: для определения влажности атмосферного воздуха. Сущность изобретения заключается в том, что пьезорезонансный датчик содержит камеру с генератором частоты колебаний пьезорезонатора, пьезорезонатор и частотомер, камера оснащена изменителем и измерителем температуры, последовательно соединенными с блоком обработки и хранения информации, блоком отображения результатов измерения относительной влажности воздуха, при этом выход частотомера и выход измерителя температуры соединены с первым и вторым входами блока обработки и хранения информации, а электроды пьезорезонатора модифицированы пленкой поливинилпирролидона. Технический результат: обеспечение возможности определения относительной влажности воздуха в интервале от 0,01 до 100% относит. в широком интервале температур, в том числе и отрицательном. 2 ил., 1 табл.

Изобретение относится к системам контроля эффективности работы систем отопления, вентиляции и кондиционирования жилых, общественных и административных зданий и может быть использовано при проектировании, реконструкции и оптимизации режимов работы указанных систем, а также при разработке и внедрении энергосберегающих мероприятий. В способе оценки комфортности микроклимата в помещениях жилых, общественных и административных зданий, заключающемся в измерении в помещении температуры воздуха, относительной влажности, подвижности воздуха, температуры окружающих поверхностей, предварительно определяют преимущественный тип и характеристики выполняемой работы, а также сопротивление теплопроводности преимущественного типа одежды людей, дополнительно измеряют температуру поверхности одежды человека, концентрацию диоксида углерода в воздухе обследуемого помещения и в наружном воздухе, вычисляют составляющие уравнения теплового баланса человека, определяют коэффициент комфортности теплового состояния человека k1, коэффициент радиационного охлаждения k2, коэффициент асимметрии радиационных потоков k3, коэффициент качества воздушной среды k4. Вычисляют уровень комфортности микроклимата по формуле: W=k1⋅k2⋅k3⋅k4, и оценивают уровень комфортности микроклимата по следующей шкале: <-0,5 - холодно, дискомфорт, -0,3÷-0,5 - прохладно, легкий дискомфорт, 0÷-0,3 - прохладно, но комфортно, 0 - комфорт, 0÷0,3 - тепло, но комфортно, 0,30÷0,5 - тепло, легкий дискомфорт. Технический результат - повышение точности определения уровня комфортности помещений жилых, общественных и административных зданий.

Изобретение относится к области контроля качества подготовки природного и попутного нефтяного газов к транспорту, а также к области контроля качества жидкостей, транспортируемых по трубопроводам, в нефтегазодобывающей промышленности и может быть использовано на топливно-энергетических, химических, нефтехимических и нефтегазоперерабатывающих предприятиях. Измеритель содержания дисперсной фазы в газовом потоке, включающий пробоотборный зонд, сепаратор, снабженный фильтр-патроном и мерником для отсепарированной жидкости из газа, клапан регулировки расхода газа, емкость с ингибитором и клапан подачи ингибитора к клапану регулировки расхода газа, фильтр-патрон для улавливания механических примесей из газа, при этом дополнительно содержит устройство для автоматического перемещения пробозаборного зонда по сечению исследуемого трубопровода, преобразователь перепада давления между пробозаборной линией и исследуемым газодисперсным потоком, предназначенный для осуществления изокинетичного пробозабора за счет автоматического поддержания клапаном-регулятором, установленным на выходе пробоотборной линии, нулевого значения разницы давлений между пробозаборной линией и исследуемым газодисперсным потоком, средства термостатирования, массовый расходомер для учета количества отсепарированной жидкости в мернике, содержащем уровнемер. Технический результат - повышение точности измерения содержания дисперсной фазы в потоке. 3 з.п. ф-лы, 3 ил.

Изобретение относится к области исследования свойств материалов с помощью калориметрических измерений и может быть использовано в бомбовых калориметрах для определения теплоты сгорания горючих газов. Предложен способ определения удельной объемной теплоты сгорания (ОТС) природного горючего газа в бомбовом калориметре, включающий предварительное измерение объема калориметрической бомбы, предварительное определение энергетического эквивалента калориметра, заполнение калориметрической бомбы анализируемым газом, последующее заполнение бомбы сжатым кислородом, установку бомбы в калориметр, сжигание газа в бомбе и калориметрическое измерение выделившегося количества теплоты. Способ осуществляют с использованием предлагаемого устройства для заполнения калориметрической бомбы горючим газом. Предварительное определение энергетического эквивалента калориметра осуществляют сжиганием в калориметрической бомбе калибровочного газа с известной удельной ОТС. Все операции при определении энергетического эквивалента калориметра и при определении удельной ОТС анализируемого газа аналогичны. Способ позволяет осуществлять предварительное измерение объема калориметрической бомбы с погрешностью, большей, чем требуемая погрешность определения удельной ОТС. В бомбу перед заправкой при помощи предлагаемого устройства анализируемым (или калибровочным) газом наливают известный объем воды, бомбу вакуумируют, оставляя v частей воздуха и водяного пара от их полного объема V в бомбе, напускают горючий газ в большем объеме, чем V, и повторяют операцию вакуумирования с последующим наполнением бомбы горючим газом n раз, пока доля оставшегося воздуха с парами воды в бомбе d, вычисляемая по формуле d=(v/V)n, не станет меньше желаемой, затем бомбу с газом и водой термостатируют, определяют температуру бомбы по температуре термостата, определяют давление газа в ней, парциальное давление насыщенных паров воды по температуре бомбы, вычисляют величину части объема бомбы, заполненной газом, как разность объема бомбы и объема предварительно налитой воды, сжигают газ и калориметрически измеряют теплоту его сгорания. Технический результат - повышение точности измерений. 2 н.п. ф-лы, 1 ил.
Наверх