Анемометрический датчик

Изобретение относится к области микросенсоров, а именно к микроэлектромеханическим системам (МЭМС) для измерения потоков жидкостей и газов - МЭМС-термоанемометрам. Анемометрический датчик содержит чувствительный элемент, выполненный в виде двух и более открытых контролируемому потоку упругих лепестков. Сам чувствительный элемент с электрическими контактами к нему выполнен из пьезоэлектрического материала и выполняет функцию датчика колебаний. Также упругие лепестки имеют разные длины. К чувствительному элементу каждого лепестка соответствующей определенной длины подводится отдельный контакт. Каждой длине соответствует свой динамический диапазон измерения потока и в зависимости от силы потока функционируют определенные лепестки: более длинные регистрируют малые потоки, более короткие - большие за счет разных частот собственных колебаний. Техническим результатом является создание простого в изготовлении анемометрического датчика с низким расходом энергии и малыми размерами, способного определять наличие потока. 1 з.п. ф-лы, 1 ил.

 

Изобретение относится к области микросенсоров, а именно к микроэлектромеханическим системам (МЭМС) для измерения потоков жидкостей и газов - МЭМС-термоанемометрам.

Известен термоанемометр, содержащий помещенный в поток нагреваемый элемент, и средство для регистрации его температуры: о величине потока судят по теплоотводу от этого элемента (по установившейся температуре при постоянном теплоподводе или по величине теплоподвода, необходимого для поддержания постоянной температуры) /1/.

Известен и широко распространен термоанемометр, содержащий нагревательный элемент, помещаемый в измеряемый поток, и чувствительный к теплу элемент, установленный в том же потоке в заданном положении относительно нагревательного элемента: поток определяют при этом по интенсивности теплопереноса /2/. Оба типа приведенных термоанемометров известны и в микроисполнении: они содержат нагреваемые током слои-полоски, нанесенные на поверхность подложки или тонкой мембраны, а также содержат термочувствительные слои-термосопротивления, нагреваемые теплом, переносимым измеряемым потоком от полосок, нагреваемых током.

Недостатком этих анемометров является необходимость затрачивать энергию на питание нагревателя, как при наличии измеряемого потока, так и в его отсутствие.

Известен анемометр, содержащий чувствительный элемент в виде цилиндра-паруса, передающего усилие на гибкий стержень с тензодатчиками /3/. Он безразличен к температуре потока, а энергопотребление его ограничено потреблением датчиков.

Недостатками его являются низкая чувствительность, особенно в области малых потоков, а также сложность и громоздкость.

Наиболее близким аналогом предлагаемого изобретения является микроэлектромеханический сенсор потока, содержащий подвешенный чувствительный элемент, усилия с которого преобразуются пьезодатчиками /4/.

Недостатками его являются сложность изготовления, а также низкая чувствительность, связанная с регистрацией лишь касательных сил, действующих на чувствительный элемент со стороны потока.

Задачей предлагаемого изобретения является создание простого в изготовлении анемометрического датчика с низким расходом энергии и малыми размерами, способного определять наличие потока.

Указанная задача решается тем, что анемометрический датчик содержит чувствительный элемент, выполненный в виде двух и более открытых контролируемому потоку упругих лепестков. Сам чувствительный элемент с электрическими контактами к нему выполнен из пьезоэлектрического материала и выполняет функцию датчика колебаний. Также упругие лепестки имеют разные длины. К чувствительному элементу каждого лепестка соответствующей определенной длины подводится отдельный контакт. Каждой длине соответствует свой динамический. диапазон измерения потока и в зависимости от силы потока функционируют определенные лепестки: более длинные регистрируют малые потоки, более короткие - большие за счет разных частот собственных колебаний.

В качестве датчика может использоваться тензодатчик, сформированный на поверхности лепестков.

Чувствительный элемент используется как тензорезистор.

Чувствительный элемент используется как пьезоэлектрический датчик, выполненный в виде покрытия из пьезоэлектрического материала на поверхности лепестков.

Чувствительный элемент используется как емкостный датчик.

Чувствительный элемент используется как оптический датчик.

В отличие от рассматриваемого прототипа за счет того, что сам лепесток является чувствительным элементом, упрощается технологический маршрут изготовления сенсора, а за счет разных длин лепестков регистрируется больший диапазон измерения скоростей потока.

Поток воздуха может быть направлен как нормально, так и касательно плоскости лепестка.

Выходные контакты с сенсора подключены в мостовую схему, снабженную усилителем.

На фиг.1 представлен чертеж кристалла анемометрического датчика, где стрелкой обозначено направление потока газа, 1 - массив из упругих лепестков, 2 - вытравленный колодец С-С - разрез функциональной части кристалла.

Принцип работы предлагаемого анемометрического датчика заключается в том, что при помещении его в измеряемый поток его лепестки, благодаря своей гибкости, начинают колебаться, и эти колебания регистрируются с помощью датчика колебаний.

Примером конкретного исполнения может служить анемометрический датчик, выполненный в подложке из кремния толщиной 460 мкм путем создания, с помощью травления, мембраны толщиной 2 мкм, имеющей в плане вид прямоугольной трапеции высотой 0,1 мм и с основаниями 0,5 мм и 0,1 мм, и последующего формирования из этой мембраны шести лепестков шириной 10 мкм, толщиной 2 мкм и с разными длинами от 50 мкм до 450 мкм. Пьезоэлектрический слой датчика выполнен в виде пленки ZnO толщиной 0,5 мкм, нанесенной на поверхность лепестков и на подложку у их оснований. Роль проводящих слоев (контактов) пьезоэлектрического датчика выполняют кремниевые лепестки и подложка - с одной стороны - и слой Аl толщиной 0,2 мкм, нанесенный на поверхность пьезоэлектрика - с другой.

Предлагаемый анемометрический датчик может быть использован как самостоятельный анемометр или в качестве датчика наличия потока. В последнем случае он может быть использован для включения-отключения более точных, но неэкономичных, термоанемометров в зависимости от наличия или отсутствия потока. При этом технология его изготовления легко совместима с технологией изготовления термоанемометров, формируемых на мембранах, и они легко интегрируемы в одном кристалле.

При использовании в качестве самостоятельного анемометра используют тот факт, что величина сигнала (первично с прогиба лепестка) от датчиков зависит от скорости потока, а дополнительная информация о потоке содержится в частотном спектре сигнала.

ИСТОЧНИКИ ИНФОРМАЦИИ

1. Патент США 3992940.

2. Патент США 6527835.

3. Патент США 4478076.

4. Патент США 6966231 - прототип.

1. Анемометрический датчик, содержащий чувствительный элемент, выполненный в виде двух и более открытых контролируемому потоку упругих пьезоэлектрических колеблющихся лепестков, отличающийся тем, что чувствительным элементом анемометрического датчика может служить набор из двух и более лепестков с разными длинами, при одинаковой толщине.

2. Анемометрический датчик по п.1, отличающийся тем, что чувствительный элемент используется как тензорезистор, или пьезоэлектрический датчик, выполненный в виде покрытия из пьезоэлектрического материала на поверхности лепестков, или емкостный датчик, или оптический датчик.



 

Похожие патенты:

Изобретение относится к области приборостроения и может быть использовано при выполнении анемометрических измерений. Заявлен анемометрический зонд с проволочкой или с n (n≥1) проволочками, параллельными между собой, для измерения вблизи стенки, содержащий для каждой проволочки два стержня (4, 6) крепления проволочки.

Изобретение касается датчика (102) и блока (602) управления для взаимодействия с датчиком. Датчик (102) служит для измерения скорости жидкости (308), протекающей через канал (306).

Изобретение относится к области приборостроения и предназначено для измерения тепловой энергии, подаваемой жидким теплоносителем от котлоагрегатов к отопительным системам и системам горячего водоснабжения зданий коммунального назначения, жилого фонда, школ, детских садов и иных сооружений промышленности.

Изобретение относится к области расходометрии. .

Изобретение относится к области микроэлектронных и микромеханических устройств и может быть использовано в качестве первичного преобразователя (сенсора) количества прошедшей по трубопроводу жидкости или газа в электрические сигналы расходомеров или счетчиков.

Изобретение относится к области измерения объема (массы жидкости), в частности к определению массы нефтепродукта, хранимого в больших эластичных контейнерах, и может быть использовано на автозаправочных станциях, резервуарных парках складов и нефтебаз, использующих для хранения нефтепродуктов эластичные резервуары.

Изобретение относится к области расходометрии и может быть использовано для определения расхода слабых (порядка десятков - сотен миллилитров в секунду) потоков жидкости.

Изобретение относится к области приборостроения и может быть использовано для учета тепловой энергии. Способ измерения тепловой энергии реализуется на измерении текущих значений температуры и переноса их значений на показатели расхода теплоносителя посредством деления потока на две составляющие и распределения теплоносителя в два выходных канала - Tmin канал начала отсчета и Tmax информационный канал, согласованные со шкалой термометра. Устройство, реализующее способ, содержит блок разделения каналов, два счетчика расхода теплоносителя и выходной коллектор, соединяющий два потока в один. Устройство состоит из корпуса 1 с входным 2 и двумя выходными каналами 3 - Tmin (Сч13) и 4 - Tmax (Сч14), термометра 5, установленного на оси 7 механизма распределения теплоносителя 6, который перекрывает одновременно оба канала (заслонки 8 и 10) в корпусе стабилизаторов потока 12 по формуле обратно пропорционального перекрытия. Теплоноситель распределяется в два выходных канала пропорционально измеренной температуре, а счетчики в этих каналах фиксируют объем прошедшего теплоносителя за определенный период времени. Устройство позволяет по показаниям счетчиков рассчитать среднюю температуру пройденного теплоносителя, суммарный объем прошедшего теплоносителя и объем потребленной тепловой энергии. Технический результат - повышение точности определения потребленной тепловой энергии. 2 н. и 1 з. п. ф-лы, 3 ил.

Изобретение относится к области теплоэнергетики, а именно к задаче энергосбережения в системах потребления пара и может быть использовано для контроля рационального использования пара в теплообменниках путем определения эффективности конденсатоотводчика. Способ мониторинга состояния конденсатоотводчика включает измерение температуры греющего пара, давления греющего пара, температуры стенки конденсатопровода и давления в конденсатопроводе, дополнительно определяют массовый расход греющего пара и диаметр конденсатопровода, затем по величине массового расхода греющего пара сначала вычисляют коэффициент теплоотдачи от пролетного пара к стенке конденсатопровода, а потом вычисляют коэффициент теплоотдачи от конденсата к стенке конденсатопровода, после этого исходя из данных о давлении в конденсатопроводе вычисляют соответствующую этому давлению температуру насыщения, далее, используя отношение величины коэффициента теплоотдачи от конденсата к стенке конденсатопровода к величине коэффициента теплоотдачи от пролетного пара к стенке конденсатопровода и данные о температуре греющего пара, поступающего в теплообменник, температуре насыщения, соответствующей давлению в конденсатопроводе, и температуре стенки конденсатопровода, вычисляют эффективность конденсатоотводчика по уравнениям теплового баланса. 2 н. п. ф-лы, 3 ил.

Изобретение относится к газовым счетчикам. Газовый счетчик содержит корпус счетчика с впускным отверстием для газа с относящимся к нему присоединительным штуцером для подводящего газопровода и выпускным отверстием для газа с относящимся к нему присоединительным штуцером для отводящего газопровода. Корпус (2) счетчика представляет собой корпус мембранного газового счетчика, в котором на выпускном отверстии (11) для газа расположено имеющее корпус (13) с встроенным микротермическим расходомерным сенсором (20) измерительное устройство (12). Корпус (13) измерительного устройства (12) герметично соединен с присоединительным штуцером (10) со стороны выпускного отверстия для газа или с корпусом (2) счетчика в зоне выпускного отверстия (11) для газа. Технический результат - обеспечение предельно точного измерения расхода газа совместно с обеспечением возможности подключения такого счетчика без доработок в здании геометрии мест подключения на стороне сети. 2 н. и 8 з.п. ф-лы, 3 ил.

Изобретение относится к области приборостроения, а именно к устройствам для измерения потоков жидкостей и газов с использованием микроэлектромеханических датчиков. Измеритель потока содержит тело обтекания, датчик потока и средства управления и съема информации. Тело обтекания выполнено с переменным сечением в форме, обеспечивающей ламинарность потока, и выполнено с возможностью задания его положения относительно измеряемого потока, а один или несколько датчиков потока установлены на поверхности тела обтекания заподлицо с ней. Технический результат - увеличение пределов и точности измерения потоков. 7 з.п. ф-лы, 1 ил.

Изобретение относится к диагностике технического состояния систем контроля технологических процессов. Предложен способ проверки работоспособности системы контроля течи трубопровода, который включает воспроизведение системой параметров эталонного имитатора измеряемых системой физических величин, сравнение воспроизведенных параметров с заданными параметрами эталонного имитатора и выработку заключения о работоспособности системы. Параметры эталонного имитатора течи задают перед каждой проверкой работоспособности системы в виде величин массового расхода и местоположения течи. Рассчитывают временной и температурный режимы теплового воздействия на каждый первичный преобразователь температуры системы при течи с заданными эталонным имитатором параметрами. Проводят тепловое воздействие на каждый первичный преобразователь температуры с соблюдением рассчитанных временного и температурного режимов. Регистрируют воспроизведенные системой параметры эталонного имитатора. Сравнивают их с заданными параметрами эталонного имитатора течи и признают систему работоспособной при условии совпадения указанных параметров в пределах допустимых нормированных погрешностей. Технический результат- повышение достоверности и точности диагностики. 2 табл.

Изобретение относится к области измерительной техники, а именно к тепловым расходомерам для измерения расхода газа в диапазоне 0÷20 мг/с. Расходомер содержит: цилиндрическую камеру 1; канал 2 подачи в камеру газового потока и канал 2′ для его вывода; диафрагму 3 с отверстием для прохода газа, вставляемую в канал (каналы) со стороны начала канала; нагреваемую электрическим током нихромовую проволочную спираль 4 (диаметр проволоки 0,2 мм); шесть каналов 5 для оптических окон-световодов 6, вклеиваемых в каналы высокотемпературным клеем К-500; шесть идентичных преобразователей оптического излучения. Технический результат - повышение интенсивности процесса конвективной теплоотдачи теплочувствительного элемента и, как следствие, увеличение чувствительности расходомера вследствие уменьшения верхней границы доступного измерению диапазона расхода; увеличение выходного сигнала с целью гарантированного обеспечения помехозащищенности; уменьшение массогабаритного показателя конструкции. 1 ил.

Изобретение относится к области измерительной техники, а именно к тепловым микрорасходомерам для измерения расхода газа в диапазоне (0÷5) мг/с. Микрорасходомер работает в режиме переменной мощности внутреннего тепловыделения. В предлагаемом двухканальном микрорасходомере измерительный термистор и постоянный резистор являются элементами схемы резистивного делителя напряжения. При постоянном напряжении питания схемы U0 = const при подаче расхода сопротивление термистора растет, что приводит к уменьшению тока в цепи и, как следствие, к перераспределению падения напряжения на элементах схемы: напряжение на термисторе Utr(G/2) растет, а на резисторе UR(G/2) падает так, чтобы их сумма равнялась напряжению питания: Utr(G/2)+UR(G/2)=U0. Размещение на выходе каналов идентичных диафрагм с отверстиями задаваемой величины (диаметры 1; 1,5; 3 мм) уменьшило доступный измерению диапазон расхода газа и тем самым привело к существенному увеличению чувствительности по расходу - максимальная 36,4 и 28,8 В/(мг·с-1) у N2 и Ar соответственно; средняя по диапазону ~ 19 В/(мг·с-1) - и точности измерения расхода газа. При этом температурная автономность микрорасходомера сохранена. Способ измерения расхода газа состоит в помещении термисторов в потоки газа расходом G/2. Включение в качестве управляющего термостабилизационного термистора в схему стабилизации теплового режима теплоносителя на задаваемых температурных уровнях Тп обеспечивает температурную автономность расходомера независимо от величины расхода газа. Выходной сигнал формируется как разность падения напряжений на измерительном термисторе и резисторе: U(G)=Utr(G/2)-UR(G/2). Регистрируемые напряжения на элементах схемы изменяются в пределах (25÷85) В. В отсутствие расхода напряжения на элементах равны и составляют половину напряжения питания: Utr(0)=UR(0)=U0/2. Расходомер содержит: корпус 1; корпус теплообменника 2; газораспределительную камеру 3; канал 4 с измерительным термистором 5; канал 6 с термостабилизационным термистором 7; нагревательную спираль 8 теплообменника; дополнительные спирали 9 и 10 на поверхностях каналов; блок 11 управления мощностью (БУМ) спирали 8 теплообменника и дополнительных спиралей 9, 10; R(To) - сопротивление резистора. По своим показателям предлагаемый микрорасходомер газа не имеет отечественных и зарубежных аналогов. Технический результат - уменьшение доступного измерению диапазона расхода газа, повышение чувствительности по расходу и точности измерения расхода газа. 1 ил.

Изобретение относится к лесному хозяйству, а именно к биофизике древесных растений. Способ основан на формировании теплового воздействия в ксилемной ткани и измерении температуры пасоки. Способ осуществляют с помощью двух игольчатых температурных датчиков, совмещенных с нагревательными элементами. Датчики-нагреватели размещают в ксилемной ткани один над другим на заданном расстоянии по высоте. Тепловые импульсы формируются в датчиках-нагревателях последовательно, через заданные промежутки времени. Определение скорости потока пасоки осуществляют анализом полученных температурных кривых. Достигается повышение точности измерения скорости пасоки при низких и высоких значениях скорости. При этом факт нулевой скорости потока выявляется без каких-либо дополнительных измерительных процедур и устройств. 3 ил.

Предлагаемое изобретение относится к средствам измерений количества теплоты, выделяемой нагретыми жидкими, газообразными и многофазными теплоносителями в системах отопления, без нарушения их целостности. Предложенный теплосчетчик на основе накладных датчиков содержит датчик теплового потока и датчики температуры поверхности, а также измеритель их сигналов. При этом датчик теплового потока установлен на контрольном участке трубопровода, а датчики температуры поверхности установлены на границах контрольного участка трубопровода и на трубопроводах у входа и выхода системы отопления. Согласно изобретению на поверхности датчика теплового потока, который полностью перекрывает поверхность контрольного участка трубопровода, установлен съемный теплообменник, состоящий из двух идентичных частей, каждая из которых содержит металлические теплопроводы, на внешней поверхности которых размещены термоэлектрические Пельтье-батареи, подключенные к источнику питания и снабженные радиаторами, охлаждаемыми электрическим вентилятором, также подключенным к источнику питания. Технический результат – повышение точности и оперативности измерения фактических значений количества теплоты, выделяемой в системах отопления любым теплоносителем. 2 ил.
Наверх