Способ сварки труб большого диаметра лазерной сваркой

Изобретение относится к области производства труб большого диаметра, в частности, к лазерной или лазерно-дуговой сварке сформованной цилиндрической заготовки. Цель изобретения - повышение качества сварки за счет одинакового распределения мощности лазерного луча на обоих свариваемых кромках заготовки. Способ заключается в том, что слежение за точкой воздействия лазерного луча осуществляют изнутри посредством лазерного датчика. С помощью луча лазерного датчика сканируют стык кромок поперек шва и перед зоной сварки. Лазерный датчик располагают на штанге внутри трубы. Положение лазерного датчика относительно сварочной головки по горизонтали определяют посредством гироскопа на упомянутой штанге или посредством закрепленного с датчиком на штанге дополнительного лазерного излучателя, луч которого направляют на закрепленную неподвижно телекамеру.

 

Изобретение относится к производству труб большого диаметра, в частности к сварке сформованной цилиндрической заготовки.

Обнаружение стыка кромок и направление на него проплавляющего лазерного луча должно быть очень точным, с погрешностью не более 0,1 мм, поскольку при диаметре луча 0,4 мм он должен захватывать обе кромки и, желательно, на одинаковую ширину, иначе одна из кромок может просто не расплавиться, что недопустимо. Проще всего было бы поставить датчик поиска стыка снаружи заготовки перед сварочной головкой, но заготовка может быть предварительно сварена так называемым технологическим (прихваточным) швом и в этом случае поиск стыка невозможен.

Известен способ оценки состояния лазерной сварки (патент JP Н10 - 76383), в котором лазерный луч воздействует на одну сторону стальной полосы и при этом отслеживают излучение плазмы на другой стороне. Но это излучение рассеивается по широкой области, и с помощью этого способа трудно точно обнаружить любые сдвиги позиции лазерного луча относительно продольных кромок.

Развитием упомянутого способа является способ изготовления стальной трубы лазерной сваркой (патент RU 2456107 C1, кл. B21C 37/08, B21C 37/30, B23K 26/20, B23K 26/42, B23K 101/06), по которому шов варят путем воздействия на внешнюю поверхность лазерным лучом и отслеживают со стороны внутренней поверхности открытой трубы точку воздействия лазерного луча, которым облучают продольные края и при обнаружении сквозного проплавления снаружи до внутренней поверхности условия сварки не изменяют, а если не обнаруживают сквозного проплавления, условия сварки лазерным лучом изменяют, обеспечивая сварку со сквозным проплавлением. Однако по этому способу при уходе луча в сторону от стыка (фиг. 1) из точки «а» в точку «б» сквозное проплавление может прекратиться, а при изменении условий сварки - мощности лазерного луча и возобновлении проплавления положение дел не изменится - стык по прежнему останется в стороне от центра луча.

Предлагаемый способ заключается в лазерной или гибридной лазерно-дуговой сварке прижатых друг к другу кромок трубы сварочной головкой, расположенной снаружи над стыком. При этом наведение луча на место наиболее легкого проплавления металла (стык кромок) производят изнутри трубы, но в отличие от прототипа наведение осуществляют не по наличию сквозного проплавления, а по обнаруженному датчиком стыку кромок внутренней части разделки.

Техническим результатом предлагаемого способа является повышение качества сварки за счет одинакового распределения мощности на обеих свариваемых кромках заготовки, потому что луч направляется на стык кромок, благодаря чему удается избежать непроплавления кромок и образования дефектов сварного шва.

Технический результат достигается тем, что стык кромок отслеживают с помощью сканирующего поперек шва и впереди зоны сварки лазерного триангуляционного датчика, а положение этого датчика, находящегося внутри заготовки на штанге, относительно лазерного луча, воздействующего на свариваемые кромки снаружи, по горизонтали определяют с помощью гироскопа, установленного на датчике или (и) дополнительного излучателя, находящегося там же, луч которого направлен на закрепленную неподвижно телекамеру.

На фиг.2 дана схема расположения описываемых элементов, где: 1 - свариваемая заготовка; 2 - сварочная тележка; 3 - лазерная сварочная головка; 4 - штанга; 5 - тележка, неподвижная вдоль оси трубы и удерживаемая внутри заготовки штангой, 6 - сканирующий триангуляционный датчик; 7 - гироскопическое устройство; 8 - лазерный излучатель; 9 - телекамера.

Предлагаемый способ позволит уменьшить вероятность образования в сварном шве характерных для лазерной сварки «непроваров» и пор, особенно на больших, более 14 мм стенках трубы.

1. Способ сварки труб большого диаметра лазерной сваркой, включающий сварку продольного шва посредством лазерной или лазерно-дуговой сварочной головки, установленной с наружной стороны трубы, при этом осуществляют слежение за точкой воздействия лазерного луча на стык кромок со стороны внутренней поверхности трубы, отличающийся тем, что слежение за точкой воздействия лазерного луча осуществляют посредством лазерного датчика, с помощью луча которого сканируют стык кромок поперек шва и перед зоной сварки, причем лазерный датчик располагают на штанге внутри трубы, а его положение относительно сварочной головки по горизонтали определяют посредством гироскопа, жестко закрепленного с датчиком на упомянутой штанге.

2. Способ по п.1, отличающийся тем, что положение датчика определяют посредством закрепленного с датчиком на штанге дополнительного лазерного излучателя, луч которого направляют вдоль оси трубы на закрепленную неподвижно телекамеру.



 

Похожие патенты:

Изобретение относится к области лазерной обработки материалов, в частности к способу лазерного плавления с использованием абляционного покрытия. Технический результат заключается в осуществлении плавления материала лазерным излучением с произвольной длиной волны независимо от ее принадлежности к области поглощения расплавляемого материала.

Группа изобретений относится к обработке поверхностей заготовок перед термическим напылением. Технический результат - улучшение адгезии покрытия к поверхности.

Изобретение относится к способу исправления металлических деталей, соединенных между собой при помощи высокотемпературной пайки. Исправляют паяные зоны при помощи лазера.

Изобретение относится к порошковой металлургии, в частности к технологии лазерного послойного синтеза деталей, и может применяться в разных отраслях машиностроения.

Изобретение относится к области обработки поверхности керамических материалов лазерным излучением для получения наноструктурных аморфизированных пленок, преимущественно из ситалла.

Изобретение относится к области машиностроения, а именно к способам ионной имплантации поверхности деталей из конструкционных сталей. .

Изобретение относится к области машиностроения и может быть использовано при размерной обработке токопроводящих деталей. .

Изобретение относится к порошковой металлургии, в частности к технологии лазерного послойного синтеза объемных деталей. .

Изобретение относится к машиностроению, а именно к технологии сварочного производства, и может быть использовано в процессе производства сварных конструкций при большой толщине свариваемых кромок.

Изобретение относится к комбинированным лазерно-плазменно-ультразвуковым технологиям, направленным на преобразование структуры приповерхностного обрабатываемого слоя металлов и их сплавов, а именно к способу получения износостойкой поверхности металлов и их сплавов (варианты).

Способ извлечения капсюлей из гильз стрелковых патронов заключается в том, что частично заполняют внутреннюю полость гильзы рабочей жидкостью и затем создают в ней повышенное давление, достаточное для экстракции инициирующего взрывчатого вещества совместно с корпусом капсюля. Повышенное давление в полости гильзы создают путем импульсного нагрева ограниченного объема на поверхности или в придонной области жидкости до температуры не ниже температуры ее кипения посредством сфокусированного пучка лазерного излучения. Устройство для извлечения капсюлей из гильз стрелковых патронов содержит механизмы подачи гильз в зону обработки и их фиксации, узел наполнения жидкостью полостей гильз, механизм создания давления и механизм удаления гильз из зоны обработки. В качестве механизма создания давления используется источник лазерного излучения, дополнительно снабженный регулируемым устройством фокусировки, расположенным над зоной обработки гильз. Достигается повышение производительности процесса расснаряжения оружейных патронов. 2 н. и 3 з.п. ф-лы, 5 ил.

Изобретение относится к системе для термической обработки с использованием струи плазмы и/или лазерного луча. Лазерная головка (22) и плазменная головка (21) выполнены с возможностью присоединения к одному хвостовику (20). В хвостовике (20) имеются по меньшей мере одна линия (20.1) подачи электрического тока к электроду в плазменной головке (21), оптический волновод (20.2) для лазерного излучения и линия (20.3) подачи технологического газа. Плазменная головка (21) и лазерная головка (22) прикреплены к хвостовику (20) посредством по меньшей мере одного замка быстрой замены. Кроме того, через хвостовик (20) проходят линия (20.4) подачи охладителя и линия (20.5) возврата охладителя, выполненные с возможностью соединения с линиями (21.4,21.5 и/или 22.4 и 22.5) для охладителя в лазерной головке (22) и/или в плазменной головке (21). Технический результат состоит в обеспечении более гибкой термической обработки изделий. 2 н. и 3 з.п. ф-лы, 8 ил.

Изобретение относится к горной промышленности и может быть использовано для управления процессом лазерного воздействия на скальные породы переменной крепости при подготовке горных пород к безвзрывному разупрочнению для последующего послойно-полосового фрезерования и выемки карьерными комбайнами. Способ управления включает контроль интенсивности высокотемпературного термодинамического лазерного воздействия на зону лазерного излучения, регулирование изменения волнового фронта лазерного излучения, контроль усилия резания фрезы P, параметров прочности f горной породы посредством датчика регистрации прочности горной породы, установленного на раме оптоволоконного лазерного излучателя, контроль скорости перемещения карьерного комбайна Vki, введение в программу алгоритма вычисления волнового фронта мощности лазерного излучения W в зависимости от параметров прочности f горной породы и шага позиционирования оптоволоконных излучателей li на основе уравнения. Изобретение позволяет повысить эффективность управления технологической подготовки к выемке скальных пород и обеспечивает возможность дистанционного управления разрушением горных пород. 2 н.п. ф-лы, 10 ил.

Изобретение относится к способу и устройству контроля проводимого на обрабатываемой детали процесса лазерной обработки. Способ содержит следующие этапы: регистрация по меньшей мере двух текущих измеренных значений посредством по меньшей мере одного сенсора, который контролирует процесс лазерной обработки, и определение по меньшей мере двух текущих показателей из по меньшей мере двух текущих измеренных значений. По меньшей мере два текущих показателя совместно представляют текущий характерный признак в пространстве показателей. Осуществляют предоставление предопределенного множества точек в пространстве показателей и классификацию процесса лазерной обработки посредством определения положения текущего характерного признака относительно предопределенного множества точек в пространстве показателей. 3 н. и 12 з.п. ф-лы, 19 ил.

Изобретение относится к способу и устройству контроля проводимого на обрабатываемой детали процесса лазерной обработки. Способ содержит следующие этапы: регистрация по меньшей мере двух текущих измеренных значений посредством по меньшей мере одного сенсора для контроля процесса лазерной обработки, определение текущих показателей из текущих измеренных значений. Два текущих показателя совместно представляют текущий характерный признак в пространстве показателей. Выполняют предоставление предопределенного множества точек в пространстве показателей и классификацию процесса лазерной обработки посредством определения положения текущего характерного признака относительно предопределенного множества точек в пространстве показателей. По меньшей мере один сенсор содержит по меньшей мере один блок камеры, который выполняет съемку изображений камеры с различными временами выдержки и их совместно пересчитывает посредством метода высокого динамического диапазона (HDR), чтобы предоставить в качестве изображений текущих измеренных значений с высоким коэффициентом контрастности. 3 н. и 15 з.п. ф-лы, 19 ил.

Изобретение относится к способу лазерно-дуговой орбитальной сварки и может быть применено при строительстве трубопроводов. Способ заключается в одновременном воздействии на внешнюю поверхность свариваемых трубных образцов лазерного луча и дуги в среде защитных газов. Дугу генерируют из плавящегося электрода с образованием общей сварочной ванны. Предварительно задают постоянными величину заглубления фокальной плоскости лазерного луча относительно внешней поверхности свариваемых образцов, равной (5±0,5 мм), и расстояния между осями лазерного луча и электрода, равного (3±0,5 мм). Проплавление выполняют с мощностью лазерного луча ≥10 кВт. Осуществляют регулировку угла наклона сварочной горелки относительно лазерного луча в диапазоне от 30° до 60° со скоростью изменения угла наклона сварочной горелки относительно лазерного луча, которую определяют в зависимости от скорости сварки и радиуса свариваемых трубных образцов. В качестве защитной среды используют газовую смесь, состоящую из активного и инертного газов. В результате обеспечивается повышение качества сварного соединения, эффективность процесса сварки и возможность осуществления сварки трубных образцов с большей толщиной.

Способ относится к области получения скрытых изображений без нарушения целостности поверхности на некоторой глубине в стеклянных материалах. Данный способ включает в себя этап подготовки изображения для заданного типоразмера продукта. Путем автоматизированного комплекса программ формируется изображение, состоящее из большого количества точек. Далее, под воздействием лазерного излучения высокой плотности мощности, сфокусированного на заданной глубине, происходит локальное разрушение материала, формируя так называемые точки, образующие целостное изображение. 1 з.п. ф-лы, 1 ил.

Изобретение относится к области нанотехнологий и может быть использовано в медицине, фармацевтике, косметологии. Наночастицы платиновых металлов получают в прозрачной жидкости на водной основе 7 при разрушении мишени 6 из платинового металла или сплава кавитацией, возникающей путем доставки лазерного излучения 2, представленного в виде импульсов сфокусированного излучения лазера на парах меди 1 с величиной энергии импульса 1-5 мДж и длительностью импульса 20 нс, с частотой следования импульсов 10-15 кГц и плотностью мощности 5,7 ГВт/см2, через прозрачное дно кюветы 5 к мишени 6, помещенной в кювету 5 с прозрачной жидкостью на водной основе 7. Изобретение позволяет получать чистые наночастицы в виде чешуек с размером не более 200 нм без посторонних примесей. 1 ил., 3 пр.

Изобретение относится к легкой промышленности и может быть использовано для выпуска оборудования, предназначенного для резки изделий, которые имеют высокую механическую прочность. Устройство для абразивно-лазерной резки содержит несущий корпус с приводом, имеющим передаточный механизм, выполненный с возможностью вращения диска из абразивного материала. Корпус связан с лазерным устройством, выполненным с возможностью подачи лазерного луча в передающий световод. Выходная торцевая часть передающего световода ориентирована соосно с торцевыми частями рабочих световодов, расположенных на заданном расстоянии друг от друга. Внешняя торцевая часть рабочих световодов расположена на боковой образующей абразивного диска. Внутренняя торцевая часть рабочих световодов расположена на кольцевом выступе, сформированном на боковой части абразивного диска. Технический результат от использования устройства позволяет увеличить скорость резания или обработки металла изделия независимо от его прочностных характеристик. 4 ил.

Изобретение относится к способу получения композиционных покрытий из порошковых материалов и может быть использовано в машиностроительном производстве при изготовлении и ремонте деталей технологической оснастки и инструмента. Изобретение позволяет получить бездефектное износостойкое покрытие с высокой адгезией к подложке при минимальном воздействии на нее. Обрабатываемую поверхность подготавливают посредством очистки, промывки и струйно-абразивной обработки. Затем осуществляют лазерную наплавку порошкового материала в среде инертного газа. При этом в качестве порошкового материала используют частицы титана и карбида кремния с размером - 20-100 мкм в массовом соотношении 6:4 или 6:5. Процесс наплавки осуществляют при мощности лазера 4÷5 кВт, скорости сканирования лазерного луча 500÷700 мм/мин и расходе порошка 9,6÷11,9 г/мин. 2 табл., 1 ил.
Наверх