Способ извлечения рения из урансодержащих растворов

Изобретение относится к сорбционной гидрометаллургии урана и рения и может быть использовано для извлечения рения из растворов и пульп. Способ извлечения рения из урансодержащих растворов включает сорбцию рения на анионах. Перед сорбцией в раствор вводят фульвеновые кислоты до их концентрации в растворе 25÷300 мг/л. Сорбцию рения ведут при значении pH раствора 2,8÷3,5. Причем сорбцию проводят на слабоосновных и сильноосновных анионитах. Технический результат заключается в улучшении сорбционно-десорбционных характеристик, в повышении технико-экономических показателей сорбционно-десорбционного процесса извлечения рения из урансодержащего раствора. 1 з.п. ф-лы, 6 табл., 6 пр.

 

Настоящее изобретение относится к сорбционной гидрометаллургии рения и урана, в частности к способу извлечения рения из урансодержащих растворов.

Известен сорбционный способ извлечения рения и урана и последующего их разделения с использованием сильноосновных анионитов, например, АМП, АМп. Коллективную сорбцию рения и урана осуществляют из сернокислых растворов подземного выщелачивания урановых руд, разделение этих металлов происходит путем последовательной десорбции вначале урана, затем рения. Уран элюируют сернокислыми растворами (10-15% серной кислоты), а рений периодически - нитратными (80-90 г/л нитрат-ионов и 4-4,5% азотной кислоты). (Подземное выщелачивание полиэлементных руд / Н.П. Лаверов, И.Г. Абдульманов, К.Г. Бровин и др.; Под ред. Н.П. Лаверова. - М.: Издательство Академии горных наук, 1998. - 446 с. - С.222-223, 226-227; Ю.В. Нестеров. Иониты и ионообмен. Сорбционная технология при добыче урана и других металлов методом подземного выщелачивания. - М.: ООО ЮНИКОРН-ИЗДАТ, 2007. - 480 с. - С.326-327).

К недостаткам вышеуказанного способа относятся потери рения при сорбции, направленной на достижение полноты извлечения урана, необходимость использования для десорбции рения нитратных растворов, что требует проведения дополнительных операций для получения товарного продукта рения - перрената аммония, периодичность процесса десорбции рения. Это приводит к снижению эффективности процесса сорбционного извлечения рения.

Наиболее близким по технической сущности и достигаемому результату при использовании является способ извлечения рения из урансодержащих растворов слабоосновными ионитами типа АН-21 и Purolite А 170. После совместной сорбции рения и урана рений десорбируют раствором аммиака (с концентрацией 3 моль/л), а затем после водной промывки сорбента элюируют уран раствором серной кислоты (100 г/л) или подкисленного нитрата аммония (pH 0,45) (Z.S. Abisheva, A.N. Zagogodnyaya. Rhenium in Kazakhstan. 7th International Symposium on Technetium and Rhenium - Science and Utilization. Book of Proceedings. July 4-8, 2011, Moscow, Russia (Eds. K.E. German, B.F. Myasoedov, G.E. Kodina, A. Ya. Maruk, I.D. Troshkina). Moscow: Publishing House GRANITZA, 2011. - 460 p. - P.214).

Недостатками этого способа являются загрязнение насыщенного рением анионита ураном из-за совместной сорбции металлов. Это приводит к необходимости проведения дополнительной операции десорбции урана, что сопровождается повышенным расходом реагентов, увеличением затрат на оборудование для элюирования урана.

Техническим результатом предлагаемого изобретения является повышение селективности ионитов по рению при сорбции из урансодержащих растворов, сопровождающееся снижением содержания урана в сорбентах.

Технический результат достигается тем, что в рений-урансодержащий раствор перед сорбцией добавляют раствор фульвеновой кислоты до создания в растворе ее концентрации 25÷300 мг/л, а сорбцию рения осуществляют при значении pH раствора 2,8÷3,5. Сорбцию проводят на сильноосновных и слабоосновных анионитах. При этом концентрация фульвеновых кислот в растворе составляет преимущественно 50÷100 мг/л.

При концентрации фульвеновой кислоты менее 25 мг/л уменьшение коэффициента распределения урана незначительно. Получение растворов фульвеновых кислот с концентрацией более 300 мг/л удорожает процесс, при этом коэффициент разделения рения и урана не изменяется.

При значении pH менее 2,8 карбоксильные группы фульвеновых кислот слабо диссоциированы, что приводит к незначительному взаимодействию урана с ними и снижению коэффициентов разделения рения и урана. При значении pH более 3,5 происходит осаждение уран-фульватных комплексов.

Осуществление процесса извлечения рения из урансодержащих растворов иллюстрируют следующие примеры.

Пример 1.

Для сорбции рения из сернокислого раствора, содержащего, мг/л: 10 урана; 10 рения, 10000 сульфат-ионов, pH 2,8 используют слабоосновный ионит с вторичными аминогруппами в полимерной матрице (Purolite А 170). Для сравнения сорбцию рения из того же раствора осуществляли в отсутствии фульвеновых кислот на том же ионите (прототип). Сорбцию рения ведут в статических условиях. После 4 контактов анионита в SO4-форме с раствором в течение 20 ч при постоянном механическом перемешивании, соотношении объемов раствора и ионита 3000:1 (мл:г) и температуре 18÷20°С до равновесной концентрации урана и рения, равной концентрации их в исходном растворе определяли весовую емкость анионита по рению и урану и рассчитывали коэффициенты их распределения (табл.1). По данным коэффициентов распределения рассчитывали коэффициент разделения рения и урана как отношение коэффициентов их распределения (табл.1).

Таблица 1.
Концентрация фульвеновых кислот, мг/л Сорбционная емкость ионита по рению, мг/г Сорбционная емкость ионита по урану, мг/г Коэффициент распределения рения, л/г Коэффициент распределения урана, л/г Коэффициент разделения рения и урана, SRe/U
0 (прототип) 42,7 10,2 4,27 1,02 4,2
25 42,4 7,6 4,24 0,76 5,6
50 42,7 ЗД 4,27 0,31 13,8
100 42,2 0,8 4,22 0,08 52,8
300 41,9 0,4 4,19 0,04 104,8

Пример 2.

Для сорбции рения из сернокислого раствора, содержащего, мг/л: 10 урана; 10 рения, 10000 сульфат-ионов, pH 3,0 используют слабоосновный ионит с вторичными аминогруппами в полимерной матрице (Purolite А 170). Для сравнения сорбцию рения из того же раствора осуществляли в отсутствии фульвеновых кислот на том же ионите (прототип). Сорбцию рения ведут в статических условиях. После 4 контактов анионита в SO4-форме с раствором в течение 20 ч при постоянном механическом перемешивании, соотношении объемов раствора и ионита 3000:1 (мл:г) и температуре 18÷20°С до равновесной концентрации урана и рения, равной концентрации их в исходном растворе определяли весовую емкость анионита по рению и урану и рассчитывали коэффициенты их распределения (табл.2). По данным коэффициентов распределения рассчитывали коэффициент разделения рения и урана как отношение коэффициентов их распределения (табл.2).

Таблица 2.
Концентрация фульвеновых кислот, мг/л Сорбционная емкость ионита по рению, мг/г Сорбционная емкость ионита по урану, мг/г Коэффициент распределения рения, л/г Коэффициент распределения урана, л/г Коэффициент разделения рения и урана, SRe/U
0 (прототип) 45,7 9,8 4,57 0,85 4,6
25 45,4 6,6 4,54 0,66 6,9
50 45,7 2,1 4,57 0,21 21,8
100 45,2 0,5 4,52 0,05 90,4
300 44,9 0,4 4,49 0,04 112,3

Пример 3.

Для сорбции рения из сернокислого раствора, содержащего, мг/л: 10 урана; 10 рения, 10000 сульфат-ионов, pH 3,5 используют слабоосновный ионит с вторичными аминогруппами в полимерной матрице (Purolite А 170). Для сравнения сорбцию рения из того же раствора осуществляли в отсутствии фульвеновых кислот на том же ионите (прототип). Сорбцию рения ведут в статических условиях. После 4 контактов анионита в SO4-форме с раствором в течение 20 ч при постоянном механическом перемешивании, соотношении объемов раствора и ионита 3000:1 (мл:г) и температуре 18÷20°С до равновесной концентрации урана и рения, равной концентрации их в исходном растворе определяли весовую емкость анионита по рению и урану и рассчитывали коэффициенты их распределения (табл.3). По данным коэффициентов распределения рассчитывали коэффициент разделения рения и урана (табл.3).

Таблица 3.
Концентрация фульвеновых кислот, мг/л Сорбционная емкость ионита по рению, мг/г Сорбционная емкость ионита по урану, мг/г Коэффициент распределения рения, л/г Коэффициент распределения урана, л/г Коэффициент разделения рения и урана, SRe/U
0 (прототип) 51,1 11,6 5,11 1,16 4,0
25 46,7 11,7 4,67 1,17 4,4
50 42,1 6,5 4,21 0,65 6,5
100 40,6 2,9 4,06 0,29 14,0
300 38,7 0,8 3,87 0,08 48,4

Пример 4. Для сорбции рения из сернокислого раствора, содержащего, мг/л: 10 урана; 10 рения, 10000 сульфат-ионов, pH 2,8 используют сильноосновный ионит (Purolite А 600). Для сравнения сорбцию рения из того же раствора осуществляли в отсутствии фульвеновых кислот на том же ионите. Сорбцию рения ведут в статических условиях. После 4 контактов анионита в SO4-форме с раствором в течение 20 ч при постоянном механическом перемешивании, соотношении объемов раствора и ионита 3000:1 (мл:г) и температуре 18÷20°С до равновесной концентрации урана и рения, равной концентрации их в исходном растворе определяли весовую емкость анионита по рению и урану и рассчитывали коэффициенты их распределения (табл.4). По данным коэффициентов распределения рассчитывали коэффициент разделения рения и урана (табл.4).

Таблица 4.
Концентрация фульвеновых кислот, мг/л Сорбционная емкость ионита по рению, мг/г Сорбционная емкость ионита по урану, мг/г Коэффициент распределения рения, л/г Коэффициент распределения урана, л/г Коэффициент разделения рения и урана, SRe/U
0 37,3 21,8 3,73 2,18 1,7
25 37,1 19,0 3,71 1,90 1,9
50 37,1 13,5 3,71 1,35 2,7
100 37,1 10,4 3,71 1,04 3,6
300 35,1 8,4 3,51 0,84 4,2

Пример 5. Для сорбции рения из сернокислого раствора, содержащего, мг/л: 10 урана; 10 рения, 10000 сульфат-ионов, pH 3,0 используют сильноосновный ионит (Purolite А 600). Для сравнения сорбцию рения из того же раствора осуществляли в отсутствии фульвеновых кислот на том же ионите. Сорбцию рения ведут в статических условиях. После 4 контактов анионита в SO4-форме с раствором в течение 20 ч при постоянном механическом перемешивании, соотношении объемов раствора и ионита 3000:1 (мл:г) и температуре 18÷20°С до равновесной концентрации урана и рения, равной концентрации их в исходном растворе определяли весовую емкость анионита по рению и урану и рассчитывали коэффициенты их распределения (табл.5). По данным коэффициентов распределения рассчитывали коэффициент разделения рения и урана (табл.5).

Таблица 5.
Концентрация фульвеновых кислот, мг/л Сорбционная емкость ионита по рению, мг/г Сорбционная емкость ионита по урану, мг/г Коэффициент распределения рения, л/г Коэффициент распределения урана, л/г Коэффициент разделения рения и урана, SRe/U
0 38,3 20,0 3,83 2,0 1,9
25 37,6 18,0 3,76 1,8 2,1
50 37,8 12,5 3,78 1,25 3,0
100 37,6 9,7 3,76 0,97 3,9
300 35,4 7,4 3,54 0,74 4,8

Пример 6. Для сорбции рения из сернокислого раствора, содержащего, мг/л: 10 урана; 10 рения, 10000 сульфат-ионов, pH 3,5 используют сильноосновный ионит (Purolite А 600). Для сравнения сорбцию рения из того же раствора осуществляли в отсутствии фульвеновых кислот на том же ионите. Сорбцию рения ведут в статических условиях. После 4 контактов анионита в SO4-форме с раствором в течение 20 ч при постоянном механическом перемешивании, соотношении объемов раствора и ионита 3000:1 (мл:г) и температуре 18÷20°С до равновесной концентрации урана и рения, равной концентрации их в исходном растворе определяли весовую емкость анионита по рению и урану и рассчитывали коэффициенты их распределения (табл.6). По данным коэффициентов распределения рассчитывали коэффициент разделения рения и урана (табл.6).

Таблица 6.
Концентрация фульвеновых кислот, мг/л Сорбционная емкость ионита по рению, мг/г Сорбционная емкость ионита по урану, мг/г Коэффициент распределения рения, л/г Коэффициент распределения урана, л/г Коэффициент разделения рения и урана, SRe/U
0 38,5 25,7 3,85 2,57 1,49
25 38,3 24,8 3,83 2,48 1,54
50 41,8 23,4 4,18 2,34 1,79
100 37,6 20,1 3,76 2,01 1,87
300 36,2 18,3 3,62 1,83 1,98

Введение в рений-урансодержащий раствор фульвеновых кислот в

количестве 25÷300 мг/л позволяет не только уменьшить коэффициент распределения урана в ионите в 1,3÷17 раз и увеличить коэффициент разделения рения и урана в 1,2÷20 раз, но и улучшить технологические параметры процесса сорбции-десорбции рения. При этом из-за низкой емкости анионита по урану, наблюдаемой при осуществлении сорбции в оптимальных условиях (табл.2), отпадает необходимость проведения операции десорбции урана, что приводит к снижению расходов реагентов.

Заявляемый процесс в сравнении с прототипом обладает значительно лучшими сорбционно-десорбционными характеристиками, что обеспечивает:

- меньшую сорбционную емкость ионита по урану при сорбции;

- высокую степень разделения рения и урана на стадии сорбции;

- более высокую степень очистки товарного десорбата рения.

Вышеперечисленное позволяет улучшить технико-экономические показатели сорбционно-десорбционного процесса извлечения рения из урансодержащего раствора:

- сокращение расхода реагентов на десорбцию;

- уменьшение количества технологического оборудования;

- снижение капитальных и текущих затрат на процесс элюирования урана.

1. Способ извлечения рения из урансодержащих растворов, включающий сорбцию рения на анионитах, отличающийся тем, что перед сорбцией в раствор вводят фульвеновые кислоты до их концентрации в растворе 25÷300 мг/л, и сорбцию рения ведут при значении pH раствора 2,8÷3,5 на слабоосновных и сильноосновных анионитах.

2. Способ по п.1, отличающийся тем, что концентрация фульвеновых кислот составляет 50÷100 мг/л.



 

Похожие патенты:
Изобретение относится к способу извлечения рения из кислых растворов. Способ включает осаждение сульфидов рения обработкой сульфидсодержащим осадителем в присутствии реагента-восстановителя в виде гидразинсодержащего соединения и прогревание реакционной смеси.
Изобретение относится к области металлургии редких тугоплавких металлов. Способ получения металлического рения путем восстановления перрената аммония включает размещение порошка перрената аммония в лодочке и его восстановление противотоком остро осушенного водорода с непрерывным продвижением лодочки в трубчатой печи при температуре 300-330 °С.

Изобретение относится к гидрометаллургии редких и благородных металлов. Способ включает растворение платины и рения соляной кислотой, обработку раствора в две ступени гидроксидом натрия на первой ступени с образованием частиц Pt(OH)4 и тиосульфатом натрия на второй ступени с образованием частиц ReS2.
Изобретение относится к способу разделения сульфидов платины и рения. .
Изобретение относится к области металлургии цветных и благородных металлов, в частности к способу переработки дезактивированных катализаторов на носителях из оксида алюминия, содержащих металлы платиновой группы и рений, и может быть использован при переработке вторичного сырья.
Изобретение относится к способу электрохимической переработки отходов жаропрочных никелевых сплавов, содержащих рений, вольфрам, тантал и другие ценные металлы, входящие в состав перерабатываемого сплава.
Изобретение относится к области извлечения редких элементов из горных пород, в частности из пород и руд черносланцевых формаций и продуктов их переработки, и может быть использовано в области прикладной геохимии, при поиске месторождений полезных ископаемых, в частности для извлечения рения.

Изобретение относится к способу переработки флотоконцентрата шлама электролиза меди, содержащего благородные металлы. .
Изобретение относится к способу выделения рения из концентрата сульфидов платины и рения. .

Изобретение относится к способу переработки фосфогипса для производства концентрата редкоземельных металлов (РЗМ) и гипса. Способ включает приготовление пульпы фосфогипса, выщелачивание РЗМ и фосфора серной кислотой.
Изобретение относится к способу извлечения урана из маточных растворов. Способ включает получение смолы, модифицированной аминофосфоновыми группами, и получение маточного раствора, содержащего от 25 до 278 г/л сульфата и уран.
Изобретение относится к области извлечения чистого пентаоксида ванадия из шлака, полученного при его производстве. В данном способе берут предварительно измельченный ванадийсодержащий шлак, сплавляют его с едким натром с получением метаванадата натрия.

Сорбционное извлечение ионов железа из кислых хлоридных растворов относится к области извлечения веществ с использованием сорбентов и может быть использовано в цветной и черной металлургии, а также для очистки промышленных и бытовых стоков.

Изобретение относится к сорбционному извлечению ионов кобальта Со2+ из кислых хлоридных растворов и может быть использовано в цветной и черной металлургии, а также для очистки промышленных и бытовых стоков.

Изобретение относится к способу извлечения галлия из летучей золы. Способ включает измельчение летучей золы, удаление Fe путем магнитной сеперации, затем растворение ее в соляной кислоте с получением продукта солянокислого выщелачивания.

Изобретение относится к способу извлечения галлия из летучей золы. Способ включает измельчение летучей золы и удаление Fе с помощью магнитной сепарации.
Изобретение относится к переработке вольфрамсодержащего сырья. Вольфрамсодержащий карбонатный раствор подвергают сгущению с помощью флоулянта ВПК-402 для удаления из раствора таких примесей, как ВО3 3-, РО4 3-, AsO4 3- и SiO3 2.

Изобретение относится к металлургии благородных металлов, в частности к извлечению благородных металлов из растворов. Способ извлечения благородных металлов из растворов включает контактирование раствора с сорбентом, нанесенным на носитель с развитой поверхностью.
Способ рекуперации молибдата или вольфрамата из водного раствора заключается в том, что молибдат или вольфрамат связывают из водного раствора при значении рН в пределах от 2 до 6 с водонерастворимым, катионизированным неорганическим носителем.

Изобретение относится к способу извлечения ионов серебра из низкоконцентрированных растворов. Способ включает пропускание раствора через полимерное волокно для сорбции ионов серебра. После пропускания раствора ионы серебра, содержащиеся в волокне, восстанавливают до металлического состояния 0,02 M водным раствором смеси аскорбиновой кислоты с глюкозой при соотношении 1:9. Затем выделяют металлическое серебро путем сжигания серебросодержащего волокна в атмосфере воздуха при температуре 450-500°C с последующей промывкой образовавшихся корольков металлического серебра. Техническим результатом изобретения является регенерация ионов серебра из сточных вод промышленных производств, а также усовершенствование способа извлечения серебра из технологических растворов, применяемых при получении текстильных материалов с антимикробными свойствами. 2 пр.
Наверх