Турбина высокого давления газотурбинного двигателя, кольцеобразный фланец, сектор направляющих лопаток и авиационный двигатель, содержащий турбину высокого давления

Турбина высокого давления газотурбинного двигателя содержит узел направляющих лопаток, включающий ряд неподвижных, выравнивающих поток лопаток, а также лопатки ротора. Внешний край направляющих лопаток в осевом направлении опирается на контур внешнего кожуха турбины. Внутренний край направляющих лопаток находится в аксиально скользящем соединении с контуром внутреннего кожуха, обеспечивающем свободное перемещение этого края вдоль оси двигателя, с ограничением аксиального смещения за счет аксиальной опоры внешним краем лопатки. Каждый внутренний край направляющей лопатки содержит выступы, проходящие в направлении контура внутреннего кожуха и имеющие форму скобы. Одна группа выступов ориентирована в направлении по ходу вперед турбины. Скобы соединены между собой в паре фланцев. Часть выступов направляющих лопаток, расположенных по ходу спереди, и фланцы, расположенные по ходу спереди, выполнены с возможностью образования прохода для подачи по ходу спереди воздуха в узел направляющих лопаток. Другие изобретения группы относятся к сектору узла указанных выше направляющих лопаток, кольцеобразному фланцу, соединяемому с одной из групп указанных выше скоб, а также авиационному двигателю, содержащему указанную выше турбину высокого давления. Группа изобретений позволяет обеспечить компенсацию разницы осевого расширения между внешним и внутренним кожухами. 4 н. и 10 з.п. ф-лы, 7 ил.

 

Область техники, к которой относится изобретение

Изобретение относится к установке узла направляющих лопаток турбины.

Основная область применения узла направляющих лопаток турбины высокого давления - это авиационный двигатель, например турбореактивный двигатель.

Уровень техники, предшествующий изобретению

В турбине высокого давления турбореактивного двигателя узел направляющих лопаток до настоящего времени крепился к нижней части кожуха, также именуемой «контур внутреннего кожуха». Далее по тексту контуром внутреннего кожуха будет называться узел структурных элементов, опирающихся или неподвижно закрепленных непосредственно на внутреннем кожухе турбины. Аналогичным образом, фраза «контур внешнего кожуха» будет использоваться применительно к узлу структурных элементов, опирающихся или неподвижно закрепленных непосредственно на внешнем кожухе турбины. Ранее уже было предложено несколько решений по креплению. Их можно разделить, по существу, на две категории: решения, где в качестве средств крепежа к контуру внутреннего кожуха обычно используются резьбовые соединения, подобные тем, которые описаны в ЕР 1369552, а также решения, в которых используются другие средства крепления, такие как шпильки.

Подобные решения, в которых используются шпильки, например, описаны в FR 2189632 и ЕР 0513956.

Одно из решений с использованием шпилек, применяющееся заявителем, показано на фиг.1.

Обозначения «по ходу спереди» и «по ходу сзади» используются применительно к потоку газов (слева направо на фиг.1). Аналогичным образом термины «наружный», «внешний», «внутренний» и «азимутальный» используются применительно к положению элементов относительно вала турбины (расположенного внизу на фиг.1). Таким образом, азимутальное положение соответствует азимутальному углу относительно оси вращения вала турбины. На фиг.1 показано, что узел направляющих лопаток турбины высокого давления включает в себя сектор, образующий ряд неподвижных, выравнивающих поток лопаток 1, расположенных по ходу спереди ряда подвижных лопаток 2 турбины высокого давления. Внутренний край 10 сектора закреплен в так называемой внутренней конусной части 30 контура внутреннего кожуха 3 турбины посредством шпилек 4. Этот контур внутреннего кожуха 3, в частности, содержит кожух 31 направляющих лопаток. Внешний край 11 сектора 1 аксиально опирается на кольцеобразную деталь 50, которая поддерживает подвижные лопатки 2 и которая неподвижно закреплена непосредственно во внешнем кожухе 5 турбины. За счет подобной установки (аксиальная опора на внешний край и крепление шпилькой внутреннего края) неподвижные направляющие лопатки 1 могут во время использования турбины наклоняться на несколько градусов в направлении по ходу назад или по ходу вперед для компенсации разницы объемных расширений, которые могут возникать между внешним кожухом 5 и внутренним кожухом 3. Помимо этого подобный узел позволяет избежать создания избыточного механического напряжения и гарантирует герметичность. Во время использования турбины под напором газов неподвижные лопатки 1 узла направляющих лопаток аксиально опираются на две зоны, отмеченные эллипсами, внутреннюю зону Z1 и внешнюю зону Z2, с примерно одинаковым распределением давления. Другими словами одна половина сдвигающего усилия неподвижных направляющих лопаток 1 прикладывается к зоне Z1, а другая половина - к зоне Z2.

Таким образом, независимо от крепежного решения, используемого в данный момент для установки узла направляющих лопаток турбины, в частности, со шпильками, необходимо рассчитать соответствующие размеры контура внутреннего кожуха и контура внешнего кожуха для восприятия приложенного давления. При расчете подобных размеров также необходимо принимать во внимание массу выступов внешнего и внутреннего кожухов, в частности, кожуха направляющих лопаток, которая может быть значительной.

Задача, на решение которой направлено изобретение, заключается в том, чтобы предложить решение, которое позволило бы уменьшить массу кожуха направляющих лопаток турбины за счет уменьшения или даже исключения усилий, прикладываемых напором газов, к контуру внутреннего кожуха во время использования.

Технический результат, достигаемый при реализации, заключается в том, что обеспечивается направление сдвигающего усилия на контур внешнего кожуха и компенсация разницы осевых объемных расширений, которые вероятно будут возникать между контуром внешнего кожуха и контуром внутреннего кожуха.

Краткое описание изобретения

Таким образом, изобретение относится к турбине высокого давления газотурбинного двигателя, содержащей, по меньшей мере, один узел направляющих лопаток, образованный кольцеобразным рядом неподвижных, выравнивающих поток лопаток, а также лопатки ротора, поворотно установленные по ходу после узла направляющих лопаток, упомянутый узел направляющих лопаток включает в себя внешний край и внутренний край, отличающейся тем, что внешний край аксиально опирается на контур внешнего кожуха турбины, а внутренний край находится в аксиально скользящем соединении с контуром внутреннего кожуха турбины, аксиальное скользящее соединение позволяет внутреннему краю свободно перемещаться вдоль оси двигателя, а аксиальное ограничение осуществляется за счет аксиальной опоры внешним краем лопатки.

Скользящее аксиальное соединение в контексте изобретения, таким образом, допускает определенную степень свободного перемещения внутреннего края лопатки вдоль оси двигателя или газотурбинного двигателя.

Аксиальное ограничение лопатки осуществляется за счет аксиальной опоры внешним краем лопатки, что позволяет достичь заявленной цели изобретения, поскольку при подобном скользящем аксиальном соединении по контуру внутреннего кожуха все сдвигающее усилие, возникающее во время использования газотурбинного двигателя, приходится на внешний кожух.

Скользящее аксиальное соединение в контексте изобретения не является узлом, допускающим определенное осевое смещение, как у узла с расширительным соединением. Установка внутреннего края лопатки с расширительным соединением не входит в объем данного изобретения, поскольку оно обязательно компенсирует часть сдвигающего усилия газотурбинного двигателя во время использования.

Контур внешнего кожуха может содержать кольцеобразную опору, неподвижно закрепленную на внешнем кожухе, на которую опирается внешний край направляющих лопаток.

По одному из предпочтительных вариантов осуществления

- контур внутреннего кожуха содержит кольцеобразный элемент с множеством осевых канавок,

- каждый внутренний край направляющих лопаток содержит выступы, которые проходят в направлении контура внутреннего кожуха и имеют форму скоб, одна группа из них ориентирована в направлении по ходу вперед турбины, а другая группа ориентирована в направлении по ходу назад турбины, скобы соединены между собой в паре фланцев, неподвижно скрепленных друг с другом, аксиальное скользящее соединение осуществляется при помощи множества шпилек, которые проходят радиально, по меньшей мере, от одного из фланцев в направлении внутренней части турбины, и каждая из которых вставлена в одну из осевых канавок кольцеобразного элемента контура внутреннего кожуха.

По предпочтительному варианту осуществления изобретения формируется неподвижный венец из направляющих лопаток турбины высокого давления с парой кольцеобразных фланцев, неподвижно скрепленных друг с другом, узел находится в аксиальном скользящем соединении с выступом контура внутреннего кожуха. Подобное соединение позволяет узлу центрироваться и свободно перемещаться в осевом направлении. Аксиальное ограничение (восприятие нагрузки) осуществляется за счет аксиальной опоры внешним краем лопатки, в частности внешними направляющими, расположенными по ходу сзади, на контуре внешнего кожуха.

Предпочтительно пара фланцев неподвижно скреплена друг с другом при помощи болтового соединения.

Предпочтительно, чтобы часть выступов направляющих лопаток, расположенных по ходу спереди, и фланцы, расположенные по ходу спереди, были выполнены с возможностью разграничения прохода, достаточно широкого для подачи воздуха по ходу спереди в узел направляющих лопаток.

Предпочтительно, чтобы фланец, из которого множество шпилек выступает внутрь, был фланцем, расположенным по ходу спереди, у которого кольцеобразный элемент контура внутреннего кожуха, содержащий осевые канавки, в которые вставляются шпильки, был элементом, неподвижно закрепленным на внутреннем кожухе турбины по ходу перед узлом направляющих лопаток.

Если узел направляющих лопаток содержит, по меньшей мере, один сектор, один из фланцев может содержать множество осевых ребер, ширина каждого из которых соответствует расстоянию, разделяющему две скобы одного и того же сектора узла направляющих лопаток, ориентированных одинаково, ребра фланца и скобы сектора соединяются друг с другом, образуя пазо-шиповое соединение, позволяющее осуществлять азимутальное позиционирование направляющих лопаток.

Фланец, содержащий ребра, предпочтительно является фланцем, расположенным по ходу сзади.

Каждый фланец предпочтительно изготовлен как единая цельная деталь, длина кольцеобразной формы которой позволяет осуществлять сборку полного кольцеобразного ряда неподвижных лопаток.

Изобретение также относится к сектору направляющих лопаток турбины, содержащему, по меньшей мере, одну неподвижную, выравнивающую поток лопатку, один из боковых краев которой содержит выступы в виде скоб, разделенные на две группы, ориентированных в разные стороны, одна - в направлении ведущей кромки, другая - в сторону задней кромки лопатки.

Сектор направляющих лопаток турбины может содержать единственную неподвижную выравнивающую поток лопатку.

Выступ на боковом крае может предпочтительно содержать группу из двух скоб.

Изобретение также относится к кольцеобразному фланцу, содержащему скобы, которые взаимодействуют путем сцепления с одной из групп скоб ранее описанного сектора.

Кольцеобразный фланец может содержать шпильки.

Изобретение также относится к авиационному двигателю, содержащему турбину высокого давления, описанную ранее.

Изобретение обладает следующими основными преимуществами:

- предотвращает усилия на контур внутреннего кожуха,

- позволяет уменьшить толщину контура внутреннего кожуха, в частности кожуха направляющих лопаток, а следовательно, позволяет уменьшить массу.

Краткое описание чертежей

Другие преимущества и признаки станут более понятны после ознакомления со следующим подробным описанием, со ссылкой на следующие чертежи, где

- на фиг.1 показан частичный продольный вид в сечении турбины высокого давления газотурбинного двигателя из уровня техники,

- на фиг.2 показан частичный продольный вид в сечении одного из вариантов осуществления турбины высокого давления по настоящему изобретению,

- на фиг.3А-3Е показаны различные последовательные этапы сборки направляющих лопаток турбины высокого давления по настоящему изобретению.

Подробное описание изобретения

Турбина высокого давления из уровня техники, показанная на фиг.1, была описана выше. Недостаток при сборке подобной турбины заключается в том, что необходимо задавать равное распределение сдвигающего усилия от газов между зоной Z1 и зоной Z2. Следовательно, необходимо сделать размеры контура внутреннего кожуха 3, в частности кожуха 31 направляющих лопаток, достаточными для восприятия сдвигающих усилий в зоне Z1.

Цель изобретения заключается в том, чтобы направить все осевые усилия от узла НР1 направляющих лопаток на контур внешнего кожуха 5, или в зону Z2.

Для этого предлагается создать аксиальное скользящее соединение в зоне Z1 (обозначенное черной горизонтальной линией LG на фиг.2). На изображенном варианте осуществления аксиальное скользящее соединение создается за счет жесткого кольцеобразного венца, образуемого фланцем 60, расположенным по ходу спереди, фланцем 61, расположенным по ходу сзади, и, по меньшей мере, одним сектором 1 направляющих лопаток, зацепляемым за фланцы 60, 61. Образованный подобным образом жесткий венец фиксируется при помощи системы из винтов 7 и гаек 8.

А именно контур внутреннего кожуха 3 содержит внутренний конус 30 с множеством осевых канавок 300 (фиг.3D).

Каждый внутренний край 10 секторов направляющих лопаток 1 содержит выступы 100, которые идут по направлению к контуру внутреннего кожуха 3 и которые выполнены в виде скоб, одна группа 100а которых ориентирована в направлении по ходу вперед турбины, а другая группа 100b ориентирована в направлении по ходу назад турбины. Скобы 110а, 110b сцеплены со скобами 600, 610 другой формы пары фланцев 60, 61. Последние детали 60, 61 неподвижно скреплены друг с другом при помощи системы из винтов/гаек 7, 8.

Аксиальное скользящее соединение LG образовано при помощи множества противоповоротных шпилек 601, которые проходят радиально от фланца, расположенного по ходу спереди, по направлению внутрь турбины (фиг.2 и 3В), каждая из которых вставляется в одну из осевых канавок 300 внутреннего конуса 30 контура внутреннего кожуха 3.

Образуемый подобным образом венец сопрягается с внутренним конусом 30, который непрерывно проходит вдоль контура внутреннего кожуха 3. Подобное соединение выполняет несколько функций: функцию центрирования, функцию аксиального скольжения и противоповоротную функцию.

Функция скольжения данного соединения обеспечивает жесткому венцу свободу перемещения вдоль оси двигателя. Жесткий венец под воздействием усилия от узлов HP направляющих лопаток соприкасается лишь с контуром внешнего кожуха 5 (у внешних направляющих DHP 11, расположенных по ходу сзади; зона Z2), не создавая осевых усилий на внутренний конус 30. Другими словами, усилия передаются на внешний кожух 5.

Скобы 100а, 600 внутреннего края 100а, расположенного по ходу спереди, сектора DHP и фланец 60, расположенный по ходу спереди, соответственно, выполняют следующие функции:

- подачу воздуха в секторы 1 узла DHP направляющих лопаток за счет разграничения предназначенного для этого прохода С (фигуры 3В, 3С).

- азимутальное позиционирование секторов 1 узла DHP направляющих лопаток. А именно, для осуществления азимутального позиционирования секторов, фланец 61, расположенный по ходу сзади, содержит множество осевых ребер 611, длина каждого из которых соответствует расстоянию, разделяющему две скобы 100а одного и того же сектора направляющих лопаток, ориентированных одинаково. Ребра 611 фланца 61 и скобы 600 сектора соединяются друг с другом таким образом, чтобы они образовывали пазо-шиповое соединение, обеспечивающее азимутальное позиционирование секторов направляющих лопаток (фиг.3А).

Сборка узла направляющих лопаток осуществляется в следующей последовательности (направление сборки на фигурах с 3А по 3D показано стрелкой):

- секторы 1 направляющих лопаток устанавливаются на фланце 61, расположенном по ходу сзади, путем дополнительного сцепления скоб 100b и скоб 610 фланца 61, расположенного по ходу сзади (фиг.3А),

- фланец 60, расположенный по ходу спереди, устанавливается в подузле, образованном фланцем 61, расположенным по ходу сзади, и секторами 1, путем дополнительного сцепления скоб 100а и скоб 600 фланца, расположенного по ходу спереди (фиг.3В),

- образованный подобным образом жесткий венец завинчивается резьбовыми соединениями 7, 8,

- завинченный венец устанавливается на внутреннем конусе 30 контура внутреннего кожуха 3 путем заведения каждой шпильки 601 в соответствующие осевые канавки 300, образованные на внутреннем конусе (фиг.3D),

- внутренний конус 30, находящийся в скользящем аксиальном соединении LG с венцом, крепится на контуре внутреннего кожуха 3 для завершения установки (фиг.3Е).

Разумеется, допускается внесение ряда усовершенствований или изменений, не выходя за объем изобретения.

Например, хотя в изображенном варианте осуществления каждый сектор 1 содержит единственную неподвижную лопатку, изобретение также допускает использование нескольких неподвижных лопаток в каждом из отдельных секторов.

1. Турбина высокого давления газотурбинного двигателя, содержащая, по меньшей мере, один узел направляющих лопаток, образованный кольцеобразным рядом неподвижных, выравнивающих поток лопаток, а также лопатки ротора, расположенные по ходу после узла направляющих лопаток, при этом узел направляющих лопаток включает в себя внешний край и внутренний край, отличающаяся тем, что внешний край (11) в осевом направлении опирается на контур внешнего кожуха (5, 50) турбины, а внутренний край (10) находится в аксиально скользящем соединении (LG) с контуром внутреннего кожуха (3, 30) турбины, обеспечивающем свободное перемещение внутреннего края (10) вдоль оси двигателя, с ограничением аксиального смещения за счет аксиальной опоры внешним краем лопатки,
- каждый внутренний край (10) направляющей лопатки содержит выступы (100а, 100b), которые проходят в направлении контура внутреннего кожуха (3) и имеют форму скобы, одна группа (100а) из них ориентирована в направлении по ходу вперед турбины, скобы (100а, 100b) соединены между собой в паре фланцев,
часть выступов (100а) направляющих лопаток, расположенных по ходу спереди, и фланцы (60), расположенные по ходу спереди, выполнены с возможностью образования прохода (С) для подачи по ходу спереди воздуха в узел направляющих лопаток.

2. Турбина по п.1, отличающаяся тем, что контур (5, 50) внешнего кожуха содержит кольцеобразную опору (50), неподвижно закрепленную во внешнем кожухе (5), на которую опирается внешний край (11) направляющих лопаток.

3. Турбина по п.1 или 2, отличающаяся тем, что
- контур (3, 30) внутреннего кожуха содержит кольцеобразный элемент (30) с множеством осевых канавок (300),
другая группа (100b) выступов ориентирована в направлении по ходу назад турбины, фланцы (60, 61) неподвижно скреплены друг с другом, при этом множество шпилек (601), проходящих радиально, по меньшей мере, от одного из фланцев (60) в направлении внутренней части турбины, каждая из которых вставлена в одну из осевых канавок кольцеобразного элемента контура внутреннего кожуха, обеспечивают аксиальное скользящее соединение (LG).

4. Турбина по п.3, отличающаяся тем, что фланцы (60, 61) неподвижно соединены друг с другом резьбовыми соединениями (7, 8).

5. Турбина по п.1 или 2, отличающаяся тем, что фланец (60), из которого множество шпилек (601) выступает внутрь, является фланцем, расположенным по ходу спереди, и у которой кольцеобразный элемент (30) контура внутреннего кожуха (3), содержащий осевые канавки (300), в которые вставлены шпильки, неподвижно закреплен на внутреннем кожухе (3) турбины по ходу спереди от узла направляющих лопаток.

6. Турбина по п.1 или 2, отличающаяся тем, что узел направляющих лопаток содержит, по меньшей мере, один сектор, у которого один из фланцев содержит множество осевых ребер (611), ширина каждого из которых соответствует расстоянию, разделяющему две скобы (100а) одного и того же сектора узла направляющих лопаток, ориентированные одинаково, ребра (611) фланца и скобы (100а) сектора соединяются друг с другом, образуя пазо-шиповое соединение, позволяющее осуществлять азимутальное позиционирование направляющих лопаток.

7. Турбина по п.6, отличающаяся тем, что фланец (61), содержащий ребра, расположен по ходу сзади.

8. Турбина по п. 1 или 2, отличающаяся тем, что каждый фланец (60, 61) изготовлен как единая цельная деталь, длина кольцеобразной формы которой позволяет осуществлять сборку полного кольцеобразного ряда неподвижных лопаток (1).

9. Сектор узла направляющих лопаток турбины, содержащий, по меньшей мере, одну неподвижную, выравнивающую поток лопатку, отличающийся тем, что один из боковых краев (10) содержит выступы в форме скоб (100), разделенные на две группы (100а, 100b), ориентированные в разные стороны, одна - в направлении ведущей кромки, другая - в сторону задней кромки лопатки,
скобы (100а, 100b) соединены между собой в паре фланцев,
часть выступов (100а) направляющих лопаток, расположенных по ходу спереди, и фланцы (60), расположенные по ходу спереди, выполнены с возможностью образования прохода (С) для подачи по ходу спереди воздуха в узел направляющих лопаток.

10. Сектор по п.9, отличающийся тем, что он содержит одну неподвижную выравнивающую поток лопатку.

11. Сектор (1) по п.10, отличающийся тем, что выступ на боковом краю (10) содержит группу из двух скоб (100а, 100b).

12. Кольцеобразный фланец (60, 61), содержащий скобы (600, 610), предназначенные для взаимного соединения с одной из групп скоб (100а, 100b) сектора по одному из п.9-11.

13. Кольцеобразный фланец (60, 61) по п.12, отличающийся тем, что он содержит шпильки (601).

14. Авиационный двигатель, содержащий турбину высокого давления по одному из п.1-8.



 

Похожие патенты:

Газотурбинный двигатель включает лопатку статора для направления горячих газов сжигания на роторные лопатки. Лопатка статора включает платформу, расположенную на радиально внутренней стороне лопатки относительно оси вращения двигателя.

Турбомашина содержит корпус, колесо турбины, установленное с возможностью вращения внутри корпуса, кольцо, образованное из сегментов и установленное концентрично вокруг колеса турбины, а также установочный элемент.

Узел неподвижных лопаток газотурбинного двигателя содержит кожух, оснащенные лопатками угловые секторы, неподвижно закрепленные в кожухе, кольцо из изнашиваемого материала, опирающееся на опору, неподвижно закрепленную в кожухе при помощи множества резьбовых соединений, а также шпильки для радиальной фиксации угловых секторов.

Кольцевой неподвижный элемент для использования с паровой турбиной (100). Неподвижный элемент содержит радиально наружное первое кольцо (228), радиально внутреннее второе кольцо (226) и, по меньшей мере, одну аэродинамическую поверхность (212).

Неподвижный блок лопаток газотурбинного двигателя содержит внутренний корпус, угловые сектора, снабженные лопатками, а также штифты радиального удержания угловых секторов.

Кольцевой узел лопаток газотурбинного двигателя содержит лопаточный сегмент с дуговой направляющей и лопатками, проходящими от направляющей, а также полый цилиндрический корпус, имеющий кольцевую канавку для размещения направляющей.

Обойма направляющих лопаток газовой турбины содержит осевые сегменты, по меньшей мере, один из которых выполнен в виде решетчатой структуры из труб. Решетчатая структура соответствующего осевого сегмента с внутренней и/или наружной стороны снабжена облицовкой из листового металла, имеющей отверстия для охлаждающего воздуха.

Сектор лопаток направляющего соплового аппарата турбины содержит переднее и заднее средства зацепления, а также износостойкое устройство. Переднее средство зацепления опирается на опору, установленную на корпусе турбины.

Разделенный на сектора направляющий аппарат турбомашины содержит внутреннюю и внешнюю платформы, связанные между собой радиальными лопатками. Внутренняя платформа соединена с радиальной перегородкой, несущей элементы из истираемого материала.

Кольцо статора модуля турбинного двигателя летательного аппарата имеет множество сквозных отверстий, предназначенных для расположения лопатки статора. Каждое отверстие определяет среднюю линию, проходящую между первым краем, предназначенным для расположения задней кромки лопатки, и вторым краем, предназначенным для расположения передней кромки лопатки. С отверстием для расположения лопатки статора соотнесена прорезь снятия механической нагрузки, выполненная сквозной на кольце и расположенная против и на удалении от упомянутого первого края такого отверстия в направлении средней линии. Другие изобретения группы относятся к части статора, содержащей указанное выше кольцо и множество лопаток статора, к модулю турбинного двигателя летательного аппарата, содержащему указанную выше часть статора, и к турбинному двигателю, содержащему такой модуль. Группа изобретений позволяет снизить вероятность образования трещин на кольце статора в области задней кромки лопатки. 4 н. и 9 з.п. ф-лы, 7 ил.

Направляющий аппарат турбины газотурбинного двигателя разделен на сектора, включающие внутреннюю и наружную платформы, связанные между собой радиальными лопатками. Каждый сектор внутренней платформы связан с сектором радиальной перегородки. Внутренняя периферийная часть каждого сектора перегородки снабжена зубцами и содержит сплошные части, чередующиеся с содержащими углубления частями. Элементы из изнашиваемого материала закрепляются на непрерывном кольцевом кронштейне, содержащем средства закрепления на секторах перегородки. Кронштейн выполнен с возможностью вращения и поворота в окружном направлении между положением монтажа и демонтажа и положением блокировки, в котором средства закрепления взаимодействуют со сплошными частями секторов перегородки для обеспечения удержания кронштейна на перегородке. Средства закрепления формируют участки кольцевой канавки, открывающейся в радиальном направлении наружу, в которых размещаются сплошные части секторов перегородки в положении блокировки. Другие изобретения группы относятся к сектору и непрерывному кольцевому кронштейну указанного выше направляющего аппарата, а также к турбине низкого давления и газотурбинному двигателю, включающим такой направляющий аппарат. Группа изобретений позволяет упростить изготовления секторов направляющего аппарата. 5 н. и 10 з.п. ф-лы, 8 ил.

Сопловой элемент турбины из композиционного материала, содержащего волокнистое армирование, уплотненное керамической матрицей, включает участки внутреннего и внешнего оснований и, по меньшей мере, одну лопатку, присоединенную к ним обоим. Участки оснований простираются на каждой стороне их зон соединения с лопаткой, а волокнистое армирование содержит волокнистую структуру, сплетенную посредством трехмерного или многослойного плетения и обладающую непрерывностью во всем объеме соплового элемента и по всей периферии одной или каждой лопатки. При изготовлении соплового элемента турбины создают плетением цельную волокнистую заготовку, содержащую в продольном направлении, по меньшей мере, один шаблон, включающий в себя первый сегмент, образующий заготовку для преформы лопатки, второй сегмент, продолжающий первый сегмент на одном его продольном конце и образующий два крыла, обращенные друг к другу, и третий сегмент, продолжающий первый сегмент на другом его конце и образующий два крыла, обращенные друг к другу. Разворачивают заготовку таким образом, чтобы крылья второго и третьего сегментов простирались перпендикулярно первому сегменту. Придают форму развернутой заготовке для получения волокнистой преформы соплового элемента, при этом образующую преформу лопатки часть получают посредством придания формы первому сегменту, а части, образующие преформы участков оснований, получают из крыльев. Затем уплотняют преформы матрицей с образованием цельного соплового элемента турбины с волокнистым армированием, содержащим волокнистую преформу, которая обладает непрерывностью во всем объеме соплового элемента и по всей периферии одной или каждой лопатки. Другие изобретения группы относятся к соплу турбины, выполненному как указано выше, а также к газовой турбине, включающей такое сопло. Группа изобретений позволяет повысить механические характеристики соплового элемента турбины. 4 н. и 11 з.п. ф-лы, 30 ил.

Газовая турбина осевого типа содержит ротор с чередующимися рядами воздухоохлаждаемых рабочих лопаток и теплозащитных экранов ротора и статор с чередующимися рядами воздухоохлаждаемых направляющих лопаток и теплозащитных экранов статора, установленных в держателе направляющих лопаток. Статор коаксиально охватывает снаружи ротор с образованием между ними тракта течения горячего газа так, что ряды рабочих лопаток и теплозащитные экраны статора и ряды направляющих лопаток и теплозащитные экраны ротора расположены напротив друг друга соответственно. Ряд направляющих лопаток и следующий ряд рабочих лопаток в направлении вниз по ходу течения потока образуют ступень турбины. Рабочие лопатки ступени турбины снабжены каждая на их концах венцом. Направляющие лопатки ступени турбины обеспечены каждая внешней платформой направляющей лопатки. Внешние платформы направляющих лопаток в ступени турбины и соседние теплозащитные экраны статора приспособлены друг к другу за счет выполнения каждой из внешних платформ направляющих лопаток с расположенным ниже по потоку выступом на ее задней стенке. Выступ проходит вниз по потоку к передней кромке венцов рабочей лопатки и в соответствующую выемку, выполненную в прилегающем теплозащитном экране статора. Теплозащитные экраны статора в ступени турбины охлаждаются посредством ввода охлаждающего воздуха в полость, находящуюся с задней стороны каждого теплозащитного экрана статора. Охлаждающий воздух выходит в тракт течения горячего газа через отверстия, имеющиеся в проходящей ниже и выше по потоку боковой поверхности теплозащитного экрана статора. Полость для введения охлаждающего воздуха через отверстие расположена с задней стороны внешней платформы каждой направляющей лопатки в ступени турбины. Струи охлаждающего воздуха направляются на венцы рабочих лопаток из полости с помощью отверстий, проходящих ниже по потоку через указанный выступ. Предусмотрены пазы, проходящие в направлении вниз по потоку через выступы для направления потока охлаждающего воздуха точно в промежуток между соседними, размещенными в окружном направлении теплозащитными экранами статора. Изобретение направлено на повышение эффективности охлаждения, снижение массового расхода охлаждающего воздуха. 2 з.п. ф-лы, 7 ил.

Газотурбинный двигатель включает устройство блокировки вращения сегмента направляющего соплового аппарата, установленного внутри кольцевого картера газотурбинного двигателя, и теплозащитный лист, установленный между внутренней стенкой картера и наружной стенкой сегмента направляющего аппарата. Устройство блокировки вращения содержит препятствующий вращению блокировочный штифт, установленный одновременно в выемке, выполненной в сегменте направляющего аппарата, и в гнезде, выполненном в картере. Теплозащитный лист содержит язычок, опирающийся на блокировочный штифт. Устройство блокировки содержит участок поверхности, расположенный радиально между язычком и упомянутой внутренней стенкой картера, образуя упор при возможном радиальном смещении теплозащитного листа во время работы газотурбинного двигателя. Другие изобретения группы относятся к вариантам блокировочного штифта, используемого в указанном выше газотурбинном двигателе. В одном варианте блокировочный штифт содержит прямой стержень и головку с первой стороной, параллельной оси стержня, и участком поверхности, перпендикулярным первой стороне, расположенным противоположно стержню. В другом варианте штифт дополнительно содержит лапку, перпендикулярную к оси прямого стержня, при этом участок поверхности, перпендикулярный первой стороне, образован лапкой. Группа изобретений позволяет снизить износ картера за счет исключения его контакта с теплозащитным листом. 3 н. и 6 з.п. ф-лы, 6 ил.

Устройство передачи газообразных продуктов сгорания к турбине содержит несколько направляющих лопаток сопла, пару боковых стенок кольцеобразной формы, между которыми расположены направляющие лопатки сопла, пару разнесенных между собой опор, а также средство фиксации боковых стенок и присоединенных направляющих лопаток сопла между опорами. Средство фиксации содержит несколько болтовых узлов в сборе, проходящих в аксиальном направлении через кольцевые опоры, отверстия в боковых стенках и прорези в направляющих лопатках сопла. Каждое отверстие и прорезь имеют внутренний размер в радиальном направлении больший, чем внешний размер болтового узла в сборе, причем внутренний размер имеет такую величину, которая соответствует перемещению боковых стенок и направляющих лопаток относительно опор в радиальном направлении при тепловом расширении и сжатии. Сборочный узел направляющих лопаток сопла содержит несколько направляющих лопаток сопла, пару боковых стенок сопла кольцеобразной формы, между которыми установлены направляющие лопатки, несколько полых вкладышей, а также несколько шпилек. Полые вкладыши жестко соединяют противолежащие аксиальные концы каждой направляющей лопатки к смежной боковой стенке. Шпильки соединяют один из аксиальных концов каждой направляющей лопатки к смежной боковой стенке. Через обе боковые стенки и направляющие лопатки в аксиальном направлении проходит несколько сквозных отверстий, образованных внутри вкладышей. Сквозные отверстия сконфигурированы для монтажа на двигателе сборочного узла направляющих лопаток сопла с возможностью замены, используя несколько болтовых узлов в сборе и обеспечения перемещения в радиальном направлении сборочного узла направляющих лопаток сопла, относительно болтовых узлов в сборе, при тепловом расширении и сжатии. При конфигурировании срединной секции газотурбинного двигателя жестко присоединяют один кольцевой опорный элемент к стационарному конструкционному элементу двигателя. Присоединяют с возможностью регулировки кожух турбины к другому опорному элементу, чтобы тем самым крепить его. Располагают и закрепляют кольцевой сборочный узел направляющих лопаток сопла между разнесенными на определенном расстоянии между собой опорными элементами. Группа изобретений позволяет снизить тепловую деформацию газотурбинного двигателя. 3 н. и 12 з.п. ф-лы, 10 ил.

Статор компрессора осевой турбомашины содержит кольцевую группу лопаток, проходящих в радиальном направлении, внутренний корпус, сквозь который проходят внутренние концы лопаток, и по меньшей мере одну полосу. Внутренний корпус содержит кольцевые сегменты, расположенные торцом к торцу. Полоса проходит вдоль длины окружности вдоль внутренней поверхности корпуса и сопряжена со средствами сцепления на внутренних концах лопаток для их фиксации. Полоса проходит непрерывно вдоль по меньшей мере двух соседних кольцевых сегментов и расположена на расстоянии от внутренней поверхности корпуса. Внутренняя поверхность корпуса покрыта слоем истираемого материала, заключающего в себе указанную полосу. Другое изобретение группы относится к компрессору низкого давления осевой турбомашины, содержащему указанный выше статор, оснащенный лопатками. Группа изобретений позволяет повысить жесткость конструкции статора компрессора осевой турбомашины и предотвратить его низкочастотные вибрации. 2 н. и 18 з.п. ф-лы, 4 ил.

При изготовлении композитного спрямляющего аппарата турбомашины, имеющего обод, снабженный рядом статорных лопаток, наматывают на оправку первые слои армирующей детали. Оправка служит формой и имеет выступающие части, а указанные первые слои армирующей детали имеют удлиненные прорези, расположенные напротив выступающих частей. Затем на каждую из выступающих частей помещают заранее изготовленную пластинку, а поверх пластинок наматывают последние слои армирующей детали с формированием при этом предварительной заготовки. В закрытую форму, содержащую предварительную заготовку, впрыскивают смолу и полимеризуют пропитанную смолой предварительную заготовку. После чего извлекают из формы полимеризованную предварительную заготовку и с помощью сварки закрепляют на каждой из пластинок основание пера или полку лопатки, если таковая у нее имеется. Другое изобретение группы относится к спрямляющему аппарату турбомашины, полученному указанным выше способом. Группа изобретений позволяет повысить механическую прочность спрямляющего аппарата. 2 н. и 13 з.п. ф-лы, 5 ил.

Газотурбинный двигатель включает сегмент кольцеобразного блока входного направляющего аппарата и опорное и охлаждающее устройство, поддерживающее сегмент направляющего аппарата и направляющее охлаждающую среду для его охлаждения. Сегмент включает площадку, расположенную на одной стороне сегмента, причем площадка имеет участок задней кромки, включающий направляющую, проходящую радиально внутри или снаружи от участка задней кромки. Опорное и охлаждающее устройство расположено радиально внутри или снаружи площадки и включает в себя фланцевую часть, проходящую радиально снаружи или внутри от опорного и охлаждающего устройства. Опорное и охлаждающее устройство дополнительно включает лепестковое уплотнение и удерживающий штифт. Удерживающий штифт проходит через лепестковое уплотнение, направляющую и фланцевую часть, чтобы прикрепить сегмент к опорному и охлаждающему устройству для определения радиального положения сегмента и удержать лепестковое уплотнение на месте для уплотнения контактной поверхности между направляющей и фланцевой частью от входа охлаждающей текучей среды. Изобретение позволяет упростить конструкцию газотурбинного двигателя. 15 з.п. ф-лы, 1 ил.

Сегмент платформы, предназначенный для обеспечения опоры для сопловой направляющей лопатки для газовой турбины, содержит: поверхность канала для прохода газа, находящуюся в контакте с потоком газа, выходящего из камеры сгорания; поверхность охлаждения, расположенную напротив поверхности канала для прохода газа и имеющую тепловую связь с ней; стенку, выступающую от поверхности охлаждения и простирающуюся по меньшей мере частично в направлении потока; и дополнительную стенку, выступающую от поверхности охлаждения и простирающуюся по меньшей мере частично в направлении потока. Расстояние в направлении вдоль окружности между стенкой и дополнительной стенкой уменьшается вдоль направления потока. Поверхность давления сопловой лопатки и сегмент платформы образуют первый край вдоль первой кривой линии, где поверхность давления и сегмент платформы соединяются, при этом первая кривая линия имеет сходство с частью аэродинамического профиля направляющей лопатки. Поверхность всасывания сопловой лопатки и сегмент платформы образуют второй край вдоль второй кривой линии, где поверхность всасывания и сегмент платформы соединяются, при этом вторая линия имеет сходство с другой частью аэродинамического профиля направляющей лопатки. Стенка и дополнительная стенка простираются приблизительно параллельно первому краю и второму краю. Ширина канала, ограниченного стенкой и дополнительной стенкой, уменьшается от расположенного выше по потоку участка поверхности охлаждения к расположенному ниже по потоку участку поверхности охлаждения. Изобретение направлено на увеличение долговечности сегмента платформы. 3 н. и 10 з.п. ф-лы, 4 ил.
Наверх