Способ преобразования энергии с регенерацией энергоносителей в циклическом процессе теплового двигателя

Изобретение относится к энергетике. Способ преобразования энергии с регенерацией энергоносителей в циклическом процессе теплового двигателя осуществляют в первом энергетическом контуре циркуляции: газогенератор - турбина - реактор гидрирования - сепаратор - газогенератор, в котором углеводородное топливо и кислород или обогащенный кислородом воздух подают в газогенератор, топливо изотермически газифицируют в автотермическом или термическом процессе с образованием смеси водорода и оксидов углерода, и во втором энергетическом контуре циркуляции: паровые котлы - пароперегреватели - паровые турбины - конденсаторы - паровые котлы. При этом конденсат пара и пирогенную воду распределяют между колами пропорционально их производительности, а конденсат влаги воздуха используют для подпитки котлов. Изобретение позволяет интенсифицировать процесс преобразования энергии. 5 з.п. ф-лы, 1 ил.

 

Изобретение относится к энергетике, а именно к способам преобразования внутренней энергии углеводородного топлива в механическую работу.

Известные современные способы получения тепловой энергии, за исключением атомной, термоядерной, солнечной и термальной, основаны на непосредственном сжигании источников энергии, то есть полном окислении всех горючих элементов, входящих в топливо (см., например, книгу Л.С. Стерман и др. «Тепловые и атомные электростанции», М., Энергоиздат, 1982).

Недостатки этих способов, при всем их многообразии, имеют общий характер и заключаются в следующем:

- невозможность переработки отходов с содержанием в них воды более 75%;

- теоретический к.п.д. лучших теплосиловых установок не превышает 75%, а эффективный - 35%;

- продукты сгорания, выбрасываемые в атмосферу, загрязняют окружающую среду и создают проблемы для существования самой жизни на Земле;

- природные, не возобновляемые топливно-энергетические ресурсы используются неэффективно;

- биомасса растений и продуктов жизнедеятельности человека и животных используются для получения энергии эпизодически и неэффективно.

Известен способ утилизации энергии, полученной в циклическом термохимическом процессе, и преобразования ее в механическую энергию, согласно которому смесь водорода и оксида углерода (энергоноситель, подаваемый в двигатель) в молярном соотношении 3:1 подается из емкости в реактор, в котором в ходе каталитической реакции образуется смесь метана и водяного пара (рабочее тело) и подается в рабочую полость двигателя, в результате расширения смеси вырабатывается механическая энергия. Отработанная метанопаровая смесь направляется в систему охлаждения газоохлаждаемого высокотемпературного атомного реактора, который находится вне двигателя, где превращается в исходный водород и оксид углерода (см. заявку WO 03/091549, кл. F01K 25/06, 06.11.2003).

Данный способ позволяет значительно, по сравнению с известными, сократить расход топлива, однако обладает следующими недостатками:

- для обеспечения цикличности процесса необходим высокотемпературный источник тепловой энергии, находящийся вне двигателя;

- способ может быть реализован только в стационарных условиях и в непосредственной близости от высокотемпературного источника энергии;

- способ не позволяет использовать другие виды углеродсодержащего сырья;

- способ не позволяет создавать автономные и транспортные двигатели;

- энергоноситель (смесь водорода и оксида углерода) должен изготавливаться на специализированном предприятии.

Известен способ преобразования энергии, выделяющейся в экзотермическом процессе, в механическую работу, включающий подачу исходного сырья в первый реактор (газогенератор), взаимодействие компонентов сырья в экзотермическом процессе, в результате которого образуется водород и оксид углерода, которые подают в реактор метанатор (частный случай реактора Фишера-Тропша), где посредством каталитической реакции образуют рабочее тело - метанопаровую смесь, при расширении которой в двигателе производят механическую работу, а отработанное рабочее тело направляют на регенерацию во второй реактор и затем возвращают в первый реактор. При этом исходное сырье в первом реакторе подвергают автотермической или термической газификации с отделением водорода и оксида углерода, подаваемых в реактор метанатор, от сопутствующих продуктов, каталитическую реакцию между водородом и оксидом углерода осуществляют при температуре от 600К до 1400К и давлении 0,6-20 МПа (патент RU №2323351, кл. F01K 23/04, 27.04.2008).

Указанный способ имеет следующие недостатки:

- не используются энергия и газы, выделяющиеся в газогенераторе при риформинге или газификации исходного сырья;

- плазмохимический риформинг или газификация используются только для переработки водных смесей;

- проведение процесса метанирования при температуре более 700К на товарных катализаторах трудноосуществимо;

- ограничение температуры от 600К до 1400К и давления 0,6-20 МПа существенно ограничивает достигаемые результаты.

Наиболее близким по технической сущности и достигаемому результату является способ преобразования энергии с регенерацией энергоносителей в циклическом процессе теплового двигателя, заключающийся в том, что углеводородное топливо и кислород подают в газогенератор, в котором топливо газифицируют или конвертируют в автотермическом или термическом режиме с образованием смеси водорода, оксида углерода и сопутствующих продуктов, полученную смесь водорода и оксида углерода отделяют от сопутствующих продуктов и подают в устройство для преобразования их кинетической и тепловой энергии в механическую энергию, после чего смесь водорода и оксида углерода подают в реактор гидрирования, где в каталитическом процессе образуют углеводородные вещества и пирогенную воду, которые через устройство преобразования энергии смеси подают в газогенератор для их конвертирования с образованием таким образом первого контура циркуляции: газогенератор - устройство преобразования энергии газа в механическую энергию - устройство для отделения сопутствующих продуктов - реактор гидрирования - устройство преобразования энергии газов в механическую энергию - газогенератор, воду в паровых котлах, обогреваемых продуктами газификации и гидрирования, испаряют и подают в устройство преобразования энергии пара в механическую энергию, например, в турбину (патент RU №2386819, кл. F01K 23/04, 20.04.2010).

В известном техническом решении удалось существенно повысить ряд характеристик и устранить присущие способу циклической регенерации недостатки, выявившиеся в процессе практической реализации данного способа.

Однако при этом выявлены следующие недостатки:

- использование метанатора для регенерации оксида углерода, если метан не является целевой продукцией энерготехнологической установки, приводит к увеличению расхода энергии на собственные нужды, в связи с компримированием горячей метанопаровой смеси и к увеличению стоимости оборудования, необходимого для реализации способа;

- мольное отношение водорода к оксиду углерода в синтез-газе - 3:1 ограничивает применение способа;

- отделение сопутствующих продуктов от синтез-газа усложняет технологическую схему процесса регенерации топлива;

- использование плазмохимического способа не всегда целесообразно, поскольку ограничивает использование других способов газификации исходного сырья;

- использование благородных газов или смеси благородных газов уменьшает производительность газогенераторов и реакторов гидрирования оксидов углерода.

Задача, положенная в основу заявляемого изобретения, заключается в создании способа преобразования энергии с циклической регенерацией оксидов углерода в двигателях внутреннего сгорания, в котельных агрегатах в процессах извлечения и переработки сырья, содержащего углеводороды, включая газы, смеси различных веществ, промышленные и бытовые отходы, лишенного указанных недостатков.

Технический результат заключается в упрощении процесса регенерации оксидов углерода, образующихся в тепловых двигателях или в котельных агрегатах, или в различных технологических процессах переработки сырья.

Задача, положенная в основу заявляемого изобретения, с достижением указанного технического результата решается тем, что в известном способе преобразования энергии с регенерацией энергоносителей в циклическом процессе теплового двигателя, включающем подачу подготовленного сырья и кислорода в газогенератор, в котором его газифицируют или конвертируют в автотермическом или термическом режиме с образованием синтез-газа, подачу синтез-газа в устройство для преобразования энергии газа в механическую энергию, разделение синтез-газа на водород, оксид углерода и сопутствующие продукты, подачу отделенных водорода и оксида углерода в реактор гидрирования, подачу продуктов гидрирования во второе устройство преобразования энергии газов в механическую энергию, возвращение отработанных в устройстве веществ в газогенератор для повторной газификации, при этом образуется контур циркуляции: газогенератор - устройство преобразования энергии синтез-газа в механическую энергию -разделение синтез-газа на водород оксид углерода и сопутствующие продукты - реактор гидрирования - устройство преобразования энергии продуктов гидрирования в механическую энергию - газогенератор, в соответствии с изобретением, часть образовавшихся в реакторе гидрирования углеводородных веществ отделяют от пирогенной воды и подают в газогенератор для газификации с образованием, первого (газового) контура циркуляции: газогенератор - устройство преобразования энергии газа в механическую энергию - реактор гидрирования - газогенератор, а оставшуюся часть направляют на дальнейшую переработку в ректификационную колонну; процесс проводят в изотермическом режиме: в газогенераторе температура процесса определяется предельно допустимой температурой на входе в турбину, в реакторе гидрирования - температурой необходимого строения и молекулярного состава; для поддержания изотермического режима в газогенераторе и реакторе гидрирования располагают паровые котлы пар подают в устройство преобразования энергии пара в механическую энергию, например в турбину, отработанный пар направляют в конденсатор, конденсат и отделенную пирогенную воду, возвращают в паровые котлы и формируют второй (паровой) контур циркуляции: паровые котлы - устройство преобразования энергии пара в механическую энергию - конденсатор - паровые котлы, при этом конденсат пара и пирогенную воду распределяют между котлами пропорционально их производительности; влагу поступающего в воздухозаборник воздуха конденсируют до остаточного содержания не более 0,2 г/м3, а образовавшийся конденсат собирают и используют для подпитки паровых котлов или других целей. Осушение воздуха производят в каскаде теплообменников и, если необходимо, в детандерной турбине, при этом температура на выходе из турбины должна быть в пределах 0-3°С.

В газогенераторе двигателя получают синтез-газ с мольным отношением H2:CO и H2:CO2, необходимым и достаточным для полной регенерации оксидов углерода.

При мольном отношении CO:CO2 меньше 1 дополнительный водород, необходимый для гидрирования углекислого газа, получают из пирогенной воды или перегретого водяного пара.

Из реактора гидрирования часть полученных в нем углеводородов направляют в ректификацию колонну на дальнейшую переработку.

На чертеже представлена принципиальная схема материальных потоков теплового двигателя для реализации описанного способа преобразования энергии.

Описываемый способ преобразования энергии может быть реализован в тепловом двигателе, например в двигателе внутреннего сгорания в соответствии с фиг.1, который имеет газогенератор 1 с расположенным в нем паровым котлом 2 и пароперегревателем 3, при этом вход газогенератора 1 подключен к источникам кислорода и углеводородного топлива, а выход синтез-газа - к устройству для преобразования кинетической и тепловой энергии газа в механическую энергию 4, например к турбине, последнее выходом подключено к реактору гидрирования 5, в котором расположен второй паровой котел 6, при этом последний выходом через пароперегреватель подключен к устройству преобразования энергии пара в механическую энергию 7, например, к турбине, подключенной выходом к конденсатору 8, выход воды из которого подключен к паровым котлам 2 и 6, реактор гидрирования 5 выходом углеводородов подключен к газогенератору 1.

При постоянной переработке сырья реактор гидрирования подключен выходом углеводородов и пирогенной воды к колонне ректификации 9.

В качестве источника кислорода, подаваемого в газогенератор 1, могут быть использованы воздуходувка или кислородная станция (на Фиг.1 не показаны), а для извлечения паров воды из воздуха использован каскад теплообменников и, если необходимо, детандерная турбина (на схеме не показаны).

Способ преобразования энергии с регенерацией энергоносителей в циклическом процессе теплового двигателя заключается в том, что углеводородное топливо и кислород подают в газогенератор 1, в котором топливо газифицируют или конвертируют в автотермическом или термическом режиме с образованием синтез-газа. Полученный синтез-газ подают в устройство для преобразования энергии газа в механическую энергию 4, после которого - в реактор гидрирования 5, где в каталитическом процессе образуют углеводородные вещества и пирогенную воду, углеводороды подают в газогенератор 1 для их газификации, образуя, таким образом, газовый (первый) контур циркуляции: газогенератор 1 - устройство преобразования энергии газа в механическую энергию 4 - реактор гидрирования 5 - газогенератор 1.

Из паровых котлов 2 и 6 пар подают в устройство преобразования энергии пара в механическую энергию 7, например в турбину. Паровые котлы 2 и 6 располагают соответственно в газогенераторе 1 и реакторе гидрирования 6 и путем поглощения избыточного тепла поддерживают в газогенераторе 1 и реакторе гидрирования 5 изотермический режим. Пар из устройства преобразования энергии пара в механическую энергию 7 направляют в конденсатор 8, конденсат и пирогенную воду возвращают в паровые котлы 2 и 6 пропорционально их производительности и формируют, таким образом, паровой (второй) контур циркуляции: паровые котлы 2 и 6 - устройство для преобразования энергии пара в механическую энергию 7 - конденсатор 8 - паровые котлы 2 и 6.

Влагу поступающего в воздухозаборник воздуха конденсируют в теплообменниках до остаточного содержания не более 0,2 г/м3, а конденсат собирают и используют для подпитки паровых котлов 2 и 6 или для других целей.

В газогенераторе 1 двигателя получают синтез-газ с мольным отношением H2:CO и H2:CO2, необходимым и достаточным для полной регенерации оксидов углерода.

При мольном отношении CO:CO2 меньше 1 дополнительный водород, необходимый для гидрирования углекислого газа, получают из пирогенной воды или перегретого водяного пара.

При постоянной переработке сырья часть полученных в реакторе гидрирования 5 углеводородов направляют на дальнейшую переработку в ректификационную колонну 9.

Газ или преимущественно жидкое топливо, поскольку энтальпия его окисления, отнесенная к 1 литру объема, максимальна, из топливного бака или из баллона подают в газогенератор 1 двигателя. В газогенераторе 1 в свободном объеме при температуре 1625-2500К или при температуре 785-1620К в присутствии катализаторов образуется синтез газ - смесь водорода и оксидов углерода. Процесс предпочтительно проводят в интервале давлений 0,11-30 МПа. При плазмокаталитической газификации температуру в плазме устанавливают в пределах 1700-10000К и более. Из синтез-газа в реакторе гидрирования 5 образуются углеводороды с количеством углеродных атомов от C1 до C25, кислородсодержащие углеводородные соединения C1-C4 и пары воды. Обычно процесс проводят при давлении 3,1 МПа и температуре 610К. Однако существуют и другие режимы.

Теоретический эффективный коэффициент полезного действия может достигать 0,73, коэффициент цикла Карно - 0,89.

Настоящее изобретение может быть использовано в энергетике и машиностроении, в частности в автомобилестроении или судостроении, а также в химической, металлургической и топливодобывающей отраслях промышленности для одновременного получения энергии и различной целевой продукции.

1. Способ преобразования энергии с регенерацией энергоносителей в циклическом процессе теплового двигателя, заключающийся в том, что углеводородное топливо и кислород подают в газогенератор, в котором топливо газифицируют или конвертируют в автотермическом или термическом режиме с образованием смеси водорода и оксида углерода, полученную смесь водорода и оксида углерода подают в устройство для преобразования их кинетической и тепловой энергии в механическую энергию, после чего смесь водорода и оксида углерода подают в реактор гидрирования, где в каталитическом процессе образуют углеводородные вещества и пирогенную воду, которые подают в газогенератор для их конвертирования с образованием таким образом первого контура циркуляции: газогенератор - устройство преобразования кинетической и тепловой энергии в механическую энергию - реактор гидрирования - газогенератор, в паровых котлах, испаряют воду и подают пар в устройство преобразования энергии пара в механическую энергию, например в турбину, отличающийся тем, что паровые котлы располагают в газогенераторе и реакторе гидрирования и таким образом путем нагрева воды в последних поддерживают в газогенераторе и реакторе гидрирования изотермический режим процессов газификации и гидрирования, пар из устройства преобразования энергии пара в механическую энергию направляют в конденсатор, из которого конденсат пара возвращают в паровые котлы и формируют таким образом второй контур циркуляции: паровые котлы - устройство преобразования энергии пара в механическую энергию - конденсатор - паровые котлы, при этом конденсат пара распределяют между котлами пропорционально их производительности, причем при газификации или конвертации в газогенераторе углеводородного топлива в автотермическом или термическом режиме образуют смесь водорода и оксидов углерода, одновременно в реакторе гидрирования в каталитическом процессе образуют смесь углеводородных веществ и пирогенную воду, из реактора гидрирования часть полученных в нем углеводородов отделяют от полученной смеси и направляют на дальнейшую переработку в ректификационную колонну, а в газогенератор двигателя подают чистый кислород из кислородной станции или кислород в составе воздуха из воздуходувки, при этом поступающий в воздухозаборник воздух предварительно охлаждают или нагревают, в зависимости от климатических условий, до точки росы в каскаде теплообменников, а затем охлаждают до температуры 0°…-3°C в детандерной турбине, процесс охлаждения повторяют до остаточного содержания влаги в воздухе не более 0,2 г/м3, а образовавшийся конденсат собирают и используют для подпитки паровых котлов.

2. Способ по п.1, отличающийся тем, что охлаждение воздуха производят в каскаде теплообменников холодным воздухом, или холодным азотом, или охлаждающей газовой смесью, нагрев - горячей водой или паром, а конденсат воды используют для подпитки паровых котлов.

3. Способ по п.1, отличающийся тем, что пар из парового котла, установленного в реакторе гидрирования, направляют в устройство преобразования энергии пара в механическую энергию через установленный в газогенераторе пароперегреватель.

4. Способ по п.1, отличающийся тем, что в газогенераторе двигателя получают синтез-газ с мольным отношением H2:CO и H2:CO2, необходимым и достаточным для полной регенерации оксидов углерода.

5. Способ по п.1, отличающийся тем, что при мольном отношении CO:CO2 меньше 1 дополнительный водород, необходимый для гидрирования углекислого газа, получают из пирогенной воды или перегретого водяного пара.

6. Способ по п.1, отличающийся тем, что часть пара из устройства преобразования энергии пара в механическую энергию направляют в установленный в газогенераторе пароперегреватель, после чего перегретый пар возвращают в устройство преобразования энергии пара в механическую энергию.



 

Похожие патенты:

Изобретение относится к области тепловой энергетики, в частности к системам выработки электроэнергии на основе использования твердого топлива, преимущественно бурых и каменных углей.

Изобретение относится к теплоэнергетике, а также может быть использовано в нефтяной, газовой и химической промышленности. .

Изобретение относится к теплотехнике, а именно к устройствам, преобразующим тепловую энергию в электрическую. .

Изобретение относится к энергетике. Система, работающая по циклу Ранкина, выполнена с возможностью преобразования отработанного тепла в механическую и/или электрическую энергию. Система имеет новую конфигурацию элементов традиционной системы, работающей по циклу Ранкина: трубопроводов, каналов, нагревателей, детандеров, теплообменников, конденсаторов и насосов, чтобы обеспечивать более эффективную рекуперацию энергии от источника отработанного тепла. В одном аспекте предложенная система выполнена таким образом, что три различных потока конденсированной рабочей текучей среды используются на различных этапах цикла рекуперации. Первый поток конденсированной рабочей текучей среды испаряется с помощью расширенного первого потока испаренной рабочей текучей среды, второй поток конденсированной рабочей текучей среды поглощает тепло из расширенного второго потока испаренной рабочей текучей среды, а третий поток конденсированной рабочей текучей среды удаляет тепло непосредственно из потока с отработанным теплом. Система, работающая по циклу Ранкина, выполнена с возможностью использования диоксида углерода в сверхкритическом состоянии в качестве рабочей текучей среды. Изобретение позволяет повысить эффективность преобразования отработанного тепла. 3 н. и 12 з.п. ф-лы, 7 ил., 1 табл.

Изобретение относится к энергетике. Система, работающая по циклу Ранкина, выполнена с возможностью преобразования отработанного тепла в механическую и/или электрическую энергию. В одном аспекте система, выполненная в соответствии с настоящим изобретением, имеет новую конфигурацию компонентов традиционной системы, работающей по циклу Ранкина: трубопроводов, каналов, нагревателей, детандеров, теплообменников, конденсаторов и насосов. В другом аспекте система, работающая по циклу Ранкина, выполнена таким образом, что изначальный поток с отработанным теплом используется для испарения первого потока рабочей среды, а результирующий обедненный теплом поток с отработанным теплом и первая часть расширенного второго потока испаренной рабочей текучей среды используются для увеличения тепла, обеспечиваемого расширенным первым потоком испаренной рабочей текучей среды при производстве второго потока испаренной рабочей текучей среды. Система, работающая по циклу Ранкина, выполнена с возможностью использования диоксида углерода в качестве рабочей текучей среды. Изобретение позволяет повысить эффективность рекуперации энергии от источника отработанного тепла. 3 н. и 21 з.п. ф-лы, 7 ил., 1 табл.
Наверх