Способ определения порога обнаружения радиационного монитора

Изобретение относится к ядерной технике, а именно к области радиационного мониторинга, и может быть использовано в машиностроении, медицине и других отраслях для контроля несанкционированного перемещения ядерных материалов и других радиоактивных веществ. Технический результат изобретения - уменьшение порога обнаружения радиационного монитора и определение порога обнаружения монитора, содержащего различное число детекторов, иное число критериев обработки при другом фоне регистрируемого излучения без проведения дополнительных измерений. Технический результат достигается тем, что минимальный порог обнаружения радиационного монитора Пмин с числом детекторов d1, числом используемых критериев k1 при фоне регистрируемого излучения Nфон1 и квантили статистической обработки z1 определяют на основании измеренного порога П1 варьированием параметров z2 и k2 как П м и н = min [ П 1 z 2 ( d 1 2 / 3 + k 2 2 / 3 ) N ¯ ф о н 2 z 1 ( d 1 2 / 3 + k 1 2 / 3 ) N ¯ ф о н 1 ] z 2 , k 2 , а при других параметрах Nфон2, z2, d2 и k2 порог обнаружения определяют как П 2 = П 1 z 2 ( d 1 2 / 3 + k 2 2 / 3 ) N ¯ ф о н 2 z 1 ( d 1 2 / 3 + k 1 2 / 3 ) N ¯ ф о н 1 , где N ¯ ф о н = N ф о н ( k 1 + 2 k 2 + 3 k 3 + + n k n ) / i = 1 n k i , ki - число сочетаний счета i детекторов, Nфон - фон одного детектора, n≤d. 1 з.п. ф-лы, 5 табл.

 

Изобретение относится к ядерной технике, а именно к области радиационного мониторинга, и может быть использовано в машиностроении, медицине и других отраслях для контроля несанкционированного перемещения ядерных материалов и других радиоактивных веществ.

Радиационный монитор не является средством измерения. Это пороговое устройство, которое регистрирует фотонное и (или) нейтронное излучение контролируемых ядерных материалов и радиоактивных веществ на уровне внешнего радиационного фона и при превышении пороговых значений выдает сигнал. При этом в задачу контроля не входит определение типа материала и его количества.

Основной характеристикой любого радиационного монитора является его порог обнаружения, который характеризует чувствительность монитора.

Известен способ определения порога обнаружения радиационного монитора при перемещении стандартного образца ядерного материала или радиоактивного вещества, определенный ГОСТ Р 51635-2000. Мониторы радиационные ядерных материалов. Общие технические условия. Госстандарт России. Москва, 2000 г., с.16-17, в котором проводят заданное количество испытаний, пересечений или нахождений стандартного образца в чувствительной области радиационного монитора. При этом минимальное число срабатываний не должно быть меньше числа срабатываний определенных в ГОСТ Р 51635, таблица 1 (доверительная вероятность 0,95).

Основной составляющей частью монитора являются его детекторы. С их помощью регистрируют радиоактивное излучение контролируемых материалов. Количество детекторов d может быть разным - от одного до нескольких десятков. Оно определяется размером контролируемой зоны, требуемой чувствительностью и стоимостью монитора.

Таблица 1
Общее количество перемещений Минимальное количество срабатываний
8 7
9 8
10 9
15 12
20 15
30 20
50 32
100 59
250 139
1000 527

Известен способ определения порога обнаружения радиационного монитора на основании подсчета числа обнаружений стандартного образца ядерного материала или радиоактивного вещества из М испытаний при заданной доверительной вероятности, отличающийся тем, что в качестве стандартного образца используют источник излучения в виде ядерного материала или радиоактивного вещества с произвольным потоком излучения, измеряют величину произвольного потока излучения, находят среднее значение суммарного счета, значение фона и дополнительного излучения, зарегистрированного блоком детектирования, путем сравнения вероятности обнаружения p, определенной из биномиального распределения вероятности обнаружения источника излучения в виде ядерного материала или радиоактивного вещества и интегральной вероятности Pk(K) числа отсчетов k блока детектирования радиационного монитора, находят значение порогового потока обнаружения радиационного монитора из выражения:

Ф п о р = Ф L K ф K K ф ,

где: Фпор - значение порогового потока обнаружения радиационного монитора; Ф - величина произвольного потока излучения; Kф - значение фона; L - порог регистрации, определяемый на основании установленной вероятности ложных тревог и фона Kф; K - среднее значение суммарного счета. Патент Российской Федерации №2467353, МПК: G01T 1/167, 2011 г. Прототип.

Счет с каждого детектора или их комбинацию подвергают статистической обработке. Каждый радиационный монитор характеризуется количеством детекторов d и числом используемых критериев k - комбинаций счета от различных детекторов.

Например, при использовании радиационного монитора с четырьмя детекторами, кроме анализа счета с каждого из них, можно использовать суммы пар детекторов, а также суммарный счет всех детекторов - всего 11 комбинаций.

Получение дополнительной информации за счет комбинации счета с детекторов уменьшает порог обнаружения радиационного монитора, но повышает число ложных обнаружений. Это ведет к необходимости поднимать порог регистрации, чтобы обеспечить неизменное число ложных срабатываний. Поэтому порог обнаружения зависит от числа детекторов и количества критериев.

Для нормального статистического распределения счета в используемых алгоритмах обработки большинства радиационных мониторов порог регистрации L определяют как сумму среднего фона Ифон и добавки, состоящей из среднеквадратического отклонения фона, умноженной на квантиль z нормального распределения, определяемую принятой вероятностью ложных обнаружений,

L = N ф о н + z N ф о н .

Квантили z для некоторых сочетаний счета от блоков детектирования при вероятности ложных обнаружений 10-3 и соответствующие критерии обработки представлены в таблице 2.

Вероятность ложных обнаружений 10-3 регламентирована ГОСТ Р 51635-2000.

Таблица 2
Число БД Число критериев k Описание критериев Вероятн. ложных обнаруж. Квантиль z
1 1 счет одного детектора 1,00·10-3 3,09
2 2 счет каждого детектора 5,00·10-4 3,29
2 3 счет каждого детектора, сумма счета всех детекторов 3,33·10-4 3,40
4 4 счет каждого детектора 2,50·10-4 3,48
4 5 счет каждого детектора, сумма счета всех детекторов 2,00·10-4 3,54
4 6 счет каждого детектора, 2 суммы счета противоположных детекторов 1,67·10-4 3,59
4 8 счет каждого детектора, 2 суммы счета противоположных детекторов, 2 суммы счета перекрестных детекторов 1,25·10-4 3,66
4 9 счет каждого детектора, 2 суммы счета противоположных детекторов, 2 суммы счета перекрестных детекторов, сумма счета всех детекторов 1,111·10-4 3,69

Порог обнаружения, пропорциональный чистому счету, увеличивается не только с ростом квантиля, но и с ростом фона как N ф о н . Значение фона зависит от того, какие комбинации счета детекторов используются.

Если Nфон - фоновый счет одного детектора и используется счет пар детекторов, то порог регистрации прирастает с фоном на 2 N ф о н , если счет троек детекторов, то на 3 N ф о н и т.п. В общем случае, если используется k1 одиночных критериев с фоном Nфон, k2 двойных критериев, k3 тройных и т.д., то оценку среднего фона, соответствующего таким комбинациям детекторов, предлагается записать как

N ¯ ф о н = N ф о н ( k 1 + 2 k 2 + 3 k 3 + + n k n ) / i = 1 n k i , где n≥d.

Таким образом, N ¯ ф о н зависит от фона места, где расположен монитор, а также от того, какие и сколько критериев используются.

Для разного фона и количества детекторов существует оптимальное количество критериев koпт и zoпт, которые обеспечивают наименьший порог обнаружения монитора. Заранее определить koпт и zoпт нельзя.

Прототип позволяет определить лишь одно из возможных значений порога обнаружения монитора для конкретных значений Nфон, z, d и k. Данное изобретение устраняет указанные недостатки.

Технический результат изобретения - нахождение минимального порога обнаружения радиационного монитора и определение параметров, его реализующих, без проведения дополнительных измерений с возможностью оценки порога обнаружения для других возможных значений фона регистрируемого излучения, количества детекторов и критериев обработки и соответствующей квантили статистической обработки.

Технический результат достигается тем, что в способе определения порога обнаружения радиационного монитора на основании подсчета числа обнаружений стандартного образца ядерного материала или радиоактивного вещества из N испытаний при заданной доверительной вероятности определяют минимальный порог П1 с числом детекторов d1, числом используемых критериев k1 и квантили статистической обработки z1 при фоне регистрируемого излучения Nфон1, а затем определяют минимальный порог обнаружения Пмин на основании измеренного порога П1 варьированием параметров z2 и k2 из условия П м и н = min [ П 1 z 2 ( d 1 2 / 3 + k 2 2 / 3 ) N ¯ ф о н 2 z 1 ( d 1 2 / 3 + k 1 2 / 3 ) N ¯ ф о н 1 ] z 2 , k 2 , а при других параметрах фона Nфон2, квантили статистической обработки z2, числа детекторов d2 и используемых критериев k2 порог обнаружения определяют из выражения

П 2 = П 1 z 2 ( d 1 2 / 3 + k 2 2 / 3 ) N ¯ ф о н 2 z 1 ( d 1 2 / 3 + k 1 2 / 3 ) N ¯ ф о н 1 .

Другими словами, на основании измеренного порога обнаружения П1 с параметрами Nфон1, z1, d1 и k1 можно определить порог обнаружения П2 с другими параметрами Nфон2, z2, d2 и k2.

А варьируя значение k2 и связанное с ним z2 при постоянном числе детекторов, можно не только определить koпт и zoпт, но и абсолютное значение минимального порога обнаружения, не проводя заново громоздких, длительных и требующих облучения персонала измерений:

П м и н = П 1 z o п т ( d 1 2 / 3 + k 2 2 / 3 ) N ¯ ф о н 2 z 1 ( d 1 2 / 3 + k 1 2 / 3 ) N ¯ ф о н 1

Порог обнаружения выражают в виде массы ядерного материала, или активности радионуклида, или потока нейтронного или фотонного излучения. Прямая пропорциональность между потоком излучения и массой ядерного материала выполняется для нейтронного излучения, а также для тонких слоев рентгеновского и гамма-излучения. Для толстых слоев нужно учитывать самопоглощение фотонов в материале источника.

Наблюдается хорошее совпадение (в пределах 5%) расчетных и экспериментальных данных порогов обнаружения при разных параметрах z, d и k (см. табл.3).

Способ удобно использовать для расчетных оценок порогов обнаружения различных конфигураций радиационных мониторов. Имея одно экспериментальное значение порога обнаружения при известном фоне, числе блоков детектирования, можно легко оценить порог обнаружения для другого числа блоков детектирования, критериев и значения фона. Такая ситуация часто возникает при разработке проектов оснащения мониторами контрольно-пропускных пунктов предприятий, которые имеют различный фон и требуют разного числа блоков детектирования при ограниченной общей стоимости проекта.

Таблица 3
Число БД d Число критериев k Относительный порог обнаружения монитора
расчет эксперимент
1 1 1 1
2 2 0,67 0,69
4 8 0,47 0,46
6 9 0,37 0,39
8 8 0,30 0,29

Параметр ζ позволяет количественно сравнивать эффективность использования одного и того же радиационного монитора при разном фоне, числе блоков детектирования и критериев обнаружения

ς = z N ¯ ф о н ( d 2 / 3 + k 2 / 3 ) .

Чем меньше этот параметр, тем меньше возможный порог обнаружения ядерных материалов или радиоактивных веществ. В таблице 4 представлены значения параметра ζ, приведенные к одному детектору для некоторых практических случаев и единичного фона. Значения ki означают число сочетаний счета i детекторов.

Сравнение расчетных и экспериментальных данных о количестве срабатываний разных критериев позволяет говорить о корректном описании ситуации с помощью параметра ζ.

Из таблицы 4 видно, что:

- с увеличением количества детекторов уменьшается порог обнаружения, но число детекторов может быть частично компенсировано увеличением числа критериев;

- уменьшение порога обнаружения радиационного монитора с ростом количества критериев ограничено;

- более целесообразно использовать суммирование значений счета от меньшего количества детекторов;

- использование суммы значений счета от большого количества детекторов ухудшает порог обнаружения, например, прибавление всего одного критерия - суммы счетов от всех 8-ми детекторов, увеличивает параметр ζ на 30%.

Таблица 4
Число детекторов d Число критериев k Квантиль z k1 k2 k3 k4 k6 k8 ζ отн. ед.
1 1 3,09 1 0 0 0 0 0 1
2 2 3,29 2 0 0 0 0 0 0,671
2 3 3,4 2 1 0 0 0 0 0,706
4 4 3,48 4 0 0 0 0 0 0,447
4 5 3,54 4 0 0 1 0 0 0,535
4 6 3,59 4 2 0 0 0 0 0,469
4 8 3,66 4 4 0 0 0 0 0,469
4 9 3,69 4 4 0 1 0 0 0,500
6 6 3,59 6 0 0 0 0 0 0,352
6 9 3,69 6 3 0 0 0 0 0,368
6 15 3,82 6 4 0 4 1 0 0,463
8 8 3,66 8 0 0 0 0 0 0,296
8 9 3,69 8 0 0 0 0 1 0,383
8 15 3,82 8 4 0 2 0 1 0,374
8 18 3,86 8 5 2 2 0 1 0,368
8 24 3,93 8 8 2 5 0 1 0,366
8 27 3,96 8 12 0 6 0 1 0,356
8 56 4,13 8 14 16 9 8 1 0,407

В таблице 5 представлены различные варианты 56-ти критериев для 8-ми детекторов. Как видно, только увеличение количества сумм за счет кратных сочетаний счета детекторов без изменения общего числа критериев может привести к уменьшению порога обнаружения в 1,5 раза и более.

Таблица 5
Число критериев k k1 k2 k3 k4 k6 k8 ζ, отн. ед.
56 8 8 10 13 14 1 1
56 8 10 12 13 12 1 0,96
56 8 14 16 9 8 1 0,87
56 8 20 16 9 3 0 0,76
56 8 28 16 4 0 0 0,67

Определив экспериментальное значение порога обнаружения при одном наборе параметров, можно найти минимальный порог обнаружения или оценить пороги при других параметрах, не проводя дополнительных измерений.

Способ определения порога обнаружения радиационного монитора на основании подсчета числа обнаружений стандартного образца ядерного материала или радиоактивного вещества из N испытаний при заданной доверительной вероятности, отличающийся тем, что определяют минимальный порог П1 с числом детекторов d1, числом используемых критериев k1 и квантили статистической обработки z1 при фоне регистрируемого излучения Nфон1, а затем определяют минимальный порог обнаружения Пмин на основании измеренного порога П1 варьированием параметров z2 и k2 как
П м и н = min [ П 1 z 2 ( d 1 2 / 3 + k 2 2 / 3 ) N ¯ ф о н 2 z 1 ( d 1 2 / 3 + k 1 2 / 3 ) N ¯ ф о н 1 ] z 2 , k 2 , а при других параметрах фона Nфон2, квантили статистической обработки z2, числа детекторов d2 и используемых критериев k2 порог обнаружения определяют из выражения
П 2 = П 1 z 2 ( d 1 2 / 3 + k 2 2 / 3 ) N ¯ ф о н 2 z 1 ( d 1 2 / 3 + k 1 2 / 3 ) N ¯ ф о н 1 , где
N ¯ ф о н = N ф о н ( k 1 + 2 k 2 + 3 k 3 + + n k n ) / i = 1 n k i , ki - число сочетаний счета i детекторов, Nфон - фон одного детектора, n≤d.



 

Похожие патенты:

Изобретение относится к области контроля окружающей среды, а именно к способам обнаружения и выделения горячих частиц (ГЧ) с различных поверхностей и из воздушной среды, загрязненных радиоактивными веществами.

Изобретение относится к области радиационной экологии. Сущность изобретения заключается в том, что устройство для дистанционного обнаружения источников альфа-излучения содержит измерительный открытый на воздух детектор аэроионов, сопряженный с блоком переноса аэроионов и подключенный к источнику рабочего напряжения и к измерительному счетчику импульсов соответственно, калибровочный альфа-источник, калибровочный детектор аэроионов, аналогичный измерительному детектору, выполненному газоразрядным, подключенный к источнику рабочего напряжения, и компаратор, причем калибровочный детектор соединен с калибровочным счетчиком импульсов, выход которого соединен с первым входом компаратора, второй вход которого соединен с шиной наперед заданного числа, при этом дополнительно содержит двухпозиционный переключатель режима работы устройства, сумматор, причем управляющий вход двухпозиционного переключателя является входом выбора режима устройства, первый информационный вход соединен с шиной нулевого потенциала, а второй - с дополнительной шиной наперед заданного числа, первый вход сумматора подключен к выходу компаратора, второй - к выходу двухпозиционного переключателя режима работы, а выход сумматора подключен к управляющему входу источника рабочего напряжения.

Изобретение относится к средствам дистанционного контроля радиационного состояния объекта. .

Изобретение относится к области радиационной экологии и может быть использовано для дистанционного поиска остатков ядерного топлива, например плутония, загрязняющих поверхности в результате аварий или в ходе производственных процессов.

Изобретение относится к области ядерной и радиационной физики и может быть использовано для регистрации гамма- или тормозного излучения (ТИ) мощных импульсных источников.

Изобретение относится к ядерной технике, а именно к области радиационного мониторинга, и может быть использовано в машиностроении, медицине и других отраслях для контроля несанкционированного перемещения ядерных материалов и других радиоактивных веществ.
Изобретение относится к области охраны окружающей среды, в частности к охране недр нефтяных и газовых месторождений, расположенных в местах проведения мирных подземных ядерных взрывов для целей интенсификации добычи нефти и газа.

Изобретение относится к области охраны окружающей среды, более конкретно к способам выявления радиоактивных источников на обследуемой территории и в движущихся объектах.

Изобретение относится к автоматическому способу отбора трития из атмосферного водяного пара с помощью холодной ловушки и устройству для его осуществления. .
Изобретение относится к способу определения радиоактивного загрязнения акваторий на основе биоиндикации. .

Использование: для точной идентификации по меньшей мере одного источника, в частности по меньшей мере одного нуклида, заключенного в теле человека и/или контейнере. Сущность изобретения заключается в том, что выполняют следующие этапы: обнаружение и измерение по меньшей мере одного источника с помощью гамма-спектроскопического прибора; идентификация на первом этапе оценивания по меньшей мере одного источника с помощью стандартной процедуры идентификации нуклида для оценивания измеренного первого спектра по меньшей мере одного источника; применение второго этапа оценивания на основании результата первого этапа оценивания, при этом результат первого этапа оценивания используют для получения множества вторых спектров по меньшей мере одного источника, обнаруженных в ходе стандартной процедуры идентификации нуклида, для множества сценариев поглощения и для множества сценариев рассеяния; и сравнение измеренного первого спектра со спектром рассеяния и поглощения, полученного из множества вторых спектров, образованных на втором этапе оценивания. Технический результат: обеспечение возможности получения высокоточных и надежных результатов при определении нуклидов, которые окружены или содержатся в другом материале любого вида. 2 н. и 22 з.п. ф-лы, 10 ил.

Изобретение относится к радиационному контролю помещений и промплощадки, а именно к измерению объемной активности радиоактивных аэрозолей. Способ основан на отборе проб аэрозолей путем прокачки воздуха с контролируемыми аэрозолями через фильтрующую ленту с заданной постоянной скоростью, установке над зоной фильтрации полупроводникового детектора и формировании с его помощью импульсов напряжения, амплитуды которых пропорциональны энергиям α- и β-частиц, испускаемых осевшими на фильтре частицами радиоактивного аэрозоля. Фильтрующую ленту передвигают в дискретном режиме, осуществляя отстой отобранной пробы в течение промежутка времени, достаточного для распада короткоживущих нуклидов. В месте отстоя пробы устанавливают второй полупроводниковый детектор и формируют с его помощью последовательность импульсов напряжения, амплитуды которых пропорциональны энергиям α- и β-частиц, испускаемых осевшими на фильтре частицами радиоактивного аэрозоля в месте отстоя пробы, сформированные на выходах каждого из полупроводниковых детекторов импульсы селектируют по амплитуде на соответствие излучению β-активного аэрозоля, по отселектированным импульсам определяют объемную активность β-активного аэрозоля в течение заданного интервала времени, полный заданный интервал времени Т разбивают на ℓ промежутков времени длительностью τ, равной заданному времени измерения текущей объемной активности, на каждом из этих следующих друг за другом промежутков времени для каждого из детекторов подсчитывают число Ni отселектированных импульсов, где i = 1, ℓ ¯ - номер текущего промежутка времени, определяют текущую частоту следования отселектированных импульсов (скорость счета) и текущую объемную активность, при этом места отбора и отстоя проб и детекторы располагают в свинцовой защите. Технический результат - повышение точности измерения.
Изобретение относится к области радиационных технологий, а именно к способам контроля герметичности капсулы с источником ионизирующего излучения (ИИИ). Технический результат - упрощение технологии контроля герметичности капсулы с источником ионизирующего излучения. Способ контроля герметичности капсулы с источником ионизирующего излучения (ИИИ) включает в себя погружение капсулы в раствор, отбор пробы раствора для радиоактивного контроля, отличающийся тем, что в первую очередь капсулу, прошедшую дезактивацию, помещенную в емкость с 7-10 % раствором азотной кислоты, нагревают и кипятят в течение 10 минут, во вторую очередь емкость с капсулой охлаждают в течение 15-20 минут, затем проводят нагрев емкости до режима кипячения еще два раза с последующим охлаждением емкости, в-третьих, после третьего охлаждения из емкости отбирают пробу раствора азотной кислоты в количестве 50 мл и проводят измерение её радиоактивности, причем если радиоактивность пробы не превышает 0,2 кБк, то капсулу считают герметичной. 1 з.п. ф-лы.

Изобретение относится к области метрологического обеспечения дозиметрического контроля облучения личного состава, действующего в условиях воздействия смешанного нейтронного и гамма-излучения, и может быть использовано для испытаний и поверки индивидуальных дозиметров. Сущность изобретения заключается в том, что комплекс состоит из источников ионизирующих излучений, в качестве которых выбраны ядерно-физические установки (ЯФУ): ядерный реактор и генератор термоядерных нейтронов, трансформаторов ионизирующих излучений, расположенных на стойках между источниками ионизирующих излучений и испытываемыми объектами и предназначенных для формирования модельных полей гамма- и нейтронного излучения (ПГНИМ), близких по энергетическому спектру нейтронов и соотношению поглощенных доз нейтронного и гамма-излучения (Дn/Дγ) к полям проникающей радиации в равновесной зоне взрыва атомного и нейтронного боеприпасов на открытой местности и в среднезащищенном объекте, в которых применяются войсковые индивидуальные дозиметры, и входящих в состав ЯФУ каналов мониторирования, на показания которых приведены результаты метрологической аттестации полей ПГНИМ по поглощенным дозам нейтронного и гамма-излучения. Технический результат - повышение точности дозиметрического контроля облучения личного состава при ведении боевых действий в условиях применения ядерного оружия. 1 ил., 1 табл.
Изобретение относится к области аналитической радиохимии и может использоваться для контроля содержания плутония в технологических средах ядерных энергетических установок (ЯЭУ). Способ определения объемной альфа-активности плутония в технологических средах ядерных энергетических установок, включающий отбор пробы, фильтрацию пробы с расходом 0,1-4 л/ч через ацетатцеллюлозную мембрану с диаметром пор 0,1-1,3 мкм, импрегнированную гидратированным оксидом марганца, с последующим высушиванием потоком воздуха, создаваемым разрежением, и радиометрическим измерением альфа-активности, при этом анализируемую пробу предварительно обрабатывают азотной кислотой и упаривают досуха, а затем растворяют в 7,5 M растворе азотной кислоты с добавкой 2,5-3,0 г/л азотистокислого натрия и выдерживают при температуре 40-45°C до прекращения выделения окислов азота в виде бурого газа, охлажденный раствор фильтруют через сильноосновной анионит, например, типа AB-17 со скоростью (7-10)·10-3 л/ч, после чего плутоний элюируют со смолы раствором 14-15 г/л йодида аммония в 10 M соляной кислоте со скоростью в два раза ниже скорости фильтрации, нейтрализуют аммиаком до pH=6-10 и направляют на фильтрацию через мембрану. Технический результат - повышение точности определения объемной альфа-активности плутония в технологических средах ЯЭУ на 40%. 1 з.п. ф-лы.

Изобретение относится к области радиационной экологии. Устройство содержит два идентичных газоразрядных детектора, открытых на воздух: измерительный и калибровочный. Измерительный детектор регистрирует аэроионы, возникающие на следах альфа-частиц и доставляемые от исследуемой поверхности в рабочую область детектора с помощью воздушного потока. Калибровочный детектор регистрирует только ионы, поступающие от калибровочного источника альфа-излучения, так как аэроионы от исследуемой поверхности не поступают в рабочую область детектора из-за наличия электростатического фильтра, через который воздушный поток проходит к калибровочному детектору. Использование калибровочного детектора, калибровочного источника альфа-излучения, источника отрицательного напряжения, электростатического фильтра, постоянного резистора и переменного резистора позволяет отслеживать и компенсировать потерю чувствительности устройства из-за налипания на тонкие анодные проволочки газоразрядных детекторов и, работающих при высоком напряжении, мельчайших пылинок, переносимых воздушным потоком. Технический результат - обеспечение стабильной высокой чувствительности устройства при его длительной непрерывной работе. 1 ил.

Изобретение относится к области выявления радиационной обстановки в окрестностях объектов атомной энергетики после аварийного выброса в атмосферу радиоактивных веществ. Сущность изобретения заключается в том, что осуществляют воздушную радиационную разведку местности с помощью неспециализированного прибора, например носимого измерителя мощности дозы гамма-излучения, обладающего только одним детектором излучения, размещенного на борту летательного аппарата. При ведении радиационной разведки по заданному маршруту на каждом прямолинейном участке необходимо два раза произвести изменение высоты полета. Это позволяет получить данные, которые в неявном виде содержат информацию о величине ослабления гамма-излучения в зависимости от высоты над поверхностью земли. Путем обработки данных определяют коэффициенты для пересчета уровней радиации, измеренных на высоте полета летательного аппарата, к высоте 1 м над поверхностью земли. Технический результат - повышение точности определения радиационной обстановки. 4 табл., 4 ил.

Изобретение относится к способам контроля радиационной обстановки и может быть использовано для контроля фонового уровня радиации вокруг АЭС. Сущность: осуществляют зондирование территорий АЭС, содержащих эталонные площадки с известным уровнем радиации. Причем для зондирования используют космические средства на теневом участке орбиты в ультрафиолетовом и ближнем инфракрасном диапазонах. Формируют синтезированную матрицу из попиксельных отношений ультрафиолетового изображения к инфракрасному изображению. Нормируют функцию сигнала синтезированной матрицы в стандартной шкале 0…255 уровней квантования. Посредством программы выделяют контуры на синтезированном изображении. Рассчитывают площади контуров и фрактальную размерность изображения внутри выделенных контуров. Определяют эквивалентную площадь радиационного загрязнения вокруг АЭС. Оценивают динамику изменения радиационного фона. Технический результат: повышение достоверности и оперативности контроля. 5 ил.

Изобретение относится к способу измерения уровня безопасности содержащего радионуклиды сыпучего материала. Сыпучий материал засыпается на ленточный транспортер и подается на приемное устройство, причем сыпучий материал во время транспортировки проводится мимо первых датчиков, которые по ширине ленточного транспортера спектрометрически измеряют гамма-излучение. Для того чтобы при высокой пропускной способности иметь возможность выполнять точное определение радиоактивности, предусмотрены следующие шаги способа: определение соотношения радионуклидов в сыпучем материале перед засыпкой на ленточный конвейер, учитывая по меньшей мере один эталонный нуклид, вычисление радиоактивности сыпучего материала на основе измеренных при помощи первых датчиков гамма-лучей и их интенсивностей, учитывая один или несколько эталонных нуклидов, имеющихся в радионуклидах, проверка определенного ранее соотношения радионуклидов и/или измеренной радиоактивности при помощи измеряющих α- и/или β-излучение вторых датчиков, которые расположены над ленточным транспортером. 16 з.п. ф-лы, 6 ил.

Изобретение относится к области радиоэкологического мониторинга районов мирных подземных ядерных взрывов в пределах нефтегазоносных бассейнов, в частности к малогабаритным устройствам пробоподготовки горючих природных газовых проб в полевых условиях и перевода опасных для транспортировки горючих природных газовых проб в безопасные водные образцы для дальнейшего определения в них содержания трития в лабораторных условиях методом жидкостно-сцинтилляционной спектрометрии. Устройство включает последовательно установленные в едином корпусе и взаимосвязанные компрессор подачи горючего природного газа или попутного нефтяного газа в инжекционную горелку, водоохлаждаемый конденсатор и контейнер для сбора конденсата водяного пара - конденсированных продуктов горения, при этом инжекционная горелка установлена таким образом, что сопло ее направлено вертикально вниз для подачи продуктов горения во входное отверстие установленного ниже по ее оси водоохлаждаемого конденсатора, а держатель горелки прикреплен к конденсатору с возможностью изменения расстояния между выходом горелки и входом продуктов горения в конденсатор от 4,7 до 5,0 см в зависимости от состава горючего газа. Водоохлаждаемый конденсатор выполнен в виде дугообразно изогнутой под прямым углом трубки с внутренним диаметром не более 15 мм, переходящей в вертикальную трубку, высотой не более 20 см и внутренним диаметром не более 40 мм, закрытую воронкообразным днищем с отверстиями для слива конденсированных продуктов горения в нижеустановленный контейнер. Внутри вертикальной трубки конденсатора соосно установлена охлаждаемая трубка, на которой также соосно установлены по крайней мере три конуса с коаксиальным зазором не менее 2 мм между внутренней поверхностью конденсатора и внешними краями конусов. Техническим результатом является получение конденсата водяного пара в полевых условиях, безопасного для перевозки любым видом транспорта, в стационарную лабораторию, исключая необходимость транспортировки газовой пробы в стальных баллонах. 3 ил.
Наверх