Способ термомеханической обработки сталей аустенитного класса

Изобретение относится к области металлургии конструкционных сталей и сплавов, а именно к термомеханической обработке аустенитных коррозионно-стойких хромоникелевых сталей. Техническим результатом изобретения является повышение прочностных свойств стали при относительно невысоких температурах деформации с сохранением однородной аустенитной структуры. Для достижения технического результата способ включает пластическую деформацию методом прокатки, причем предварительно заготовку стали подвергают гомогенизационному отжигу в интервале температур 1273-1373 К в течение 30 минут, с последующим охлаждением в воде. Прокатку проводят в два этапа: первый этап - в интервале температур 673-973 К до истинной степени деформации от 0,5 до 1 с последующим отжигом в интервале температур 673-873К и временем выдержки от 1 до 2 часов с последующим охлаждением на воздухе, второй этап - в интервале температур от 673-773 К до истинной степени деформации более 2 с последующим охлаждением на воздухе. 1 табл., 2 ил.,1 пр.

 

Изобретение относится к области металлургии конструкционных сталей и сплавов, а именно к термомеханической обработке (ТМО) аустенитных коррозионно-стойких сталей и может быть применено для использования в строительной индустрии, химической промышленности и судостроении для производства элементов конструкций и крепежа, включая элементы энергетических установок, рассчитанные на длительную эксплуатацию при повышенных температурах.

В настоящее время известно несколько подходов к повышению прочностных свойств аустенитных коррозионно-стойких сталей. Традиционный подход к повышению механических свойств конструкционных сплавов основан на увеличении доли и разнообразия легирующих элементов с целью твердорастворного и дисперсионного упрочнения. Повышение прочности достигается за счет дисперсионного упрочнения. С этой целью стали легируют азотом, ванадием, ниобием и другими элементами в количестве от сотых долей до нескольких процентов. Содержание этих легирующих элементов определяет структурный и фазовый состав сталей и обеспечивает необходимый уровень механических свойств (Y. Sawaragi, S. Hirano, «The Development of a New 18-8 Austenitic Steel (0.1C-18Cr-9Ni-3Cu-Nb, N) with High Elevated Temperature Strength for Fossil Fired Boilers», Mechanical Behaviour of Materials - VI. Vol.4, Kyoto, Japan (July 29 to Aug. 2, 1991), 1992, 589-594).

В то же время существует альтернативный подход к повышению прочностных свойств конструкционных материалов, основанный на использовании деформационной обработки. Одним из свойств аустенитных коррозионно-стойких сталей является их высокая способность к деформационному упрочнению. Такая особенность аустенитных сталей открывает принципиальную возможность улучшения их механических свойств с помощью оптимальной термомеханической обработки. В основе повышения прочностных характеристик сталей, подвергнутых термомеханической обработке, лежат механизмы структурного и субструктурного упрочнения. В первом случае упрочнение связано с уменьшением среднего размера зерен, во втором - с формированием развитой дислокационной субструктуры. Структурные параметры и определяют механические свойства сталей. Наиболее эффективным механизмом с точки зрения структурного упрочнения является непрерывная динамическая рекристаллизация, которая развивается в процессе теплой пластической обработки. Такой механизм формирования структуры может быть реализован в процессе многократной прокатки при температурах порядка 0,5 температуры плавления стали (Dehghan-Manshadi A, Barnett MR, Hodgson PD, Recrystallization in AISI 304 austenitic stainless steel during and after hot deformation, Mater Sci Eng, A 2008; 485:664-72).

Известен способ получения заготовок сталей аустенитного класса. Сущность метода заключается в том, что предварительно закаленную заготовку подвергают многократной изотермической ковке с последовательным изменением оси приложения нагрузки на 90° и понижением температуры на 80 - 150 К. При этом первую осадку проводят при температуре, лежащей в интервале от 1224 до 1323 К. Истинная степень деформации за одну осадку должна быть не менее 0,4 при скорости деформации от 10 -2 до 10 -1 с-1. Две последние осадки проводят при температуре, лежащей в интервале 873 - 923 К. Затем проводят отжиг заготовки при температуре, которая выше температуры двух последних осадок на ≥50 К (RU 2468093; опубл. 27.11.2012). Данный способ обработки рекомендован для изготовления сосудов высокого давления, используемых в теплоэнергетике и химической промышленности.

Основным недостатком данного способа является высокая температура осадки, что создает напряженный режим работы пресс-инструмента, что в свою очередь отрицательно сказывается на качестве поверхности металла, вызывает структурную неоднородность материала.

Наиболее близким к предлагаемому изобретению является способ криогенно-деформационной обработки сталей, включающий закалку, пластическую деформацию при криогенных температурах в несколько стадий с суммарной степенью деформации 50-90%, низкотемпературный отпуск после каждой стадии при температуре 220-270°C и высокотемпературный отпуск на заключительной стадии обработки заготовок (RU 2394922; опубл. 20.07.2010).

Недостатком данного способа обработки является то, что структура полученной стали не является аустенитной. Удельная доля мартенсита деформации составляет более 30%. Обратное фазовое превращение при последующей термообработке способно восстановить аустенитную микроструктуру стали, но это неизбежно ведет к падению предела текучести. Также пластическая деформация проводится при криогенной температуре, требуется дополнительное специальное охлаждающее оборудование для заготовки и инструмента.

Задачей предлагаемого изобретения является разработка способа термомеханической обработки аустенитных коррозионно-стойких сталей, позволяющего повысить их прочностные свойства при относительно невысоких температурах деформации с сохранением однородной аустенитной структуры.

Технический результат изобретения заключается в том, что:

- предлагаемый режим термомеханической обработки позволяет получить однородную мелкозернистую структуру и развитую дислокационную субструктуру в аустенитной коррозионно-стойкой стали;

- получают высокие прочностные свойства за счет реализации в стальных полуфабрикатах механизмов структурного и субструктурного упрочнения;

- проведение деформации при относительно невысоких температурах обеспечивает получение однородной структуры в материале, что повышает экономическую эффективность данного способа;

- не требуется применения специального охлаждающего оборудования для заготовки и инструмента.

Для решения поставленной задачи предложен способ термомеханической обработки коррозионно-стойких сталей аустенитного класса, включающий пластическую деформацию методом прокатки, причем предварительно заготовку стали подвергают гомогенизационному отжигу в интервале температур 1273-1373 К в течение 30 минут с последующим охлаждением в воде. Прокатку проводят в два этапа: первый этап - в интервале температур 673-973 К до истинной степени деформации от 0,5 до 1 с последующим отжигом в интервале температур 673-873 К и временем выдержки от 1 до 2 часов с последующим охлаждением на воздухе, второй этап - в интервале температур от 673-773 К до истинной степени деформации более 2 с последующим охлаждением на воздухе.

Достигаемый технический результат подтверждается данными, приведенными в таблице 1.

Таблица 1
Механические свойства аустенитной коррозионно-стойкой стали до ТМО и после ТМО
Температура испытания, К 293
Предел текучести, МПа Образец после ТМО 1205
Образец до ТМО 510
Предел прочности, МПа Образец после ТМО 1270
Образец до ТМО 650
Удлинение, % Образец после ТМО 9,7
Образец до ТМО 36

Механические испытания на растяжения проводились по ГОСТ 1497-84 при комнатной температуре.

Предлагаемое изобретение поясняют следующие графические материалы:

Фиг.1 - схема термомеханической обработки аустенитной коррозионно-стойкой стали, где 8 - истинная степень деформации.

Фиг.2 - фотография структуры аустенитной коррозионно-стойкой стали после ТМО, полученная на просвечивающем электронном микроскопе.

Пример осуществления. В примере осуществления использовали прутки аустенитной стали 10Х18Н8ДЗБР, имеющие размер сечения 20×20 мм2. Данные прутки предварительно подвергали гомогенизационному отжигу при температуре 1373 К с выдержкой в течение 30 мин и с последующим охлаждением в воде. Затем проводили термомеханическую обработке путем многократной прокатки. Первая прокатка состояла из одного прохода, предварительно заготовка была нагрета до 773 К, после чего истинная степень деформации составила 0,5. После прокатки провели отжиг при температуре 773 К в течение 1,5 часа с последующим охлаждением на воздухе. Вторую прокатку заготовок стали проводили при температуре 673 К до истинной степени деформации 2 с последующим охлаждением на воздухе, сечение при этом составило 8 мм. После термомеханической обработки средний размер зерна составил 420 нм.

Таким образом, достигнута задача по разработке нового способа термомеханической обработки аустенитных коррозионно-стойких сталей с повышенными прочностными свойствами в результате действия механизмов структурного и субструктурного упрочнения с сохранением однородной аустенитной структуры

Способ термомеханической обработки коррозионно-стойких сталей аустенитного класса, включающий пластическую деформацию заготовки стали путем прокатки, отличающийся тем, что предварительно осуществляют гомогенизационный отжиг заготовки стали в интервале температур 1273-1373 К в течение 30 минут и охлаждение в воде, а прокатку проводят в два этапа, при этом на первом этапе прокатку проводят в интервале температур 673-973 К до истинной степени деформации от 0,5 до 1, затем осуществляют отжиг в интервале температур 673-873 К с выдержкой от 1 до 2 часов и последующим охлаждением на воздухе, а на втором этапе прокатку проводят в интервале температур 673-773 К до истинной степени деформации более 2 с последующим охлаждением на воздухе.



 

Похожие патенты:
Изобретение относится к технологии машиностроения и может быть использовано в производстве пружин из закаливаемых марок стали. Для повышения качества пружин и снижения энергозатрат осуществляют скоростной нагрев прутка до температуры выше точки Ac3 фазовых превращений, пластическую деформацию прутка винтовым обжатием с закручиванием в направлении сжатия витка пружины, немедленную горячую навивку пружины при температуре выше Ac3 с немедленной повитковой закалкой и отпуск с обеспечением анизотропно ориентированной структуры стали.

Изобретение относится к области металлургии, а именно к стальному рельсу, применяемому при железнодорожной перевозке грузов. Рельс выполнен из стали, содержащей в мас.%: от более чем 0,85 до 1,20 С, от 0,05 до 2,00 Si, от 0,05 до 0,50 Mn, от 0,05 до 0,60 Cr, Р ≤ 0,0150, Fe и неизбежные примеси - остальное.

Изобретение относится к исследованию прочностных свойств металлов и может найти применение при расчете элементов конструкций и деталей машин. Сущность: осуществляют деформационное старение образца, приложение статической нагрузки без изменения знака нагружающей силы и знака деформации до полного прохождения пластических деформаций на площадке текучести с выходом в зону упрочнения, нагрев и выдержку при заданном температурном режиме.

Изобретение относится к области металлургии и может быть использовано для изготовления внутренних оболочек теплообменников, а именно блока сопла камеры сгорания жидкостного ракетного двигателя.
Изобретение относится к области металлургического и термического производства, а именно к обработке стали с получением структуры естественного феррито-мартенситного композита - структура, включающая пластичную ферритную матрицу и дискретные твердые волокна - слои мартенсита, и может быть использовано для получения материала, используемого для броневой защиты воинского персонала, БТР, БМП, блокпостов, от поражения при стрельбе из стрелкового оружия и гранатометов.
Изобретение относится к области черной металлургии, конкретнее к обработке лент из аморфно-нанокристаллических сплавов, и может быть использовано, например, при изготовлении деталей в электронике и приборостроении.

Изобретение относится к области металлургии, а именно к рельсу из высокоуглеродистой перлитной стали. .

Изобретение относится к области металлургии, преимущественно к обработке металлов давлением, а именно к технологии получения заготовок сталей аустенитного класса с нанокристаллической структурой, и может быть применено при изготовлении сосудов высокого давления для теплоэнергетики и химической промышленности.

Изобретение относится к области металлургии и может быть использовано в машиностроении для производства дешевого инструмента, в частности выглаживателей для деталей из цветных металлов.

Изобретение относится к области машиностроения, а именно к упрочняющей обработке наплавленной быстрорежущей стали на поверхности заготовки, применяемой для изготовления инструмента повышенной стойкости.
Изобретение относится к области металлургии, а именно к термомеханической обработке монокристаллов ферромагнитного сплава нового состава Fe-Ni-Co-Al-Ti, и может быть использовано для создания исполнительных механизмов, датчиков, актюаторов, демпфирующих элементов.

Изобретение относится к области металлургии, а именно к термической обработке заготовок из сплава Х65НВФТ на основе хрома. Для повышения жаростойкости сплава заготовку из сплава Х65НВФТ подвергают закалке путем нагрева до температуры 1270±10°C с выдержкой при этой температуре в течение 20 мин и охлаждают в масло.

Изобретение относится к области термической обработки. Техническим результатом изобретения является снижение твердости и стабилизация ее значений упрочненных заготовок из сплава Х65НВФТ.
Изобретение относится к области металлургии, в частности к производству магнитотвердых сплавов на основе системы Fe-Cr-Co, которые применяются в приборостроении, релейной технике, электромашиностроении, медицине, автомобильной промышленности.

Изобретение относится к нанокристаллическому сплаву на основе железа и способу его формирования и может быть использовано в трансформаторе, индукторе, входящем в состав двигателя магнитном сердечнике.

Изобретение относится к машиностроению и может быть использовано в промышленности при промежуточной термической обработке изделий из листового материала стали аустенитно-мартенситного класса марки 07Х16Н6.

Изобретение относится к области металлургии, а именно к стали, используемой для изготовления деталей режущих инструментов. Сталь содержит, в мас.%: от 0,28 до 0,5 С, от 0,10 до 1,5 Si, от 1,0 до 2,0 Mn, максимум 0,2 S, от 1,5 до 4 Cr, от 3,0 до 5 Ni, от 0,7 до 1,0 Mo, от 0,6 до 1,0 V, от следовых количеств до общего максимального содержания 0,4% мас.
Изобретение относится к области металлургии, а именно к термической обработке монокристаллов ферромагнитного сплава нового состава Fe-Ni-Co-Al-Nb, и может быть использовано в машиностроении, авиационной, космической промышленности, механотронике и микросистемной технике для создания исполнительных механизмов, датчиков, актюаторов, демпфирующих элементов.

Изобретение относится к области металлургии, в частности к обработке магнитотвердых сплавов на основе системы Fe-Cr-Co, которые применяются в приборостроении, релейной технике, электромашиностроении, медицине, автомобильной промышленности и т.д.
Изобретение относится к области металлургии, в частности к изготовлению горячекатаной полосы из свободной от превращений ферритной стали. Для создания в горячекатаной полосе мелкозернистой структуры расплав, полученный из стали, содержащей, мас.%: <1,5 С, <30 Cr, >2 Al, <30 Mn, <5 Si, остальное железо и неизбежные примеси разливают в горизонтальной установке для непрерывной разливки с успокоенным течением и без изгибов в полосовую заготовку толщиной 6-20 мм, а затем осуществляют прокатку заготовки в горячекатаную полосу со степенью деформации, по меньшей мере, 50%.

Изобретение относится к области термической обработке отливок из коррозионно-cтойкой стали мартенситного класса, используемых для высокоточных деталей машиностроения и приборостроения. Для устранения химической и структурной неоднородности и обеспечения стабильных свойств отливок проводят нормализацию при 900-920°C, маятниковый отжиг, состоящий из трех-пяти циклов, включающих ускоренный нагрев до температуры 600-620°C, выдержку 2-3 мин и последующее охлаждение на воздухе до температуры 150-200°C, нормализацию при 1040-1060°C, отпуск при 600-620°C с охлаждением на воздухе, закалку с температуры 950-1050°C в масло, отпуск при 290-310°C с охлаждением на воздухе. 1 табл., 3 ил.
Наверх