Набор для выявления возбудителя ку-лихорадки в биологическом материале методом полимеразной цепной реакции в режиме реального времени (пцр-рв)

Изобретение относится к области биотехнологии и касается набора для выявления Ку-лихорадки методом ПЦР-РВ. Охарактеризованный набор содержит синтетические олигонуклеотиды, ограничивающие фрагмент гена groEL:

GroEL F 5′ CTTCTACTGTTATGACGCCTTCTTTGC 3′

GroEL R 5′ CGCAAGTAGGCACCATTTCTGC 3′,

и флуоресцентный зонд:

GroEL Probe 5′ FAM-CACTTTCTCCATCGCTTCCGCAATAATA-TAMRA 3′.

Изобретение может быть использовано в медицине, ветеринарии, клинической лабораторной диагностике для выявления ДНК бактерии Coxiella burnetii в пробах, а также для решения научно-исследовательских задач по изучению данного микроорганизма. 2 табл., 2 пр.

 

Изобретение относится к биотехнологии и может быть использована в медицине, ветеринарии, клинической лабораторной диагностике для выявления ДНК бактерии Coxiella burnetii в пробах, а также для решения научно-исследовательских задач по изучению данного микроорганизма.

Известны различные диагностические наборы для выявления С.burnetii с помощью ПЦР в реальном времени, в качестве мишени для праймеров и зонда используются различные гены:

1) ген com 1 (Brennan R., Samuel J., 2003), используются праймеры следующих последовательностей: FAF216 5′ GCACTATTTTTAGCCGGAACCTT 3′ и RAF290 5′ TTGAGGAGAAAAACTGGATTGAGA 3′, амплифицирующие фрагмент 74-п.н. Недостатком использования данного набора праймеров является их применимость только в технологии РВ-ПЦР, использующей интеркалирующие красители. Этот метод обладает пониженной специфичностью по сравнению с технологией с использованием флуоресцентного зонда, а также усложняет детекцию ДНК С.burnetii из-за необходимости постамплификационных манипуляций: построения кривой плавления продукта РВ-ПЦР или его визуализации с помощью электрофореза в агарозном геле. Кроме того, авторы указывают лишь косвенные показатели чувствительности и специфичности для описываемого набора праймеров и зонда. При этом тестирование набора показало, что максимальная чувствительность РВ-ПЦР с его использованием: составляет 500-1000 ГЭ/мл раствора ДНК.

2) ген транспозазы инсерционного мобильного элемента IS1111 (Klee S. et al., 2006, Panning М. et al., 2008, Tissot-Dupont H., Raoult D., 2008), набор праймеров и зонда к этому гену амплифицирует фрагмент 295 п.н., последовательности праймеров: Cox-F 5′ GTCTTAAGGTGGGCTGCGTG 3′ (219-238) и Cox-R 5′ CCCCGAATCTCATTGATCAGC 3′ (493-513), а зонда - Сох-ТМ FAM-5′ AGCGAACCATTGGTATCGGACGTT-TAMRA-TATGG 3′ (259-287). Недостатком набора является многокопийность гена-мишени: поскольку количество копий в зависимости от изолята может варьировать существенным образом (до 10-кратных различий), это препятствует количественному измерению накопления С.burnetii.

3) ген изоцитрат-дегидрогеназы icd (Klee S. et al., 2006), мишенью является участок длиной 76 п.н., а праймеры имеют следующую последовательность: icd-439F 5′ CGTTATTTTACGGGTGTGCCA 3′ (439-459) и icd-514R 5′ CAGAATTTTCGCGGAAAATCA 3′ (494-514), а зонд - FAM-5′ ССС GGT САА ААС GCC TGA AAA GGT GAA ТА 3′ - TAMRA.

Недостатками набора является обеспечение чувствительности ПЦР-РВ, не позволяющей обеспечить потребности РВ-ПЦР при работе с биологическим материалом со слабым накоплением С.burnetii, т.к. позволяет выявлять в пробе 10 геномных эквивалентов и выше.

Таким образом, применение указанных нуклеотидных последовательностей в качестве мишеней для амплификации не обеспечивает одновременно достаточных специфичности и чувствительности при детекции в биологическом материале с малым накоплением возбудителя, что является существенным недостатком диагностического набора, либо не позволяет проводить количественную оценку содержания ДНК С.burnetii.

Заявляемое изобретение отвечает требованиям количественного измерения числа копий целевой ДНК в образце, при высокой чувствительности РВ-ПЦР, основанной на амплификации гена с известным числом копий. Ранее применявшиеся мишени не могли обеспечить и подобных результатов.

В качестве прототипа выбран набор набор праймеров и зонда icd (Klee S. et al., 2006), мишенью которого является участок длиной 76 п.н. гена изоцитрат-дегидрогеназы, имеющие следующую последовательность: icd-439F 5′ CGTTATTTTACGGGTGTGCCA 3′ (439-459) и icd-514R 5′ CAGAATTTTCGCGGAAAATCA 3′ (494-514) и зонд: FAM-5′ ССС GGT САА AAC GCC TGA AAA GGT GAA ТА 3′ - TAMRA.

Ген icd, являясь hause-keeping-геном, обладает высокой консервативностью, что подтверждено, в частности, секвенированием этого гена для многочисленных штаммов С.burnetii, а также сравнительным анализом нуклеотидных последовательностей гена icd С.burnetii с последовательностями, имеющимися в GenBank: идентичность нуклеотидной последовательности гена icd в пределах вида С.burnetii составляет 99-100%. Высокая степень специфичности подтверждена показателем сходства icd С.burnetii с нуклеотидными последовательностями организмов других видов: показатель сходства не превышал 87%.

Условия реакции: первый цикл: 80° - 2 мин; 95° - 4 мин; последующие 40 циклов: 95° - 15 с; 60° - 40 с.

Оптимальный состав реакционной смеси, на 1 пробу общим объемом 25 мкл: 2,5 мМ каждого дНТФ; 10х ПЦР буфер; 25 мМ MgCl2; праймеры, по 300 нМ каждого, 25U Tag ДНК-полимеразы с ингибирующими активность фермента антителами; деионизированная вода, 100 нМ зонда, меченного флуоресцеином.

При этих условиях реакции получены результаты, которые продемонстрировали недостаточное соответствие данного набора праймеров и зонда требованиям специфичности и чувствительности (более 1000 ГЭ/мл раствора ДНК) при работе с полевым (органы животных) материалом.

Таким образом, никакие из существующих праймеров для детекции С.burnetii не отвечают потребностям молекулярной диагностики патогена, так как не позволяют выявлять ДНК возбудителя в образцах с малым содержанием бактерий С.burnetii.

Изобретение направлено на усовершенствование диагностического набора для выявления коксиелл Бернета путем разработки новых синтетических праймеров и зонда.

При этом обеспечен технический результат - повышение специфичности и чувствительности (с возможностью детекции менее 10 ГЭ целевой ДНК/мл раствора ДНК) ПЦР-РВ.

При выборе оптимальных ДНК-мишеней учитывались специфические особенности генома С.burnetii, а также степень изученности различных участков генома и наличие в базе данных GenBank необходимого количества депонированных нуклеотидных последовательностей. Основными показателями последовательностей-мишеней рассматриваемых генов были: видовая специфичность, внутривидовой консерватизм, количество копий в геноме.

Авторами предложены оригинальные последовательности синтетических олигонуклеотидов:

GroEL F 5′ CTTCTACTGTTATGACGCCTTCTTTGC 3′

GroEL R 5′ CGCAAGTAGGCACCATTTCTGC 3′,

и флуоресцентного зонда -

GroEL Probe 5′ FAM-CACTTTCTCCATCGCTTCCGCAATAATA-TAMRA 3′.

Характеристика набора праймеров и зонда и участка амплифицируемой геномной ДНК

Продукт гена groEL - белок-шаперонин Hsp60 относится к классу функционально сходных белков, экспрессия которых усиливается при повышении температуры или при других стрессирующих клетку условиях. Повышение экспрессии гена groEL регулируется на этапе транскрипции. Чрезвычайное усиление экспрессии гена groEL является частью клеточного ответа на тепловой шок и вызывается в основном фактором теплового шока.

Кроме того, Hsp60 играет важную роль в метаболизме и жизнеобеспечении бактерии, что связано, прежде всего, с его участием в составе шаперониновой системы GroEL/GroES в фолдинге белков в цитозоле бактерий (Takemoto К., Niwa Т., et al., 2011).

Кодируемый геном groEL белок-шаперонин Hsp60 является специфическим лигандом толл-подобных рецепторов (TLRs) млекопитающих, которые являются представителями рецепторов для детекции консервативных молекулярных паттернов, ассоциированных с патогенами (PAMPs). Таким образом, бактериальные белки теплового шока являются мощными модуляторами механизмов врожденного и приобретенного иммунитета к инфекционным агентам, включая бактерию С.burnetii (Lundberg A.M., Hansson G.K., 2010).

Описан положительный опыт использования гена groEL в диагностических целях с использованием его в качестве мишени для амплификации в стандартной ПЦР (Yuasa Y., Yoshiie К., et al., 1996; Фрейлихман О.А., Панферова Ю.А., Токаревым Н.К., 2009).

Ген groEL описан как мишень для генотипической характеристики изолятов и штаммов гамма-протеобактерий (Chomel В.В., Wey AC, et al., 2003).

Видовая специфичность и внутривидовая консервативность этого гена делает его эффективной мишенью не только для диагностики, но и для дифференциации бактериальных видов (Leclerque A., Kleespies R.G., 2008).

Высокая степень консервативности гена подтверждена сравнением опубликованных в настоящее время секвенсов groEL С.burnetii с нуклеотидными последовательностями других организмов (база данных BLASTA): число совпадений не превышало 83%; идентичность нуклеотидной последовательности гена groEL (htpAB) в пределах вида С.burnetii составляет 99-100%.

Для оценки специфичности и чувствительности праймеров использовались следующие образцы ДНК С.burnetii из коллекции штаммов НИИЭМ им. Пастера:

- Монголия (штамм №103 коллекции музея риккетсиозных культур НИИЭМ им. Гамалеи АМН СССР);

- Уфа-1 (Glazunova О, Roux V, et al. // Emerg. Infect. Dis. 2005 Aug; 11(8):1211-7);

- Cimex-1 - Луга (Glazunova O, Roux V, et al. // Emerg Infect Dis. 2005 Aug; 11(8):1211-7);

- Желтогорлая Мышь - Луга (E. Kovacova, M. Vavrekova, et al. // Eur. Journ. of Epidemiol. 10:9-15, 1994);

- Полевка обыкновенная - Невель (Glazunova О, Roux V, et al. // Emerg Infect Dis. 2005 Aug; 11(8):1211-7);

- Henzerling (Glazunova O, Roux V, et al. // Emerg Infect Dis. 2005 Aug; 11(8):1211-7);

- Ixodes-3 - Луга (E. Kovacova, M. Vavrekova, et al. // Eur. Journ. of Epidemiol. 10:9-15, 1994);

- Уфа-2 (Glazunova O, Roux V, et al. // Emerg Infect Dis. 2005 Aug; 11(8):1211-7);

- Полевая Мышь - Луга (Glazunova О, Roux V, et al. // Emerg Infect Dis. 2005 Aug; 11(8):1211-7);

- Казахстан-Слепни (Glazunova O, Roux V, et al. // Emerg Infect Dis. 2005 Aug; 11(8):1211-7);

- Ixodes-2 - Луга (Glazunova О, Roux V, et al. // Emerg Infect Dis. 2005 Aug; 11(8):1211-7);

- Вакцинный штамм M-44.

Оценка специфичности праймеров производилась с использованием следующих образцов тотальной ДНК:

- ДНК из органов (почки, печень, селезенка) мелких диких млекопитающих, отловленных в пригородах Санкт-Петербурга для исследования на инфицированность возбудителем Ку-лихорадки;

- ДНК из крови людей с лихорадкой неясного генеза;

- ДНК из крови морской свинки, которой была введена кровь больного лихорадкой неясного генеза;

- ДНК из крови интактных морских свинок;

- ДНК распространенных патогенов (Leptospira sp., Mycoplasma sp., Gardnerella sp., Ureaplasma sp.).

Чувствительность праймеров оценивалась в разведениях от 1:10 до 1:109 ДНК С.burnetii штаммов М-44 и Henzerling.

Сущность изобретения подтверждается чертежами, где на фигуре 1 представлены кривые флуоресценции, отражающие динамику образования продукта реакции в ходе ПЦР-РВ по технологии TaqMan с праймерами groEL для проб, содержащих ДНК С.burnetii. Номера кривых флуоресценции соответствуют номерам образцов.

Изобретение реализуется следующим образом.

Пример 1. Разработка специфических праймеров и зонда

Праймеры и зонд разрабатывали с помощью программ Epimer, Primer3, Vector NTI 8 на основе данных о полногеномной нуклеотидной последовательности хромосомной ДНК штаммов Nine RSA493 (АСС NC 002971); RSA 331 (АСС NC 010117) и нуклеотидной последовательности гена groEL (АСС AF146284) в соответствии со следующими основными требованиями: не проявляет случайную гомологию с неродственными нуклеотидными последовательностями; для зонда - не превышает по длине 29 нуклеотидов, характеризуется G/C-насыщенностью от 20 до 80% и расчетной температурой плавления (Tm) 68-70°C; отличается высоким содержанием C и отсутствием 5′-концевых G-нуклеотидов; не содержит поли- G/C повторов и участков формирующих нежелательные вторичные структуры.

Параметры праймеров соответствовали следующим требованиям: размер продукта ПЦР должен составлять около 50 п.н., температура плавления 58-60°C, длина праймера: 20-30 п.н., GC состав: 20-80%, минимальное образование вторичных структур и димеров, также нежелательны G/C на 3′ конце праймеров (не более трех из пяти последних нуклеотидов). Праймеры и зонд изготовлены ЗАО «Синтол» (Москва).

Для целей амплификации была отобрана пара праймеров, ограничивающая фрагмент гена groEL (табл.1, рис.1). Ген имеет длину 1561 п.н., фрагмент длиной 99 п.н. занимает позицию на гене с 1127 п.н. по 1226 п.н.

Таблица 1
Структура праймеров и зонда для амплификации в РВ-ПЦР фрагмента гена groEL
Структура олигонуклеотидов Длина (п.н.) Наименование Локализация на гене groEL (п.н.)
5′ CTTCTACTGTTATGACGCCTTCTTTGC 3′ 27 GroEL F 1127-1154
5′ CGCAAGTAGGCACCATTTCTGC 3′ 22 GroEL R 1226-1204
5′ FAM-CACTTTCTCCATCGCTTCCGCAATAATA-TAMRA 3′ 28 1156-1184

Ниже представлена нуклеотидная последовательность гена groEL штамма Q212 (АСС NC 011527) С.burnetii, амплифицируемая заявленным набором олигонуклеотидных праймеров и зонда.

1127 cttct actgttatga cgccttcttt gcccactttc tccatcgctt ccgcaataat atctccaatc gacttatccg aattcgcaga aatggtgcct acttgcg 1226

Пример 2. Проведение РВ-ПЦР

Для проведения ПНР в реальном времени использовался набор реагентов «Комплект реагентов для проведения ПЦР-РВ» производства ОАО «Синтол» (Москва). ПЦР проводились на приборе для ПЦР в реальном времени ДТ-322 «ДНК-технология» (Москва).

Условия ПЦР-РВ: программа амплификации: один цикл 95°C - 10 мин, далее - 35 циклов, включающих этапы 95°C - 15 с, 60°C - 1 мин.

Состав реакционной смеси (из расчета на одну пробу общим объемом 25 мкл): дНТФ (2,5 мМ) - 2,5 мкл; 10х реакционный буфер - 2,5 мкл; MgCl2 (25 мМ) - 2,5; праймеры (10 пМ) - 0,7 мкл каждого; флуоресцентный зонд (10 пМ) - 1 мкл; Tag-полимераза (5 Е/мкл) - 0,4 мкл, стерильная деионизированная вода - 11,7. ДНК (10 нг/мкл) - 4 мкл.

Использованная технология ПЦР-РВ: TaqMan, метод - абсолютное околичествление (с построением стандартной кривой).

Результаты оценивались путем сопоставления значений цикла начала флуоресценции (Ct) для контрольных и исследуемых образцов при условии эффективности амплификации 95-100% и путем анализа стандартной кривой.

При указанных параметрах амплификации и составе реакционной смеси получены числовые значения, представленные в таблице 2. Эти значения характеризуют минимальные циклы, на которых регистрируется начало флуоресценции и абсолютные количественные показатели содержания целевой ДНК.

При анализе результатов расчет базовой линии производился по среднему значению в диапазоне циклов с 3 по 7 (первые 2 цикла не включали в диапазон, поскольку на них может наблюдаться более сильная флуоресценция из-за недостаточно стабилизировавшейся реакции).

При этих условиях реакции получены следующие результаты, характеризующие минимальные циклы, на которых регистрируется начало флуоресценции, и абсолютные количественные показатели содержания ГЭ целевой ДНК (таблица 2).

Как видно из таблицы 2, наблюдалась обратная зависимость значения цикла пороговой флуоресценции от количества целевой ДНК в пробе. Так, наименьшее значение циклов соответствовало максимальной концентрации субстрата. В образцах, не содержащих ДНК С.burnetii, репортерная флуоресценция отсутствовала.

В качестве стандарта для определения абсолютного количества ГЭ использовался образец с содержанием 105 ГЭ ДНК С.burnetii.

Анализ показал высокую специфичность и чувствительность ПЦР-РВ с использованием сконструированного набора праймеров и зонда, что позволяет выявлять 10 и менее ГЭ С.burnetii в пробе, в отличие от прототипа, для которого абсолютная чувствительность не определена.

Таблица 2
Результаты ПЦР-РВ по технологии TaqMan с праймерами и зондом для амплификации фрагмента гена groEL
Исследуемый образец Значение порогового цикла (Ct) ГЭ C.burnetii
1 ДНК С.burnetii M44 1010§ 17,4 3,4109
2 ДНК С.burnetii M44 109 18,1 1,5×109
3 ДНК С.burnetii M44 108 18,5 2×108
4 ДНК С.burnetii M44 107 20,1 4×107
5 ДНК С.burnetii M44 106 20,7 4,5×106
6 ДНК С.burnetii M44 105 21,2 3×105
7 ДНК C.burnetii M44 104 22,8 1×104
8 ДНК C.burnetii M44 103 25,1 1,6×103
9 ДНК С.burnetii M44 102 25,5 120
10 ДНК С.burnetii M44 101 29,0 9
11 H2O 0 0
12 ДНК Ureaplasma sp. 109 0 0
13 ДНК Chlamidia sp. 109 0 0
14 ДНК Leptospira sp. 109 0 0

В отличие от прототипа, чувствительность и специфичность созданного набора апробирована на широкой панели биологических образцов и группе штаммов С.burnetii, представляющих большой набор источников и географических точек выделения.

Разработанный универсальный набор праймеров и зонда и адаптированные для его использования условия ПЦР-РВ позволяет повысить эффективность и точность идентификации возбудителя лихорадки Ку путем индикации генетического материала С.burnetii в пробах биологического происхождения методом РВ-ПЦР.

Перечень последовательностей

синтетические олигонуклеотиды

GroEL F 5′ CTTCTACTGTTATGACGCCTTCTTTGC 3′

GroEL R 5′ CGCAAGTAGGCACCATTTCTGC 3′,

флуоресцентный зонд

GroEL Probe 5′ FAM-CACTTTCTCCATCGCTTCCGCAATAATA-TAMRA 3′.

Набор для выявления возбудителя Ку-лихорадки в биологическом материале методом полимеразной цепной реакции в режиме реального времени (ПЦР-РВ), содержащий синтетические олигонуклеотиды, ограничивающие фрагмент гена groEL, и олигонуклеотид, меченный флуоресцентной меткой (флуоресцентный зонд), отличающийся тем, что синтетические олигонуклеотиды имеют следующую структуру:
GroEL F 5′ CTTCTACTGTTATGACGCCTTCTTTGC 3′
GroEL R 5′ CGCAAGTAGGCACCATTTCTGC 3′,
а флуоресцентный зонд -
GroEL Probe 5′ FAM-CACTTTCTCCATCGCTTCCGCAATAATA-TAMRA 3′



 

Похожие патенты:

Предложенная группа изобретений относится к области медицины. Предложены способ и набор для определения наличия у пациента повышенного риска обладания сердечно-сосудистым заболеванием или нарушением по полиморфным вариантам генов.
Изобретение относится к области молекулярной биологии и генной инженерии. Предложены способ и набор для детекции малопредставленных фракций РНК в биологическом образце и для детекции микоплазменного загрязнения, для чего используют операции обратной транскрипции РНК в кДНК с использованием обратной транскриптазы Thermus thermophilus (rTth-pol) в условиях "горячего старта", инактивации ОТ обработкой хаотропным средством, детекции представляющей интерес кДНК посредством полимеразной цепной реакции (ПЦР).

Настоящее изобретение относится к области биотехнологии и касается способа амплификации и детекции нуклеотидных последовательностей в реакционной смеси и набору, используемому в этом способе.
Изобретение относится к области биохимии. Проводят количественную оценку эффективности олеиновой кислоты как переносчика РНК через биологические мембраны.

Изобретение относится к области биотехнологии и касается синтетических олигонуклеотидов-праймеров. Представленные праймеры фланкируют участки генов PB2, PB1, PA, NP, MP, NS низкопатогенных вирусов гриппа птиц и не дают перекрестных реакций с родственными видам.

Группа изобретений относится к области биотехнологии. Способ определения уровня экспрессии гена МСР1 (CCL2) предусматривает оценку количества его мРНК методом полимеразной цепной реакции (ОТ-ПЦР) с детекцией сигнала в реальном времени в образцах клеток, тканей и биологических жидкостей человека.

Изобретение относится к области медицины, генетической инженерии и молекулярной биологии. Предложен способ мониторинга рака молочной железы у субъекта.

Изобретение относится к области биохимии, в частности к применению QTL аллеля, ассоциированного с устойчивостью к Bemisia для придания устойчивости к Bemisia растения Capsicum annuum.

Изобретение относится к биотехнологии и представляет собой способ определения у спортсмена состояния утомления и состояния «перетренированности» по повышенной экспрессии гена триптофинил-тРНК-синтетазы (ТРСазы).

Изобретение относится к области микробиологии и паразитологии микроорганизмов. Способ предусматривает рестрикционный анализ бактериальной ДНК бластоцист с использованием комбинации эндонуклеаз рестрикции - Нае III, Pst I и Hind III, позволяющих идентифицировать простейших с различной степенью вирулентности.
Изобретение относится к области биотехнологии, конкретно к молекулярной биологии и онкологии, и может быть использовано для диагностики терминальных мутаций в гене RET, ассоциированных с наследственной предрасположенностью к раку щитовидной железы (РЩЖ).
Изобретение относится к области биотехнологии, конкретно к молекулярной биологии и онкологии, и может быть использовано для диагностики терминальных мутаций в гене RET, ассоциированных с наследственной предрасположенностью к раку щитовидной железы (РЩЖ).

Группа изобретений относится к области биотехнологии. Настоящее изобретение обеспечивает синтетические 5'UTR области, содержащие первый полинуклеотидный фрагмент в виде второго интрона гена кальциевой АТФазы саркоплазматического/эндоплазматического ретикулума и второй полинуклеотидный фрагмент, представленный частью 5' нетранслируемой области (5'UTR) гена казеина.

Изобретение относится к области биохимии, в частности к способу получения одноцепочечной кольцевой РНК. Способ включает синтез смысловой цепи и антисмысловой цепи, содержащих нуклеотидную последовательность с неспаренными нуклеотидами на 5'-конце и 3'-конце, и одновременно лигирование нуклеотида на 5'-конце нуклеотидной последовательности с неспаренными нуклеотидами в смысловой цепи с нуклеотидом на 3'-конце нуклеотидной последовательности с неспаренными нуклеотидами в антисмысловой цепи и, наоборот, с использованием лигазы.

Настоящее изобретение относится к области биотехнологии и касается способа амплификации и детекции нуклеотидных последовательностей в реакционной смеси и набору, используемому в этом способе.

Группа изобретений относится к области биотехнологии. Способ модульного конструирования ДНК аптамеров, способных специфически и высокоаффинно связывать тромбин, имеющих стабилизированную основную субструктуру, предусматривает сборку их структуры моделированием из комбинации трех структурных модулей, содержащих квадруплексный модуль нуклеиновой кислоты, дуплексный модуль нуклеиновой кислоты и соединяющий их модуль нуклеиновой кислоты, имеющий неканоническую структуру, путем определения третичной структуры его спектральным методом кругового дихроизма с подтверждением факта образования более стабильного G-квадруплекса, отличного от квадруплексной структуры исходного структурного квадруплексного модуля.

Изобретение относится к области биохимии, в частности к способу селекции аптамеров к клеточным рецепторам и поверхностным белкам, который включает проведение раундов селекции, каждый из которых включает стадии: позитивной селекции с дальнейшим удалением несвязавшаяся ДНК; негативной селекции с последующим отделением связавшихся с негативной мишенью последовательностей; амплификацию полученных в ходе селекции аптамеров с получением ПЦР-продукта.

Изобретение относится к области молекулярной биологии, биохимии и медицины. Предложена L-нуклеиновая кислота - антагонист MCP-1 и способ её детектирования.

Изобретение относится к области ветеринарной вирусологии и касается тест-системы и способа для обнаружения РНК вируса болезни Шмалленберг. Предложенная тест-система включает праймер Schm U, имеющий нуклеотидную последовательность 5'-САА ССА GAA GAA GGC САА GA-3', праймер Schm L, имеющий нуклеотидную последовательность 5'-TCT GGC АСА GGA TTT GAG AC-3' и зонд Schm Z, имеющий последовательность 5'-[Hex] CCC CAC САА AAG TAA GAT CGA CAC [BHQ2]-3'.

Изобретение относится к области биотехнологии и касается набора праймеров для выявления генетического материала (РНК) и дифференциации вируса парагриппа человека 1, 2, 3 и 4 типов в клинических образцах.

Изобретение касается способа определения генотипов золотистого стафилококка. Представленный способ включает получение чистой культуры микроорганизмов на плотной питательной среде с последующим выделением и амплификацией ДНК возбудителя с помощью мультиплексной полимеразной цепной реакции (ПЦР) и с детекцией результатов методом электрофореза в агарозном геле. При осуществлении мультиплексной ПЦР используют четыре пары праймеров, комплементарных к участкам гена внеклеточной термонуклеазы (nuc), гена лейкоцидина Пантона-Валлентайна (pvl), гена белка токсического шока (tst) и гена устойчивости к метициллину (mecA). Генотипы золотистого стафилококка определяют по наличию или отсутствию генов вирулентности pvl и tst и гена устойчивости к метициллину mecA или их сочетаний. Изобретение позволяет определять отдельные генотипы золотистого стафилококка одновременно в одной мультиплексной реакции, а также исключить предварительный этап идентификации микроорганизма. 1 ил., 2 табл., 2 пр.
Наверх