Способ приготовления твердосплавной шихты с упрочняющими частицами наноразмера

Изобретение относится к порошковой металлургии, в частности к приготовлению шихты для формирования матрицы алмазного инструмента из твердосплавной порошковой смеси с упрочняющими наночастицами из сверхтвердых материалов. В растворитель пластификатора последовательно вводят упрочняющие сверхтвердые частицы наноразмера и вещества пластификатора. Из полученной суспензии при температуре на 30-50°C ниже температуры разложения вещества пластификатора выпаривают избыточное количество растворителя так, чтобы ее количество по отношению к веществу пластификатора составляло не более 10%, после чего пластификатор вводят в твердосплавную порошковую смесь. Смешивание сверхтвердых частиц наноразмера с растворителем и выпаривание избыточного количества растворителя из суспензии проводят в кавитационном поле ультразвука. Обеспечивается получение однородной по объему шихты и однородность износостойкости матрицы инструмента.

 

Изобретение относится к порошковой металлургии и может быть использовано в технологиях приготовления шихты для формирования каркаса композиционных металлокерамических матриц (связок) алмазного инструмента с упрочняющими наночастицами из сверхтвердых материалов.

Известен способ приготовления шихты для изготовления алмазного инструмента, включающий приготовление смеси из твердосплавных порошков ВК6 и ВК8, ее смешивание, пластифицирование полученной смеси, ее протирку через сито и сушку (Основы проектирования и технология изготовления абразивного и алмазного инструмента // Под редакцией В.Н. Бакуля. - М.: Машиностроение, 1975 г., с.269-270). В известном способе при приготовлении шихты с упрочняющими добавками из сверхтвердых частиц наноразмера наночастицы вводят непосредственно в смесь твердосплавных порошков и смешивают в планетарной шаровой мельнице (М.В. Воробьева, В.В. Курбаткина, В.В. Иванов, Е.Е. Едренникова, Д.А. Сидоренко. Получение ультрадисперсных порошков молибдена высокой чистоты для изготовления дисперсно-упрочненных наночастицами связок на основе Fe-Co-Cu и Fe-Co-Cu-WC // Материалы докладов XI-й международной конференции «Породоразрушающий и металлообрабатывающий инструмент - техника, технология его изготовления и применения», №13, 2010 г., с.436-441; Богатырева Г.П., Исонкин A.M., Ильницкая Г.Д., Богданов Р.К. Оценка перспективности структурирования металломатричных композитов алмазных буровых коронок наноалмазами // Материалы докладов XII-й международной конференции «Породоразрушающий и металлообрабатывающий инструмент - техника, технология его изготовления и применения», №14, 2011 г., с.97-102) или в барабанных смесителях (Основы проектирования и технология изготовления абразивного и алмазного инструмента // Под редакцией В.Н. Бакуля. - М.: Машиностроение, 1975 г., с.216-217), затем полученную смесь пластифицируют, протирают через сито и сушат. При этом равномерному распределению компонентов шихты с различными плотностями и зернистостями, различающимися на два и более порядков величины, препятствует слипание наночастиц - образование агломератов, что приводит к формированию недостаточно однородной по пространству композиционной смеси шихты. В результате шихта, приготовленная известными способами, имеет недостаточно высокую объемную однородность, что приводит в конечном счете к неравномерному износу матрицы алмазного инструмента при его работе. Кроме того, при приготовлении шихты последовательное выполнение операций качественного перемешивания компонентов и пластифицирования занимает много времени.

Технической задачей изобретения является создание способа приготовления шихты для матрицы алмазного инструмента, при котором совмещены процессы смешивания компонентов твердосплавных порошков с упрочняющими сверхтвердыми частицами наноразмера и пластифицирования, обеспечивается качественное перемешивание компонентов шихты за более короткое время и получение однородной по износостойкости матрицы.

Технический результат достигается тем, что в способе приготовления шихты из твердосплавной порошковой смеси с упрочняющими сверхтвердыми частицами наноразмера, включающем смешивание твердосплавной порошковой смеси с наночастицами, пластифицирование полученной смеси, ее протирку через сито и сушку, согласно изобретению в растворитель пластификатора, взятый в избыточном количестве и находящийся в кавитационном поле ультразвуковых колебаний, вводят и смешивают наночастицы, затем в нем малыми дозами растворяют вещество пластификатора, полученную суспензию в кавитационном поле ультразвука нагревают при температуре на 30-50°C ниже температуры разложения вещества пластификатора и выпаривают из суспензии избыточное количество растворителя так, что ее количество по отношению к веществу пластификатора составляет не более 10%, при достижении которого пластификатор вводят в твердосплавную порошковую смесь и замешивают.

Как известно, твердосплавные порошки плохо прессуются и формуются без введения клеящих добавок - пластификаторов (Основы проектирования и технология изготовления абразивного и алмазного инструмента // Под редакцией В.Н. Бакуля. - М.: Машиностроение, 1975 г., с.269). Как правило, в производстве твердых сплавов используются растворы вещества пластификатора (каучук, полиэтиленгликоль, поливинилацетат, парафин, стеарат цинка и др.) в бензине, спирте и органических растворителях. При комнатной температуре готовые к применению пластификаторы имеют консистенцию густой гелеобразной жидкости. В этой связи низкая вязкость растворителя под воздействием ультразвука способствует эффективному разрушению агломератов наночастиц, качественному перемешиванию и равномерному объемному распределению наночастиц в растворителе. Ввод вещества пластификатора в суспензию наночастиц в растворителе малыми дозами и интенсивное кавитационное поле ультразвука обеспечивают быстрое диспергирование вещества пластификатора в растворитель без образования комков и нарушения равномерного распределения наночастиц в суспензии, вязкость которой достаточно низкая из-за избыточного количества растворителя. По мере выпаривания избыточного количества растворителя вязкость суспензии с наночастицами постепенно увеличивается, при этом интенсивное воздействие ультразвуковых колебаний препятствует образованию агломератов наночастиц и способствует сохранению равномерного распределения наночастиц. При достижении 10%-ной концентрации вещества пластификатора в растворе его консистенция такова, что в нем наночастицы как бы застывают, сохраняя при этом пространственное распределение в пластификаторе. В процессе замешивания твердосплавной порошковой смеси суспензия пластификатора с наночастицами тонким слоем смачивает и обволакивает зерна твердосплавной порошковой смеси. В результате наночастицы вместе с зернами твердосплавного порошка равномерно распределяются по всему его объему шихты.

В процессе спекания при медленном режиме нагрева, когда происходит разложение, испарение и удаление образовавшихся паров вещества пластификатора, наночастицы оседают на поверхности зерен твердосплавного порошка, заполняя образовавшиеся поры и сохраняя при этом свое равномерное объемное распределение в матрице инструмента, что обеспечивает однородность износостойкости матрицы.

Способ осуществляется следующим образом. В качестве пластификатора берут, например, часто применяемый в производстве твердых сплавов раствор каучука в бензине. Сначала в бензин в количестве 2 л вводят и диспергируют в нем упрочняющие сверхтвердые частицы наноразмера синтетического алмаза в количестве 2% от объема шихты. После получения однородной суспензии наночастиц в бензине в нее малыми кусочками добавляют и растворяют каучук в количестве 60 г. Ввод и диспергирование наночастиц в бензине и соответственно каучука в суспензии производят в кавитационном поле ультразвука. Затем из суспензии каучука и наночастиц при температуре 50°C выпаривают избыточное количество бензина так, что ее количество по отношению к веществу пластификатора составила не более 10%. Выпаривание также производят с одновременным воздействием на суспензию ультразвуковым полем. Полученную гелеобразную массу вводят в твердосплавную порошковую смесь марки ВК8 и тщательно замешивают, затем протирают через сито и сушат.

Таким образом, приготовление шихты, при котором ввод и смешивание сверхтвердых частиц наноразмера с твердосплавной порошковой смесью производится при выполнении операции пластифицирования твердосплавной порошковой смеси, благодаря равномерному объемному распределению компонентов шихты позволяет получить однородную по износостойкости матрицу и сокращает время, затрачиваемое на изготовление инструмента.

Способ приготовления шихты из твердосплавной порошковой смеси с упрочняющими добавками из сверхтвердых частиц наноразмера для формирования матрицы алмазного инструмента, включающий смешивание твердосплавной порошковой смеси с наночастицами, пластифицирование полученной смеси, протирку через сито и сушку, отличающийся тем, что в растворитель пластификатора, взятый в избыточном количестве и находящийся в кавитационном поле ультразвуковых колебаний, вводят наночастицы, затем в нем малыми дозами растворяют вещество пластификатора, полученную суспензию нагревают при температуре на 30-50°C ниже температуры разложения вещества пластификатора в кавитационном поле ультразвука и выпаривают избыточное количество растворителя так, чтобы его количество по отношению к веществу пластификатора составляло не более 10%, после чего пластификатор вводят в твердосплавную порошковую смесь и замешивают.



 

Похожие патенты:
Изобретение относится к получению сверхтвердого композитного материала на основе кубического нитрида бора (КНБ) в присутствии катализаторов синтеза и дополнительных реагентов в камере высокого давления.
Изобретение относится к порошковой металлургии, в частности к порошковым коррозионно-стойким материалам на основе железа. Может использоваться для изготовления деталей, работающих в агрессивных абразивсодержащих средах, например, в нефтедобывающей, химической промышленности.
Изобретение относится к порошковой металлургии, в частности к производству графито-медных материалов для сильноточных электрических контактов. Шихта содержит, мас.%: частицы меди 20-85, частицы гидрида титана 1-10 и частицы графита - остальное.
Изобретение относится к литейному производству и может быть использовано для получения отливок из алюминиевых сплавов. Алюминиевый расплав перегревают до температуры 700-720°C и фильтруют через фильтр из пенометалла с открытой пористостью на основе сплава алюминий-титан с содержанием титана 5-10%.

Изобретение относится к области нанотехнологии композиционных материалов на основе мезопористых матриц, содержащих наноразмерные изолированные металлические частицы, и может быть использовано для получения магнитных материалов.

Изобретение относится к порошковой металлургии, в частности к получению пористого порошка никелида титана. Может использоваться в медицине для изготовления стоматологических имплантов.

Изобретение относится к алюминиевому сплаву для производства подложек для офсетных печатных форм. Алюминиевый сплав содержит следующие компоненты, в мас.%: 0,2% ≤ Fe ≤0,5%, 0,41% ≤ Mg ≤ 0,7%, 0,05% ≤ Si ≤ 0,25%, 0,31% ≤ Mn ≤0,6%, Cu ≤0,04%, Ti ≤ 0,05%, Zn ≤ 0,05%, Cr ≤ 0,01%, остальное - Al и неизбежные примеси, каждая из которых присутствует в количестве не более 0,05%, а в целом они составляют максимум 0,15%.

Изобретение относится к области порошковой металлургии, в частности к получению многослойных композитов на основе системы Nb-Al. Может использоваться для синтеза наноструктурных интерметаллических соединений данной системы.

Изобретение относится к порошковой металлургии, в частности к получению твердосплавного тела из твердого сплава, содержащего зерна карбида вольфрама и металлическое связующее, содержащее кобальт с определенной концентрацией растворенного в нем вольфрама.
Изобретение относится к порошковой металлургии, в частности к получению пористых многослойных проницаемых материалов. Может использоваться в медицине для изготовления функционально-градиентных имплантатов.

Изобретение относится к инструментальному производству, в частности к способам изготовления абразивного инструмента из алмазно-металлической композиции, и может быть использовано в порошковой металлургии.

Изобретение относится к порошковой металлургии, в частности к порошковой композиции на основе железа, и способу получения диффузионно-легированного порошка. Диффузионно-легированный порошок получен смешиванием порошка железа или на основе железа с частицами легирующего порошка, содержащими медь и никель, и нагрев смеси порошков в неокислительной или восстановительной атмосфере до температуры 500-1000°С в течение 10-120 минут для связывания частиц легирующего порошка с поверхностью базового порошка.

Изобретение относится к области порошковой металлургии, в частности к получению многослойных композитов на основе системы Nb-Al. Может использоваться для синтеза наноструктурных интерметаллических соединений данной системы.

Изобретение относится к порошковой металлургии, в частности к получению дисперсноупрочненной высокоазотистой аустенитной стали с нанокристаллической структурой.

Изобретение относится к области порошковой металлургии, в частности к способам активации горения дисперсных порошков алюминия, которые могут быть использованы в различных областях промышленности.

Изобретение относится к порошковой металлургии, в частности к получению ферритов. Может использоваться в электронной и радио промышленностях.
Наверх