Теплогенерирующий электромеханический преобразователь

Изобретение относится к электротехнике, а именно к теплогенерирующему электромеханическому преобразователю, предназначенному для нагрева и/или перемещения жидкой или газообразной среды. Устройство содержит дополнительный неподвижный элемент, выполненный из антифрикционного неэлектропроводящего материала, выполняющего функции радиального и/или упорного подшипника скольжения, из полимерного композиционного материала на основе эпоксидно-диановой смолы с наполнителем из порошка фторопласта, рубленого стекловолокна и дополнительно оксида алюминия Al2O3 или двуокиси кремния SiO2, что позволяет увеличить количество отводимого от первичной обмотки тепла. Увеличение коэффициента теплопроводности неподвижного теплоизолирующего элемента обеспечивает снижение температуры первичной обмотки теплогенерирующего электромеханического преобразователя, что соответственно повышает надежность его работы. 2 табл

 

Изобретение относится к электротехнике и может использоваться для промышленных, сельскохозяйственных и бытовых нужд.

Известен электромеханический преобразователь, содержащий первичную обмотку, магнитопровод и вращающуюся короткозамкнутую вторичную обмотку в виде полого цилиндра, отделенную от магнитопровода дополнительным теплоизолирующим элементом из антифрикционного неэлектропроводящего материала, выполняющего функцию подшипника скольжения и составляющего единое целое с магнитопроводом и первичной обмоткой, а на внутренней поверхности вторичной обмотки сформированы и жестко связаны с ней напорные лопасти (патент на полезную модель РФ №65335, МПК7 Н05В 6/10, F25B 29/00).

Наиболее близким по технической сущности является теплогенерирующий электромеханический преобразователь, содержащий первичную обмотку, магнитопровод и вращающуюся короткозамкнутую вторичную обмотку, выполненную в виде полого цилиндра, отделенного от магнитопровода дополнительным теплоизолирующим элементом из антифрикционного неэлектропроводящего материала, выполняющего функцию радиального и/или упорного подшипника скольжения и составляющего единое целое с магнитопроводом и первичной обмоткой, а на внутренней поверхности вторичной обмотки сформированы и жестко связаны с ней напорные лопасти, при этом дополнительный неподвижный теплоизолирующий элемент состоит из полимерного композиционного материала на основе эпоксидно-диановой смолы с наполнителем из порошка фторопласта-4 и рубленого стекловолокна, например, при следующем весовом соотношении компонентов: эпоксидно-диановая смола - 75…90%; фторопласт - 4-8…24%; остальное - рубленое стекловолокно (патент на изобретение РФ №2410852, МПК Н05В 6/10, F25B 29/00, E21D 5/012).

Недостатком этих устройств является их низкая надежность, обусловленная напряженным тепловым режимом первичной обмотки.

Задачей заявляемого изобретения является повышение надежности устройства за счет улучшения теплообмена между обмоткой и охлаждающей средой и уменьшения тепловой нагрузки первичной обмотки.

Технический результат, достигаемый в процессе решения поставленной задачи, заключается в увеличении коэффициента теплопроводности материала дополнительного неподвижного теплоизолирующего элемента теплогенерирующего электромеханического преобразователя.

Такой технический результат является следствием использования дополнительного неподвижного элемента из антифрикционного неэлектропроводящего материала, выполняющего функции радиального и/или упорного подшипника скольжения, из полимерного композиционного материала на основе эпоксидно-диановой смолы с наполнителем из порошка фторопласта, рубленого стекловолокна и оксида алюминия Al2O3 или двуокиси кремния SiO2, что позволяет увеличить коэффициент теплопроводности композиционного материала без снижения его электрической прочности.

Сущность предлагаемого изобретения поясняется следующим.

Теплогенерирующий электромеханический преобразователь состоит из магнитопровода с размещенной на нем сетевой обмоткой и вращающейся короткозамкнутой вторичной обмотки, выполненной в виде полого цилиндра, на внутренней поверхности которого сформированы и жестко связаны с ней напорные лопасти. Вращающаяся вторичная обмотка и магнитопровод разделены дополнительным неподвижным теплоизолирующим элементом из антифрикционного неэлектропроводящего материала, выполняющего функцию радиального и/или упорного подшипника скольжения и составляющего единое целое с магнитопроводом и первичной обмоткой. Антифрикционный неэлектропроводящий материал состоит из композиционного полимера на основе эпоксидно-диановой смолы с наполнителем из порошка фторопласта, рубленого стекловолокна и оксида алюминия Al2O3 (например, в весовом соотношении: 75…85% - эпоксидно-диановая смола, 4…6% - фторопласт-4, 5…7% - оксид алюминия Al2O3, остальное - рубленое стекловолокно) или двуокиси кремния SiO2 (например, в весовом соотношении: 75…85% - эпоксидно-диановая смола, 4…6% - фторопласт-4, 6…12% - двуокись кремния SiO2, остальное - рубленое стекловолокно).

В таблице 1 приведены примеры реализации композиции, используемой в качестве материала дополнительного неподвижного теплоизолирующего элемента теплогенерирующего электромеханического преобразователя при включении оксида алюминия, в таблице 2 - при включении двуокиси кремния.

Таблица 1
Весовые соотношения компонентов при использовании оксида алюминия
Компоненты I реализация II реализация
Эпоксидно-диановая смола 85% 75%
Фторопласт-4 4% 6%
Оксид алюминия 5% 7%
Рубленое стекловолокно остальное остальное
Таблица 2
Весовые соотношения компонентов при использовании двуокиси кремния
Компоненты I реализация II реализация
Эпоксидно-диановая смола 85% 75%
Фторопласт-4 4% 6%
Двуокись кремния 6% 12%
Рубленое стекловолокно остальное остальное

При этом эпоксидно-диановая смола и рубленое стекловолокно обеспечивают большую прочность, малую усадку, хорошую адгезию, низкую водопоглощаемость, фторопласт - высокую износостойкость, низкий коэффициент трения, высокое электрическое сопротивление, оксид алюминия Al2O3 или двуокись кремния SiO2 - высокую теплопроводность дополнительного неподвижного теплоизолирующего элемента. При работе теплогенерирующего электромеханического преобразователя первичная обмотка является наиболее напряженным в тепловом отношении элементом, поскольку находится внутри дополнительного неподвижного теплоизолирующего элемента из композиционного материала. Количество тепловой мощности, отводимое от первичной обмотки, определяется тепловым сопротивлением дополнительного неподвижного теплоизолирующего элемента, зависящего от коэффициентов теплопроводности отвержденной эпоксидно-диановой смолы (0,064 …0,216 Вт/(м·К)), фторопласта (0,25 Вт/(м·К)), рубленого стекловолокна (0,030…0,050 Вт/(м·К)). Использование оксида алюминия Al2O3 с коэффициентом теплопроводности 25…30 Вт/(м·К) или кремния SiO2 с коэффициентом теплопроводности 1…7 Вт/(м·К)) приводит к снижению теплового сопротивления, соответственно к увеличению количества отводимого от первичной обмотки тепла и снижению ее температуры. Уменьшение температуры обмотки на каждые 10…12 градусов ведет к увеличению ее срока службы практически в два раза, что соответственно приводит к повышению надежности теплогенерирующего электромеханического преобразователя.

Таким образом, использование для дополнительного неподвижного теплоизолирующего элемента, представляющего собой радиальный и/или упорный подшипник скольжения, композиции, например, в весовом соотношении: 75…85% - эпоксидно-диановая смола, 4…6% - фторопласт, 5…7% - оксид алюминия Al2O3 или 6…12% - двуокись кремния SiO2, остальное - рубленое стекловолокно, позволяет уменьшить нагрев первичной обмотки и повысить надежность теплогенерирующего электромеханического преобразователя.

Теплогенерирующий электромеханический преобразователь, содержащий первичную обмотку, магнитопровод и вращающуюся короткозамкнутую вторичную обмотку, выполненную в виде полого цилиндра, отделенного от магнитопровода дополнительным теплоизолирующим элементом из антифрикционного неэлектропроводящего материала, выполняющего функцию радиального и/или упорного подшипника скольжения и составляющего единое целое с магнитопроводом и первичной обмоткой, а на внутренней поверхности вторичной обмотки сформированы и жестко связаны с ней напорные лопасти, при этом дополнительный неподвижный теплоизолирующий элемент состоит из полимерного композиционного материала на основе эпоксидно-диановой смолы, фторопласта и рубленого стекловолокна, отличающийся тем, что в состав материала, образующего дополнительный теплоизолирующий элемент включены оксид алюминия Al2O3 5…7% или двуокись кремния SiO2 6…12%, а остальные компоненты находятся в следующем весовом соотношении: эпоксидно-диановая смола - 75…85%, фторопласт-4 - 4…6%, остальное - рубленое стекловолокно.



 

Похожие патенты:

Устройство индукционного нагрева с поперечным потоком обеспечивает возможность пересечения переменным магнитным полем стороны листа проводящего листа, который перемещается в одном направлении, в результате чего происходит индуктивный нагрев проводящего листа.

Устройство индукционного нагрева поперечным потоком позволяет переменному магнитному полю пересекать грань проводящего листа, который транспортируется в одном направлении, тем самым индуктивно нагревая проводящий лист.

Система нагревания подземного пласта содержит протяженный электрический проводник, размещенный в подземном пласте. Электрический проводник расположен между, по меньшей мере, первым электрическим контактом и вторым электрическим контактом.

Изобретение относится к блоку управления индукционного нагрева. Блок управления блока индукционного нагрева управляет выводом питания переменного тока к нагревательной катушке блока индукционного нагрева поперечного типа, что позволяет переменному магнитному полю пересекать поверхность проводящего листа, который перемещается для индукционного нагрева проводящего листа.

Устройство содержит индукционный нагреватель, магнитопроводный экран, теплоизоляционный кожух, индукционную обмотку, охватывающую цилиндрическую емкость, выпрямитель переменного тока и инвертор, соединенный с индукционной обмоткой и блоком управления инвертором, датчики температуры входного и выходного потока, соединенные с блоком сравнения температур, который подключен к блоку управления инвертором и блоку управления насосом, соединенному с насосом.

Устройство может быть использовано перед электродуговой наплавкой восстанавливаемого в пути участка рельса для его нагрева. Удлиненный в продольном направлении петлевой индуктор включает два одинаковых и расположенных напротив друг друга пластинчатых продольных элемента с плавно загнутыми навстречу друг другу верхними участками и плоскими нижними участками, расположенными относительно друг друга на расстоянии, обеспечивающем при установке индуктора скользящую или ходовую посадку по сопрягаемым с ними боковым граням головки рельса.

Изобретение относится к электротехнике и может использоваться для промышленных, сельскохозяйственных и бытовых нужд. .

Изобретение относится к способу и устройству для закалки детали, описываемой замкнутой кривой. .

Настоящее изобретение относится к области литьевых смол для коммутационных устройств. Описана твердая смоляная система для изоляционных материалов в коммутационных устройствах, содержащая твердую смолу на основе бисфенола A, которая имеет эпоксидное число (DIN ISO 16945) от ≥0,2 до ≤0,3, и жидкую смолу на основе бисфенола F, которая имеет эпоксидное число (DIN ISO 16945) от ≥0,4 до ≤0,63, где доля жидкой смолы на основе бисфенола F в смоле, измеренная как масса к общей массе смолы, составляет от ≥5% до ≤60%, причем твердая смоляная система перед отверждением имеет эпоксидное число (DIN ISO 16945) от ≥0,2 до ≤0,55, и твердая смоляная система в качестве смол включает только непосредственно указанные смолы.

Настоящее изобретение относится к изолирующей смоле на основе сложного глицидилового эфира для изоляционных материалов в распределительных устройствах. Указанная смола содержит метилнадик-ангидрид и/или гидрированный метилнадик-ангидрид и имидазол структуры где R1, R2, R3 и R4 указаны в п.1 формулы.

Изобретение относится к области электротехники, в частности к электроизоляционному заливочному компаунду, который может найти применение для заливки токопроводящих схем и деталей, для их герметизации и защиты элементов радиоэлектронной аппаратуры от влаги и механических воздействий.
Изобретение относится к области электротехники, в частности к эпоксидным электроизоляционным заливочным компаундам горячего отверждения, предназначенным для электроизоляции и упрочнения узлов и блоков высоковольтных устройств, дросселей, металлонагруженных трансформаторов, для герметизации и защиты элементов радиоэлектронной аппаратуры от влаги и механических воздействий.

Изобретение относится к покрывным эмалям горячей сушки, предназначенным для получения электроизоляционных защитных покрытий пропитанных обмоток, узлов и деталей электрических машин и аппаратов с изоляцией класса нагревостойкости F (155°С).
Изобретение относится к композиции на основе эпоксидной смолы, предназначенной для герметизации полупроводниковых приборов. .
Изобретение относится к области электротехники, в частности к токопроводящим клеевым композициям на основе эпоксидных смол, которые обладают высокой электропроводностью и высокой прочностью клеевых соединений при температурах от -60°С до 150°С, предназначенных для использования в приборной технике и микроэлектронике.

Группа изобретений относится к области теплообмена и может быть использована для охлаждения воздуха или оборудования, а также для утилизации сбросного тепла. Технический результат - повышение эффективности теплообмена, экономичности, экологичности, а также повышение надежности и долговечности, расширение области применения, расширение функциональных возможностей.
Наверх