Радиально-торцевое контактное уплотнение опоры турбомашины

Изобретение относится к области авиационного двигателестроения, а именно к уплотнениям масляных полостей газотурбинных двигателей и энергетических установок. Техническим результатом является снижение трения и износа элементов уплотнения за счет снижения нагрузки на графитовые кольца на пониженных режимах работы турбомашины. Радиально-торцевое контактное уплотнение опоры турбомашины содержит два упругих графитовых кольца с поперечными разрезами, установленных на роторе турбомашины, контактные кольца, торцевые поверхности которых выполнены контактирующими с торцевыми поверхностями упругих графитовых колец, распорную втулку, установленную на роторе турбомашины между контактными кольцами, и втулку. Уплотнение дополнительно содержит упругое кольцо с поперечным разрезом, установленное на роторе турбомашины между упругими графитовыми кольцами, причем наружная поверхность упругого кольца выполнена контактирующей с внутренними поверхностями упругих графитовых колец, при этом контактирующие поверхности упругого кольца и упругих графитовых колец выполнены коническими. 1 ил.

 

Изобретение относится к области авиационного двигателестроения, а именно к уплотнениям масляных полостей газотурбинных двигателей и энергетических установок.

Известно радиально-торцевое контактное уплотнение опоры турбомашины, содержащее два упругих графитовых кольца с поперечными разрезами, установленных на роторе турбомашины, контактные кольца, торцевые поверхности которых выполнены контактирующими с торцевыми поверхностями упругих графитовых колец, распорную втулку, установленную на роторе турбомашины между контактными кольцами, и втулку (RU 2425270 С1, опубл. 27.07.2011).

В известном уплотнении усилие прижатия упругих графитовых колец к контактным кольцам по торцевым поверхностям задается S-образной осевой пружиной, установленной между упругими графитовыми кольцами. Оно постоянно на всех режимах работы уплотнения и должно удерживать максимальный перепад давлений на максимальных рабочих режимах. Однако на пониженных режимах усилие упомянутой пружины приводит к дополнительному трению, повышенному износу, снижению герметичности, уменьшая тем самым ресурс и работоспособность уплотнения.

Задачей изобретения является создание радиально-торцевого контактного уплотнения опоры турбомашины, лишенного вышеприведенных недостатков.

Техническим результатом, достигаемым при использовании настоящего изобретения, является снижение трения и износа элементов уплотнения за счет снижения нагрузки на графитовые кольца на пониженных режимах работы турбомашины и, как следствие, увеличение срока службы заявленного радиально-торцевого контактного уплотнения опоры турбомашины.

Указанный технический результат достигается тем, что радиально-торцевое контактное уплотнение опоры турбомашины, содержащее два упругих графитовых кольца с поперечными разрезами, установленных на роторе турбомашины, контактные кольца, торцевые поверхности которых выполнены контактирующими с торцевыми поверхностями упругих графитовых колец, распорную втулку, установленную на роторе турбомашины между контактными кольцами, и втулку, согласно настоящему изобретению дополнительно содержит упругое кольцо с поперечным разрезом, установленное на роторе турбомашины между упругими графитовыми кольцами, причем наружная поверхность упругого кольца выполнена контактирующей с внутренними поверхностями упругих графитовых колец, при этом контактирующие поверхности упругого кольца и упругих графитовых колец выполнены коническими.

Такое конструктивное исполнение графитового уплотнения позволяет следующее.

При увеличении частоты вращения ротора под действием центробежных сил увеличивается нагрузка на графитовые кольца упругим кольцом с поперечным разрезом по контактирующим коническим поверхностям. При этом радиальная нагрузка упругого кольца с поперечным разрезом будет равномерно оказывать усилие прижатия графитовых колец по цилиндрической поверхности с втулкой и торцовым поверхностям контактных колец.

А на пониженных режимах работы турбомашины снижается нагрузка на графитовые кольца упругим кольцом с поперечным разрезом по контактирующим коническим поверхностям, что снижает трение упомянутых элементов уплотнения друг о друга, а следовательно, повышается срок их службы, что повышает ресурс заявленного уплотнения в целом и расширяет его область применения по скоростным показателям.

Распорная втулка позволяет подбирать необходимые минимальные зазоры в графитовых кольцах в зоне поперечных разрезов, а также усилие предварительного обжатия разрезного кольца.

Также, при проектировании уплотнения выбор углов конических поверхностей относительно продольной оси ротора турбомашины позволяет перераспределять усилия прижатия упругого кольца с поперечным разрезом через упругие графитовые кольца на контактные кольца и втулку в зависимости от размерности уплотнения, рабочих оборотов и перепада давления на нем.

На фигуре чертежа показан продольный разрез радиально-торцевого контактного уплотнения масляной полости турбомашины.

Радиально-торцевое контактное уплотнение опоры турбомашины содержит два упругих графитовых кольца 1 с поперечными разрезами, установленных на роторе турбомашины, контактные кольца 2, торцевые поверхности которых выполнены контактирующими с торцевыми поверхностями упругих графитовых колец 1, распорную втулку 3, установленную на роторе турбомашины между контактными кольцами 2, и втулку 4, ограничивающую область уплотнения, кроме того, дополнительно содержит упругое кольцо 5 с поперечным разрезом, установленное на роторе турбомашины между упругими графитовыми кольцами 1, причем наружная поверхность упругого кольца 5 с поперечным разрезом выполнена контактирующей с внутренними поверхностями упругих графитовых колец 1, при этом контактирующие поверхности упругого кольца 5 и упругих графитовых колец 1 выполнены коническими.

При работе турбомашины усилие прижатия упругих графитовых колец 1 по контактным поверхностям контактных колец 2 и втулки 4 определяется предварительным усилием обжатия упругого кольца 5 с поперечным разрезом, которое задается распорной втулкой 3. При увеличении частоты вращения ротора за счет массовых характеристик упругого кольца 5 с поперечным разрезом происходит увеличение усилий прижатия графитовых колец 1 к контактным кольцам 2 и втулки 4 за счет центробежных сил, компенсируя тем самым увеличение перепада давлений на графитовом уплотнении.

Радиально-торцевое контактное уплотнение опоры турбомашины, содержащее два упругих графитовых кольца с поперечными разрезами, установленных на роторе турбомашины, контактные кольца, торцевые поверхности которых выполнены контактирующими с торцевыми поверхностями упругих графитовых колец, распорную втулку, установленную на роторе турбомашины между контактными кольцами, и втулку, отличающееся тем, что дополнительно содержит упругое кольцо с поперечным разрезом, установленное на роторе турбомашины между упругими графитовыми кольцами, причем наружная поверхность упругого кольца выполнена контактирующей с внутренними поверхностями упругих графитовых колец, при этом контактирующие поверхности упругого кольца и упругих графитовых колец выполнены коническими.



 

Похожие патенты:

Изобретение относится к области авиационного двигателестроения, а именно к уплотнениям масляных полостей газотурбинных двигателей и энергетических установок. Техническим результатом является повышение ресурса графитового уплотнения за счет проскальзывания в зоне контакта графитовых колец относительно контактных колец и втулки.

Изобретение относится к области машиностроения и направлено на совершенствование конструкций клапанов, работающих в условиях высоких температур и давлений и предназначенных для управления вектором тяги летательных аппаратов.

Изобретение относится к уплотнительной прокладке для герметизации фланцевого соединения. .

Изобретение относится к области авиационного двигателестроения, а именно к уплотнениям масляных картеров опор роторов турбомашин. .

Изобретение относится к уплотнительной технике. .

Изобретение относится к арматуростроению. .

Изобретение относится к уплотнительной технике и преимущественно может быть использовано для уплотнения разъемных фланцевых соединений в атомной, бумагоделательной, нефтегазовой, пищевой и химической промышленности.

Изобретение относится к технике нанесения клея на материал и может быть использовано, например, для нанесения клея на тисненую ленту из расширенного графита, применяемую для уплотнения штоков запорно-регулирующей арматуры и фланцевых соединений.

Изобретение относится к уплотнительной технике. .

Изобретение относится к уплотнению вала для турбомашины. Уплотнение вала для турбомашины содержит нагружаемое технологическим газом и запираемое со стороны процесса уплотнение технологического газа и нагружаемое воздухом и запираемое со стороны атмосферы атмосферное уплотнение.

Турбинная лопатка содержит перо, продолжающееся от первой поверхности турбинной полки, а также карманы, выполненные на двух сторонах турбинной полки. Карман с первой стороны турбинной полки предназначен для полного размещения первого подвижного уплотнения между передней и задней стенками кармана с первой стороны турбинной полки.

Изобретение относится к области авиационного двигателестроения, а именно к уплотнениям масляных полостей газотурбинных двигателей и энергетических установок. Техническим результатом является повышение ресурса графитового уплотнения за счет проскальзывания в зоне контакта графитовых колец относительно контактных колец и втулки.

Уплотнительный элемент канала утечки между наружной площадкой турбинного сопла и удерживающим ее опорным кольцом включает лепестковое уплотнение и образующую ударные струи пластину.

Объектом настоящего изобретения является уплотнительная прокладка промежуточной площадки между двумя смежными лопатками в роторе турбомашины удлиненной формы с входным концом и выходным концом, содержащая поперечно в направлении ширины контактную часть, крепежную часть и гибкую часть между крепежной частью и контактной частью.

Газотурбинный двигатель содержит кольцевую камеру сгорания, секторальный направляющий сопловый аппарат турбины, расположенный на выходе камеры, и герметизирующие средства, аксиально размещенные между камерой сгорания и направляющим сопловым аппаратом.

Разделенный на сектора направляющий аппарат турбомашины содержит внутреннюю и внешнюю платформы, связанные между собой радиальными лопатками. Внутренняя платформа соединена с радиальной перегородкой, несущей элементы из истираемого материала.

Уплотнение стыка камеры сгорания и соплового аппарата турбины содержит уплотнительное кольцо камеры сгорания и козырек соплового аппарата. Козырек закреплен на внутреннем корпусе, снабженном кольцом фиксирующим с установленным плавающим кольцом.

Изобретение относится к машиностроению, а именно к армированным элементам для уплотнения зазоров проточной части турбомашин, длительно работающих в условиях повышенных температур и высокочастотных вибраций.

Направляющий аппарат турбины газотурбинного двигателя разделен на сектора, включающие внутреннюю и наружную платформы, связанные между собой радиальными лопатками. Каждый сектор внутренней платформы связан с сектором радиальной перегородки. Внутренняя периферийная часть каждого сектора перегородки снабжена зубцами и содержит сплошные части, чередующиеся с содержащими углубления частями. Элементы из изнашиваемого материала закрепляются на непрерывном кольцевом кронштейне, содержащем средства закрепления на секторах перегородки. Кронштейн выполнен с возможностью вращения и поворота в окружном направлении между положением монтажа и демонтажа и положением блокировки, в котором средства закрепления взаимодействуют со сплошными частями секторов перегородки для обеспечения удержания кронштейна на перегородке. Средства закрепления формируют участки кольцевой канавки, открывающейся в радиальном направлении наружу, в которых размещаются сплошные части секторов перегородки в положении блокировки. Другие изобретения группы относятся к сектору и непрерывному кольцевому кронштейну указанного выше направляющего аппарата, а также к турбине низкого давления и газотурбинному двигателю, включающим такой направляющий аппарат. Группа изобретений позволяет упростить изготовления секторов направляющего аппарата. 5 н. и 10 з.п. ф-лы, 8 ил.
Наверх