Выходное устройство турбины

Изобретение относится к конструкции опорных или установочных устройств выходного устройства турбины. Выходное устройство турбины содержит полые аэродинамические профилированные стойки, размещенные за рабочим колесом последней ступени турбины, а также аэродинамические профилированные контура. Контура образованы передними и задними лопатками, размещенными между стойками со смещением относительно друг друга. Средние линии входных участков контуров и входных участков профилированных стоек повернуты в направлении вращения рабочего колеса последней ступени турбины на угол 20-40° к ее продольной оси. Средние линии выходных участков контуров направлены вдоль продольной оси турбины. Лопатки установлены со смещением относительно друг друга на расстояние равное 0,03÷0,15 длины хорды передней лопатки. По длине хорды контура лопатки установлены в положение совмещения фронта выходной кромки передней лопатки и фронта входной кромки задней лопатки или смещены относительно него. Количество контуров установленных между стойками определено зависимостью защищаемой настоящим изобретением. Изобретение позволяет повысить коэффициент полезного действия последней ступени турбины, а также уменьшить закрутку выходящего потока. 3 ил.

 

Изобретение относится к конструктивным элементам турбины, взаимосвязям между корпусом турбины и ее внутренними элементами, в частности, к конструкции опорных или установочных устройств выходного устройства турбины.

Известно выходное устройство турбины, содержащее полые аэродинамически профилированные стойки, размещенные в проточной части турбины за рабочим колесом последней ступени турбины, закрепленные в положении, при котором средние линии выходных участков профилей направлены вдоль продольной оси турбины.

/US №3751909 НКИ 60/39.17 опубл. 14.08.1973 г./ /1/

Конструктивно такие стойки просты в исполнении, служат в качестве опорных силовых элементов турбины и позволяют использовать их в виде коллекторов для различных проводок в турбину и из нее.

К недостаткам турбин с такими выходными устройствами, следует отнести значительные, аэродинамические потери потока после турбины при попытке активизации и использования имеющегося энергетического потенциала последней ступени турбины.

Задача изобретения - создать выходное устройство турбины, обеспечивающее минимальные потери потока при активизации энергетического потенциала последней ступени турбины.

Ожидаемый технический результат - достижение оптимально возможного КПД последней ступени турбины при практически осевом потоке газа на выходе из турбины, повышение равномерности закрутки потока и минимизация сопротивления.

Технический результат достигается тем, что известное выходное устройство турбины, содержащее полые аэродинамические профилированные стойки, размещенные в проточной части турбины за рабочим колесом последней ступени турбины и закрепленные в положении, при котором средние линии выходных участков профилей направлены вдоль продольной оси турбины, по предложению, снабжено аэродинамическими профилированными контурами, выполненными из передних и задних лопаток, размещенных между стойками со смещением относительно друг друга и средней линии контура и закрепленных в положении, при котором средние линии входных участков контура и входных участков профилированных стоек повернуты в направлении вращения рабочего колеса последней ступени турбины на угол 20-40° к ее продольной оси, а средние линии выходных участков контуров направлены вдоль продольной оси турбины, при этом лопатки установлены со смещением относительно друг друга на расстояние равное SR=(0,03÷0,15)b1, а по длине хорды контура лопатки установлены в положение совмещения фронта выходной кромки передней лопатки и фронта входной кромки задней лопатки или смещены относительно него в интервале (-0,05b1<d<0,05b1), причем количество контуров установленных между стойками определено по зависимости: n=a/tb, tb=b/t=1…3, где n - количество контуров; a - расстояние между толстыми стойками; tb - густота решетки; b - длина хорды контура; t - расстояние между контурами, SR - расстояние между передней и задней лопатками; d - смещение по длине хорды контура; b1 - длина хорды передней лопатки.

Сущность изобретения заключается в следующем.

Для обеспечения благоприятного обтекания потоком самих стоек, а также обтекания элементов конструкции двигателя, расположенных за затурбинным устройством по основному потоку, и течения с минимальными потерями в проточной части двигателя после затурбинного устройства, необходимо, чтобы поток газа на выходе из турбины был направлен практически вдоль продольной оси двигателя с малой окружной составляющей вектора скорости. Для этого приходится, вынуждено увеличивать угол выхода и снижать скорость потока в относительном движении на выходе из рабочего колеса последней ступени турбины.

Согласно формуле Эйлера, КПД турбины зависит от угла выхода потока. Оптимальное значение угла выхода потока составляет 20…40°. Использование этой зависимости для последней ступени турбины приводит к завышенным потерям полного давления в последующей за турбиной проточной части двигателя (форсажная камера, реактивное сопло) из-за сильной закрутки потока. Минимальные потери полного давления возможны только при осевом или близком к осевому.

Изменение угла закрутки потока после турбины осуществляется использованием профилированных стоек затурбинного устройства. Однако, определяющим геометрию стоек и их число являются не газодинамические параметры основного потока (их влияние на параметры не значительно), а параметры прочности и работоспособности стойки турбины. Через полые аэродинамически профилированные стойки в конструкции затурбинных устройств, проходят технологические трубопроводы, передающие турбине технологические среды. Для технического обслуживания турбины и размещения необходимого числа проводок в турбину и из нее достаточно М=10-15 профилированных толстых стоек, что является недостаточным для поворота потока. Расстояние между толстыми стойками определяется как, а=2πR/М, где R - средний радиус турбины. Поворот потока на необходимый угол с минимальными потерями полного давления, можно получить путем добавления тонких дополнительных промежуточных профилированных лопаток (толщина лопаток значительно меньше, чем толщина основных стоек), установленных попарно друг за другом. Каждая пара лопаток образует аэродинамический контур. Лопатки в аэродинамическом контуре образуют перекрытие по фронту и по оси затурбинного устройства таким образом, что размеры щели между передней и задней лопатками составляют SR=(0,03÷0,15)b1, а перекрытие по оси затурбинного устройства d=(-0,05÷+0,05)b1, где b1 - длина хорды передней лопатки. При указанных параметрах щели имеет место интерференция потоков, обтекающих каждую решетку: в результате перекрытия решеток образуются щелевые каналы между соседними профилями передних и задних лопаток, струя, вытекающая из щелевого канала воздействует на обтекание профиля задней лопатки, что позволяет увеличить угол безотрывного поворота потока в межлопаточном канале. При значениях SR больше 0,15b1 и значениях d меньше -0,05b1 лопатки в контуре обтекаются как одиночные профили и взаимного влияния не наблюдается. При значениях SR меньше 0,03b1 и значениях d больше +0,05b1 значительно возрастает сопротивление потоку в щели и воздействие на обтекание задней лопатки пропадает, что приводит к отрыву потока от профиля задней лопатки и к росту сопротивления потоку, следовательно, к увеличению потерь полного давления в затурбинном устройстве. Число лопаток установленных между стойками, при которых поток гарантированно направляется вдоль продольной оси турбины, определяется из условия загроможденности тракта и по заявленным формулам.

На фиг.1 показан продольный разрез последней ступени турбины с выходным устройством.

На фиг.2 показан поперечный разрез по рабочим лопаткам последней ступени турбины и выходного устройства.

На фиг.3 показан зазор между лопатками аэродинамического контура.

Выходное устройство турбины содержит полые аэродинамические профилированные стойки 1 и аэродинамические контуры 2, выполненные из передних 3 и задних 4 лопаток, корпуса 5, размещенные в проточной части 6 за рабочим колесом последней ступени турбины 7 с рабочими лопатками 8. Выходные участки средней линии 9 профилированной стойки 1 и средней линии 10 аэродинамического контура 2 направлены вдоль продольной оси турбины 11, а входные участки средних линий 9 и 10 повернуты к продольной оси 11 турбины на угол Θ1=20-40° в сторону вращения рабочего колеса 7 последней ступени турбины. Лопатки 3 и 4 аэродинамического контура установлены относительно друг друга с зазором (фиг.3) таким образом, что в результате перекрытия профилей образуются щелевые каналы 12.

При работе последнего колеса 7 турбины поток с рабочих лопаток 8 выходит с относительной средней скоростью w2 под углом β2 к фронту решетки из стоек 1 и аэродинамического контура 2. С учетом скорости вращения колеса 7 на выходе u2 абсолютная скорость потока будет равна c2 с углом α2 (фиг.2). Окружная составляющая скорости будет равна cu2=c2·cos α2. Если эта компонента будет отрицательной по отношению к направлению вращения, то при прочих равных условиях она будет давать приращение мощности N ступени, вычисляемой по формуле Эйлера:

N=m1u1cu1-m2u2cu2,

где m1 и m2 - расходы массы газа на входе и выходе из колеса; u1 и u2 - окружная скорость вращения колеса на входе и выходе потока из колеса; cu1 и cu2 - окружные составляющие абсолютных скоростей на входе и выходе потока из колеса.

Для организации безударного натекания потока на основные полые стойки 1 и аэродинамический контур 2 необходимо обеспечить θ1=90°-α2 или 20-40°. На участке проточной части 6 канала, образованного основными полыми стойками 1 и аэродинамическим контуром 2 поток поворачивается на угол близкий к 0° от оси турбины. Часть газа основного потока проходит через щель 12, образованную передней 3 и задней 4 лопатками аэродинамического контура 2, и, воздействуя на основной поток в районе задней лопатки 3, препятствует отрыву потока с ее поверхностей. Данный эффект воздействия струи из щели 12 на основной поток позволяет увеличить угол поворота потока при минимальном загромождении проточной части.

Использование изобретения позволяет повысить КПД последней ступени турбины до 2% при практически осевом потоке газа на выходе из турбины и до минимума исключить закрутки выходящего потока оптимизировать сопротивление тракта.

Выходное устройство турбины, содержащее полые аэродинамические профилированные стойки, размещенные в проточной части турбины за рабочим колесом последней ступени турбины и закрепленные в положении, при котором средние линии выходных участков профилей направлены вдоль продольной оси турбины, отличающееся тем, что оно снабжено аэродинамическими профилированными контурами, выполненными из передних и задних лопаток, размещенных между стойками со смещением относительно друг друга и средней линии контура и закрепленных в положении, при котором средние линии входных участков контуров и входных участков профилированных стоек повернуты в направлении вращения рабочего колеса последней ступени турбины на угол 20-40° к ее продольной оси, а средние линии выходных участков контуров направлены вдоль продольной оси турбины, при этом лопатки установлены со смещением относительно друг друга на расстояние равное SR=(0,03÷0,15)b1, а по длине хорды контура лопатки установлены в положение совмещения фронта выходной кромки передней лопатки и фронта входной кромки задней лопатки или смещены относительно него в интервале (-0,05b1<d<0,05b1), причем количество контуров установленных между стойками определено по зависимости: n=a/tb, tb=b/t=1…3, где
n - количество контуров;
а - расстояние между толстыми стойками;
tb - густота решетки;
b - длина хорды контура;
t - расстояние между контурами;
SR - расстояние между передней и задней лопатками;
d - смещение по длине хорды контура;
b1 - длина хорды передней лопатки.



 

Похожие патенты:

Устройство ремонта фланца, содержащего несколько выступов, равномерно расположенных по окружности, включает усилительную гнутую деталь, имеющую форму фланца, и восстановительную деталь фланца.

Изобретение относится к турбонасосостроению. Турбинный узел агрегата включает корпус подвода рабочего тела - пара, сопловый аппарат с наклонными соплами, турбину, имеющую вал с рабочим колесом, и расположенный за турбиной по потоку пара корпус отвода отработанного пара.

Изобретение относится к турбонасосостроению. Турбонасосный агрегат содержит турбинный узел c корпусами подвода и отвода рабочего тела, сопловым аппаратом, одноступенчатой турбиной.

Лопатка с изменяемым углом установки для секции статора модуля турбомашины включает активную часть лопатки, на сторонах которой расположены радиально внутренняя и внешняя полки.

Направляющий сопловый аппарат турбины газотурбинного двигателя содержит внутреннюю и внешнюю кольцевые платформы, соединенные радиальными лопатками. Внутренняя платформа содержит кольцевые элементы из истираемого материала, размещенные на образующих кольцо листовых секторах с сечением L, S или С-образной формы, установленных внутри внутренней платформы.

Турбомашина содержит ступень, включающую лопатки с изменяемым углом установки, размещенные по окружности в корпусе. Каждая лопатка содержит управляющий стержень, радиально выступающий снаружи корпуса и связанный рычагом с общим кольцом управления, соосным упомянутому корпусу и установленным с возможностью вращения снаружи корпуса.

Газотурбинный двигатель содержит кольцевую камеру сгорания, секторальный направляющий сопловый аппарат турбины, расположенный на выходе камеры, и герметизирующие средства, аксиально размещенные между камерой сгорания и направляющим сопловым аппаратом.

Переходный отсек газотурбинного двигателя содержит первый конец, второй конец и корпус, проходящий между ними. Корпус содержит внутреннюю поверхность, противоположную наружную поверхность и турбулизатор.

Выхлопное устройство турбомашины содержит корпус с входным отверстием, расположенным вокруг оси вращения турбины, диффузор, расположенное в наружной стенке корпуса выходное отверстие и дополнительную перегородку.

Изобретение относится к области энергетики, преимущественно для сбросных систем пара тепловых электрических станций, например, выбросам пара при срабатывании главных предохранительных клапанов котлов, продувок пароперегревателей, растолок котлов и котлов-утилизаторов при расходах сбрасываемого пара более 30 т/ч и степени нерасчетности недорасширенной струи пара n=pa/pc>1, где pa - давление атмосферного воздуха, pc - статическое давление пара на срезе выхлопного трубопровода.

Изобретение относится к конструктивным элементам турбины, взаимосвязям между корпусом турбины и ее внутренними элементами, в частности, к конструкции опорных или установочных устройств выходного устройства турбины.

Изобретение относится к турбомашиностроению, а именно, к устройствам для предотвращения утечек рабочего тела, и может быть использовано в авиационных газотурбинных двигателях (ГТД).

Изобретение относится к области авиационных газотурбинных двигателей, в частности к узлу, расположенному между турбиной высокого давления и турбиной низкого давления внутреннего контура двухконтурного авиационного двигателя.

Изобретение относится к ступице в сборе, входящей в состав задней опоры турбины низкого давления. .

Изобретение относится к конструкции выходного устройства турбины, а именно к элементам связи между корпусом турбины и ее внутренними элементами. .

Изобретение относится к элементам конструктивной связи между корпусом турбины авиационного газотурбинного двигателя и ее внутренними элементами, а именно к конструкции выходного устройства турбины.

Изобретение относится к выхлопным устройствам и может использоваться в составе газоперекачивающего агрегата с газотурбинной установкой. Выхлопное устройство содержит диффузор, переходник с разделяющими поток ребрами и шумоглушитель кассетного типа, размещенный под углом 30-60° к оси переходника. Каждая из кассет шумоглушителя состоит из силового каркаса, обшитого листами, полость между которыми заполнена звукопоглощающим материалом. Со стороны наклоненной к диффузору кассеты обшиты перфорированным листом, а с противоположной стороны - цельным. Изобретение позволяет повысить эффективность снижения шума в выходном устройстве за счет обеспечения равномерного движения потока. 2 ил.
Наверх