Способ оценки качества кварцевого сырья

Использование: для выявления наиболее чистых видов кварцевого сырья. Сущность изобретения заключается в том, что осуществляют выбор мономинеральной пробы кварца, измельчение и отквартовывание трех образцов. Каждый образец подвергают облучению γ-квантами дозой 10±1×106 Гр. В первом образце после облучения определяют содержание изоморфных структурных Al-O- центров в кварце. Третий образец перед облучением подвергают температурной обработке при 590-650°C в течение 20-30 мин и определяют полное содержание структурных Al-O- центров в кварце. Третий образец перед облучением активируют СВЧ-полями мощностью 700-800 Вт в течение 3-5 мин, подвергают температурной обработке при 590-650°C в течение 20-30 мин и определяют содержание подвижных структурных Al-O- центров в кварце. Затем определяют показатель обогатимости кварца, C1 - содержание изоморфных структурных Al-O- центров в кварце, C2 - полное содержание структурных Al-O- центров в кварце, C3 - содержание подвижных структурных Al-O- центров в кварце, и при значении показателя обогатимости 0,5-1 судят о высоком качестве кварцевого сырья. Технический результат: повышение точности и экспрессности, а также упрощение процесса оценки качества кварцевого сырья. 1 табл.

 

Изобретение относится к исследованию минерального сырья, в частности, к способам предварительной оценки кварцевого сырья.

Особо чистый кварц является кварцевым сырьем, пригодным для получения различными технологиями обогащения высококачественных концентратов, отвечающих современным требованиям к чистоте, предъявляемым отечественной промышленностью и соответствующим мировому уровню. Рост потребления особо чистого кварца обусловлен развитием высоких технологий в электронной, химической, космической и других отраслях промышленности. Направления использования кварца определяются формой вхождения различных примесей в кварц. Современные технологии позволяют практически полностью удалять пленочные, минеральные и ГЖВ примеси. Однако получение высокочистых кварцевых концентратов в значительной степени определяется возможностью обеспечить удаление структурных примесей - Al, Ti, Ge и др. в процессе обогащения кварцевого сырья. Структурные элементы-примеси в кристаллической решетке, как правило, образуются в процессе кристаллизации кварца за счет изоморфизма - замещения атомов решетки кварца на атомы примесей, и способами традиционных технологий обогащения удаляются в очень незначительной степени. При этом структурные элементы-примеси и структурные дефекты определяют оптические свойства, растворимость, параметры полиморфного превращения и другие физико-химические свойства кварцевого сырья, которые, в конечном итоге, обуславливают его технологичность и направления использования кварца. Обогащение кварца структурными примесями может произойти и в процессе технологического передела кварцевого сырья. В известной мере, это явление носит неизбежный характер, так как в кварце в значительных количествах присутствуют рассеянные (или подвижные) примеси (Раков Л.Т. Рассеянные примеси в кварце // "Структура и разнообразие минерального мира". Материалы Международного минералогического семинара. Сыктывкар. 2008. С.265-266). Они представляют собой атомы различных элементов, захваченные дефектами кристаллической структуры. В процессах обогащения кварца эти примеси диффундируют в дефектных областях кварца. Результатом такой диффузии становится взаимодействие подвижных примесей с другими структурными дефектами. Так, высокотемпературная обработка, широко используемая в процессах очистки кварца, способствует внедрению подвижных элементов-примесей в кристаллическую решетку и делает их недоступными для извлечения (Раков Л.Т. Механизмы изоморфизма в кварце // Геохимия. 2006. №10. С.1085-1096). Из общего количества внедренных при термообработке примесей основная доля (свыше 95%) приходится на алюминий. Поэтому оценка кварцевого сырья на стадии геологического изучения на пригодность получения кварцевых концентратов с минимально возможным содержанием структурных примесей является актуальной.

Из анализа уровня техники известны различные способы предварительной оценки качества природного кварцевого сырья.

Известен способ оценки качества кварцевого сырья, в котором осуществляют отбор монофракций кварца, прокаливают до температуры 350-450°C, снимают спектр рентгенолюминесценции прокаленного кварца в спектральном диапазоне длин волн 350-550 нм и по отношению интенсивности высвечивания при длине волны 360-380 нм к интенсивности рентгенолюминесценции структурнопримесных центров в спектральном диапазоне 420-500 нм оценивают дефектность структуры и качество кварцевого сырья (патент РФ №2400736, 2010 г).

Недостатком известного способа является то, что рентгенолюминесценция относится к качественным методам и не позволяет с достаточной точностью оценивать количественное содержание структурных примесных элементов. Кроме того, способ не позволяет оценивать кварцевое сырье с низкой концентрацией примесных атомов (0,n-0,0000n% - микроизоморфизм).

Известен способ поиска месторождений особо чистого кварца, заключающийся в том, что проводят отбор мономинеральных образцов кварца по разведочной сети, измеряют в отобранных образцах спектральным количественным методом концентрации примеси лития и при их значении менее 0,5 г/т судят о наличии месторождения особо чистого кварца (патент РФ №2145105, 2000 г.).

Недостатком известного способа является использование для оценки малочувствительного спектрального анализа, результаты которого требуют подтверждения данными определения содержания в тех же образцах структурного алюминия, что усложняет процесс оценки качества кварца. Кроме того, определенная спектральным анализом концентрация Li не отражает реальной картины качества кварца, так как Li может входить в состав микроминеральных включений, а не в структуру кварца, что снижает точность оценки качества кварцевого сырья. Способ опробован только применительно к пегматитовому кварцу, используемому для получения термостойкого и технического стекла.

Наиболее близким по технической сущности и достигаемому результату является способ оценки качества кварцевого сырья, основанный на использовании электронного парамагнитного резонанса (ЭПР), позволяющего измерять содержания структурных примесей в кварце. Согласно известному способу мономинеральную тонкоизмельченную пробу кварца подвергают термической обработке, облучают γ-квантами, дозами, переводящими изоморфный титан и германий в парамагнитное состояние, регистрируют спектр ЭПР и определяют концентрации Ge и Ti-центров. Затем пробу подвергают специальной высокотемпературной обработке (термический отжиг), облучают γ-квантами, регистрируют спектр ЭПР и определяют концентрации Al-O--центров в кварце. Содержание указанных структурных примесей в кварце определяют на основе максимальных концентраций парамагнитных центров, что позволяет оценивать степень загрязненности кварца изоморфными примесями Ge, Ti и Al и выявлять наиболее чистые виды кварцевого сырья для использования в электронной технике (Раков Л.Т. и др. «Новый метод оценки качества кварцевого сырья. Разведка и охрана недр», 1993, №7, с.36-38).

Недостатком известного способа является то, что он позволяет определять только общее количество изоморфных структурных примесей Al, Ti и Ge, без учета подвижных форм, находящихся во внутренних слоях демпферных зон, и не позволяет дифференцировать примеси на собственно изоморфные и подвижные, что приводит к многократному завышению порога обогатимости и снижению точности оценки качества кварцевого сырья. Кроме того, определение содержания трех изоморфных структурных примесей (Al, Ti и Ge) усложняет процесс оценки и увеличивает его длительность. Проведение специального высокотемпературного отжига делает процесс энергозатратным.

Задачей предлагаемого изобретения является разработка технологичного и эффективного способа оценки качества кварцевого сырья, позволяющего достоверно на предварительной стадии оценки прогнозировать качество кварцевого сырья и направления его использования.

Техническим результатом предлагаемого способа является повышение точности и экспрессности, а также упрощение процесса оценки качества кварцевого сырья.

Это достигается тем, что в способе оценки кварцевого сырья, включающем отбор мономинеральной пробы кварца, измельчение, термическую обработку, облучение γ-квантами, регистрацию спектра ЭПР и определение содержания структурных Al-O--центров в кварце, согласно изобретению, пробу кварца делят на три образца, каждый образец подвергают облучению γ-квантами дозой 10±1×10 Гр, при этом в первом образце после облучения определяют содержание изоморфных структурных примесей Al-O--центров, второй образец перед облучением подвергают термической обработке при температуре 590-650°C в течение 20-30 мин и определяют полное содержание структурных Al-O--центров, третий образец перед облучением активируют СВЧ полями мощностью 700-800 Вт в течение 3-5 мин, подвергают температурной обработке при 590-650°C в течение 20-30 мин и определяют содержание подвижных структурных Al-O--центров, затем определяют показатель обогатимости кварца в мономинеральной пробе по соотношению Р=(C2-C3)/(C2-C1), где: P - показатель обогатимости кварца, C1 - содержание изоморфных структурных Al-O--центров в кварце, С2 - полное содержание структурных Al-O--центров в кварце, C3 - содержание подвижных структурных Al-O--центров, и при значении показателя обогатимости 0,5-1 судят о высоком качестве кварцевого сырья.

Предлагаемый режим радиационного облучения γ-квантами дозой 10±1×106 Гр дает возможность получить в кварце концентрацию парамагнитных Al-O--центров, достаточную для надежной регистрации ее методом ЭПР. Режим термообработки кварца при температурах не менее 590-650°C обеспечивает активацию подвижных примесей и внедрение значительной их части в кристаллическую структуру кварца. Измеряемые концентрации Al-O--центров в образцах кварца отвечают различным состояниям подвижных примесей в кварце. Концентрация Al-O- -центров в первом образце соответствует нахождению подвижных примесей в потенциальных демпферных зонах, поэтому величина C1 отвечает исходному содержанию изоморфного Al, накопленному в кварце в природных условиях. Концентрация Al-O--центров С2 во втором образце соответствует переходу подвижных примесей в активное состояние и внедрению их в кристаллическую структуру кварца. Концентрация Al-O--центров C3, измеряемая в третьем образце, отражает влияние СВЧ-поля на процесс внедрения подвижной примеси Al в кристаллическую структуру кварца. Предлагаемый режим обработки кварцевого сырья, включающий активацию кварца СВЧ полями при низких уровнях микроволновой мощности (700-800 Вт) в течение короткого промежутка времени (3-5 мин), ускоряет диффузию подвижных структурных примесей из внутренних слоев демпферных зон к периферийным, что позволяет дифференцировать структурную примесь алюминия на изоморфную, полную и подвижную формы и определять их количество. Процесс проходит без контакта с металлическими или диэлектрическими элементами устройства, что исключает вторичное засорение кварца примесями. Показатель обогатимости кварца в мономинеральной пробе, определяемый по соотношению (C2-C3)/(C2-C1), показывает, какая часть активированных подвижных примесей нейтрализуется воздействием энергетического поля и не внедряется в кристаллическую структуру кварца.

При этом в конечном итоге обеспечивается повышение точности оценки качества кварцевого сырья и достоверность предварительной оценки кварца. Экспрессность и упрощение процесса оценки достигается за счет сокращения круга определяемых элементов-примесей в кварце. Экономичность способа обеспечивается исключением из технологического процесса высокотемпературного отжига.

Опробование предлагаемого способа осуществляли на пробах природного кварца из месторождений и проявлений Карелии: Фенькина-Лампи, Восточная Хизоваара, Рухнавлок. Мономинеральную пробу кварца, отобранную на конкретном объекте, массой 200 г измельчают до крупности 0,5 мм, усредняют и отквартовывают 3 образца весом по 2 грамма. Каждый образец подвергают облучению γ-квантами дозой 10±1×106 Гр, после этого регистрируют спектр ЭПР Al-O--центров, измеряют концентрации парамагнитных Al-O- центров и на основе их максимальных концентраций определяют содержание структурных Al-O--центров. Первый образец облучают указанной дозой γ-квантов и определяют содержание изоморфных структурных Al-O--центров. Второй образец перед облучением γ-квантами подвергают температурной обработке до 590-650°C в течение 20-30 мин и методом ЭПР определяют полное содержание структурных Al-O--центров в кварце. Третий образец перед облучением γ-квантами активируют СВЧ полями мощностью 700-800 Вт в течение 3-5 мин, подвергают температурной обработке при 590-650°C в течение 20-30 мин и методом ЭПР определяют содержание подвижных структурных Al-O- центров. Показатель степени обогатимости P определяют по соотношению:

Р=(С2-C3)/(С2-C1),где:

C1 - содержание изоморфных структурных Al-O--центров;

C2 - полное содержание структурных Al-O--центров

C3 - содержание подвижных структурных Al-O--центров, и при значении показателя степени обогатимости 0,5-1,0 судят о высоком качестве кварцевого сырья.

В качестве эталона сравнения использован контроль - определение содержания структурных Al-O--центров в природном кварце без активации образцов СВЧ полями. Каждый пример проводили в 10 повторностях. Статистически обработанные данные по содержанию структурных форм алюминия и показатели степени обогатимости Р для кварца разных объектов представлены в таблице.

Из таблицы следует, что высоким качеством кварцевого сырья обладает кварц из месторождения Восточная Хизоваара, имеющий показатель степени обогатимости P=1,0, при котором подвижная форма примеси алюминия полностью «нейтрализована» и в процессе дальнейшей очистки кварцевого сырья не войдет в кристаллическую решетку кварца и может быть удалена традиционными технологиями обогащения.

Кварц месторождения Фенькина-Лампи характеризуется показателем степени обогатимости P=0,53, при котором подвижная форма примеси алюминия нейтрализована частично.

Кварц проявления Рухнаволок с показателем степени обогатимости P=0,4 не является источником высокочистого кварцевого сырья.

Предлагаемый способ оценки качества кварцевого сырья повышает эффективность и достоверность предварительной оценки обогатимости кварцевого сырья и может быть использован для выявления наиболее чистых видов кварцевого сырья для применения в электронной технике, оптике, светотехнике, солнечной энергетике и других отраслях промышленности, где предъявляются высокие требования к чистоте кварцевых концентратов.

Способ оценки качества кварцевого сырья, включающий отбор мономинеральной пробы кварца, измельчение, температурную обработку, облучение γ-квантами, регистрацию спектра ЭПР и определение содержания структурных Al-O--центров в кварце, отличающийся тем, что пробу кварца делят на три образца, каждый образец подвергают облучению γ-квантами дозой 10±1×106 Гр, при этом в первом образце после облучения определяют концентрацию изоморфных структурных примесей Al-O--центров, второй образец перед облучением подвергают температурной обработке при 590-650°C в течение 20-30 мин и определяют полное содержание структурных Al-O--центров в кварце, третий образец перед облучением активируют СВЧ-полями мощностью 700-800 Вт в течение 3-5 мин, подвергают температурной обработке при 590-650°C в течение 20-30 мин и определяют содержание подвижных структурных Al-O- центров в кварце, затем определяют показатель обогатимости кварца в мономинеральной пробе по соотношению P=(C2-C3)/(C2-C1), где P - показатель обогатимости кварца, C1 - содержание изоморфных структурных Al-O--центров в кварце, C2 - полное содержание структурных Al-O--центров в кварце, C3 - содержание подвижных структурных Al-O--центров, и при значении показателя 0,5-1 судят о высоком качестве кварцевого сырья.



 

Похожие патенты:

Изобретение относится к физико-химическим методам анализа, а именно к способам определения примесей соединений азота, в частности нитратов и нитритов, в гидроксиапатитах (далее ГАП).

Изобретение относится к технике спектроскопии электронного парамагнитного резонанса (ЭПР) и может найти применение при исследованиях конденсированных материалов и наноструктур методом ЭПР в физике, химии, биологии и др.

Изобретение относится к технике спектроскопии электронного парамагнитного резонанса (ЭПР). .

Изобретение относится к технике спектроскопии электронного парамагнитного резонанса (ЭПР), может использоваться при изготовлении и настройке спектрометров ЭПР 3 мм диапазона, а также для контрольно-проверочных работ на спектрометрах 3 мм диапазона во время их эксплуатации.

Изобретение относится к области медицины и касается области фармации, а именно идентификации, оценки качества и безопасности оригинальных и воспроизведенных лекарственных средств.

Изобретение относится к технологии производства изделий из сшитого полиэтилена и может быть использовано при изготовлении полиэтиленовой кабельной изоляции, труб для тепло-водо-газоснабжения, а также других изделий из данного материала.
Изобретение относится к области контроля упругих свойств углеродных волокон. .

Изобретение относится к области радиоспектроскопии и может быть использовано в системах обработки импульсных сигналов. .

Изобретение относится к измерительной технике, в частности к измерению переменных магнитных величин веществ на основе электронного парамагнитного резонанса. .

Изобретение относится к технической физике и может быть использовано при изготовлении спектрометров электронного парамагнитного резонанса (ЭПР). Спектрометр содержит сигнальный 1 и гетеродинный 2 генераторы СВЧ, измерительный аттенюатор 3, смесители опорного 4 и сигнального 5 каналов, циркулятор 6 с измерительным резонатором 7, УПЧ 8 опорного и УПЧ 9 сигнального каналов, фазочастотные дискриминаторы 10 и 11, делители частоты 12 и 13, синхронные детекторы 14 и 15, фазовращатели 16 и 17, элемент перестройки резонансной частоты измерительного резонатора 18, делители СВЧ мощности 19 и 20, трехпозиционный переключатель 21 режимов работы, устройство синтеза опорных частот 22, опорный генератор 23. Технический результат - упрощение устройства, уменьшение его габаритов, снижение потребляемой мощности и фазовых шумов генератора СВЧ. 1 ил.

Использование: для определения позиций примесей соединений азота в гидроксиапатитах. Сущность изобретения заключается в том, что облучают образец гидроксиапатита рентгеновскими, гамма- или электронными лучами с последующей регистрацией методом ЭПР возникших при облучении парамагнитных центров на сертифицированном ЭПР спектрометре, вычисляют спектральные характеристики наблюдаемого спектра ЭПР (число наблюдаемых линий и их положение) с контролем погрешности измерений и сравнивают полученные спектральные характеристики со спектральными характеристиками азотных радикалов, при этом производят дополнительное сравнение полученных ранее спектральных характеристик со спектральными характеристиками азотных радикалов в различных позициях, замещающих функциональные группы OH и(или) PO4 в структуре гидроксиапатита, в частности, с возможностью определения мест(а) внедрения (замещения) примесей соединений азота в структуру гидроксиапатита. Технический результат: обеспечение возможности определения позиций примесей соединений азота в гидроксиапатитах. 1 ил.

Изобретение относится к технической физике и может быть использовано при изготовлении спектрометров электронного парамагнитного резонанса (ЭПР). Когерентный супергетеродинный спектрометр электронного парамагнитного резонанса содержит устройство суммирования напряжений, генератор модуляции, синхронный детектор, фазовращатель сигнала модуляции и двухпозиционный переключатель, а первый фазовращатель выполнен управляемым, причем один из входов устройства суммирования напряжений соединен с общим контактом первой секции двухполюсного переключателя, второй - с общим контактом двухпозиционного переключателя, а выход - с управляющим частотой электродом сигнального генератора СВЧ, выход генератора модуляции соединен с одним из переключаемых контактов двухпозиционного переключателя и со входом фазовращателя сигнала модуляции, выход которого соединен с опорным входом дополнительного синхронного детектора, сигнальный вход которого соединен с выходом второго синхронного детектора, частота сигнала генератора модуляции меньше граничной частоты полосы пропускания петли ФАПЧ гетеродинного генератора, но больше граничной частоты полосы пропускания петли ФАПЧ сигнального генератора. Технический результат заключается в возможности обеспечения однозначной, в том числе автоматической, настройки фазовых соотношений, приводящих к точному разделению квадратурных компонент сигнала. 1 ил.

Изобретение относится к нанотехнологиям и может быть использовано в области разработки материалов на основе алмаза для магнитометрии, квантовой оптики, биомедицины, а также в информационных технологиях, основанных на квантовых свойствах спинов и одиночных фотонов. Способ определения ориентации NV дефектов в кристалле алмаза включает помещение образца кристалла алмаза во внешнее магнитное поле, воздействие на образец микроволновым излучением, облучение рабочего объема образца сфокусированным лазерным излучением, возбуждающим в рабочем объеме образца фотолюминесценцию, по которой регистрируют сигнал оптически детектируемого магнитного резонанса (ОДМР), который создают путем развертки частоты микроволнового излучения и модуляции внешнего магнитного поля. Измеряют спектры ОДМР NV дефекта в кристалле алмаза при разных ориентациях кристалла алмаза относительного внешнего магнитного поля. Сравнивают полученные зависимости линий ОДМР с рассчитанными положениями линий NV дефекта в кристалле алмаза в магнитном поле. Затем определяют ориентацию NV дефекта по величине отклонения положения линий NV дефекта от рассчитанных положений линий. Способ является простым по выполнению и не требует использования сложного устройства. 3 ил., 2 пр.

Изобретение относится к технической физике и может быть использовано при изготовлении спектрометров электронного парамагнитного резонанса (ЭПР). Спектрометр содержит сигнальный 1 и гетеродинный 2 генераторы СВЧ, измерительный аттенюатор 3, смеситель опорного 4 и сигнального 5 каналов, циркулятор 6, измерительный резонатор 7 с элементом перестройки его резонансной частоты 8, УПЧ опорного 9 и сигнального 10 каналов, фазочастотные дискриминаторы 11 и 12, делители частоты 13 и 14, синхронные детекторы 15 и 16, опорный генератор 17, устройство синтеза частот 18, трехпозиционный переключатель 19, импульсный модулятор фазы 20, усилитель переменного тока 21 и импульсный демодулятор 22. Технический результат - повышение точности работы системы автоподстойки частоты сигнального генератора и резонансной частоты измерительного резонатора. 1 ил.

Изобретение относится к технической физике и может быть использовано при изготовлении спектрометров электронного парамагнитного резонанса (ЭПР). Устройство содержит сигнальный 1 и гетеродинный 2 генераторы СВЧ, измерительный аттенюатор 3, смеситель опорного 4 и сигнального 5 каналов, циркулятор 6, измерительный резонатор 7 с элементом перестройки его резонансной частоты 8, УПЧ опорного 9 и сигнального 10 каналов, фазочастотные дискриминаторы 11 и 12, делители частоты 13 и 14, опорный генератор 15, устройство синтеза частот 16, аналого-цифровой преобразователь 17, устройство селекции выборок 18, дециматоры синфазного 19 и квадратурного 20 каналов, цифро-аналоговый преобразователь 21, усилитель переменного тока 22, импульсный демодулятор 23 и трехпозиционный переключатель 24. Технический результат заключается в упрощении устройства и увеличении надежности. 1 ил.

Изобретение относится к области физико-химических методов анализа, в частности к анализу растворов на предмет количественного определения антиоксидантной активности (АОА). Сущность заявляемого способа заключается в том, что определение АОА проводят по разности количества парамагнитных частиц стабильного радикала, измеряемых до и после прохождения химической реакции частиц радикала с антиоксидантами (АО). Задача настоящего изобретения состоит в преодолении недостатков известных способов и в создании нового способа, позволяющего повысить точность и экспрессность определения, а также позволяющего количественно в стандартизированных единицах установить АОА определяемого вещества в исследуемом образце и механизм взаимодействия АО со свободными радикалами дифенилпикрилгидразила (ДФПГ). 4 ил., 4 пр.

Использование: для регистрации сигналов электронного парамагнитного резонанса. Сущность изобретения заключается в том, что спектрометр ЭПР содержит генератор фиксированной частоты, генератор переменной частоты, первый делитель мощности, второй делитель мощности, переключатель каналов, первый смеситель, второй смеситель, низкочастотный усилитель, осциллограф, циркулятор, первый усилитель низкочастотной мощности, первый умножитель частоты, резонатор, магнитную систему, выходной усилитель постоянного тока, систему регистрации, компьютер, первую линию задержки, квадратурный детектор, вторую линии задержки, второй усилитель низкочастотной мощности, второй умножитель частоты, фильтр, усилитель высокочастотной мощности и аттенюатор, первый ключ, второй ключ и формирователь импульсов. Технический результат: обеспечение возможности создания спектрометра ЭПР, имеющего повышенную чувствительность и улучшенное спектральное разрешение. 4 ил.

Использование: для исследованиях конденсированных материалов и наноструктур методом электронного парамагнитного резонанса (ЭПР) в различных областях науки. Сущность изобретения заключается в том, что спектрометр ЭПР содержит генератор (1) фиксированной частоты, генератор (2), первый делитель (3) мощности, второй делитель (4) мощности, переключатель (5) каналов, первый смеситель (6), второй смеситель (7), низкочастотный усилитель (8), осциллограф (9), циркулятор (10), первый усилитель (11) низкочастотной мощности, первый умножитель (12) частоты, резонатор (13), магнитная система (14), выходной усилитель (15) постоянного тока, систему (16) регистрации, компьютер (17), первую линию (19) задержки, квадратурный детектор (20), вторую линию (21) задержки, второй усилитель (22) низкочастотной мощности, второй умножитель (23) частоты, фильтр (24), усилитель (25) высокочастотной мощности и аттенюатор (26). Технический результат: обеспечение возможности создания спектрометра ЭПР, имеющего повышенную чувствительность и улучшенное спектральное разрешение. 4 ил.

Изобретение относится к области исследования процессов твердения цементов и может быть использовано для контроля качества бетонных и железобетонных изделий. Образец исходного сухого цемента затворяют водой и подвергают твердению в воздушно-влажных условиях. В разные промежутки времени процесса твердения цемента, через 3, 14, 28 суток, регистрируют спектры электронного спинового резонанса и рассчитывают концентрацию спиновых центров. Концентрацию спиновых центров исследуемого образца цемента определяют путем сравнения со спектром предварительно протестированного рубинового стержня. Аналогично исследуемому образцу определяют концентрацию спиновых центров контрольного образца. За контрольный образец принимают исходный сухой цемент. Затем определяют показатель изменения концентрации спиновых центров твердения цемента и показатель изменения степени гидратации. Степень гидратации СГi исследуемого цемента в i-й промежуток времени твердения составляет СГi=ƒМi, где ƒ - золотой коэффициент пропорции, равный 0,618034; Mi - показатель изменения степени гидратации. Достигается возможность определения степени гидратации цемента на любой стадии процесса его твердения. 2 табл.
Наверх