Устройство для определения значений эксплуатационных характеристик обслуживаемых изделий

Изобретение относится к вычислительной технике, в частности к устройствам контроля, и может быть использовано в опытно-конструкторских работах и практике эксплуатации, где требуется определять оптимальную периодичность технического обслуживания изделий и соответствующие показатели качества их функционирования. Техническим результатом является расширение функциональных возможностей устройства путем определения и выдачи в качестве выходных данных значений коэффициента и времени работоспособного состояния изделия постоянного применения при оптимальном периоде его технического обслуживания, а также интервала времени, в течение которого оперативная готовность изделия к применению будет не менее заданной. Устройство содержит блок памяти, два сумматора, два блока перемножения, девять вентилей, блок нелинейности, шесть элементов задержки, элемент ИЛИ, два триггера, интегратор, два таймера, блок деления, два компаратора и элемент памяти. 1 ил.

 

Изобретение относится к вычислительной технике, в частности к устройствам контроля, и может быть использовано в научных исследования и технике, где требуется определять оптимальную периодичность технического обслуживания и значения характеристик готовности изделий к применению, продолжительность технического обслуживания и расчетное время, в течение которого оперативная готовность изделия будет не менее требуемой.

Известны устройства [1, 2], позволяющие определять периоды обслуживания, обеспечивающие минимум коэффициента простоя изделий непрерывного и циклического применения. Известны также устройства [3, 4], предназначенные для нахождения рациональных периодов технического обслуживания средств системы, обеспечивающих требуемую готовность этих средств к функционированию по назначению. Общим недостатком указанных устройств являются низкие функциональные возможности. Они не позволяют определять коэффициент оперативной готовности изделий к применению. Устройство [5] позволяет определять оптимальную по критерию готовности к применению изделия периодичность технического обслуживания и оперативную готовность изделия в заданное время. Однако оно не обеспечивает определение интервала времени после проведения технического обслуживания, в течение которого оперативная готовность изделия к применению будет не менее требуемой.

Наиболее близким по технической сущности к заявляемому изобретению является устройство [6], содержащее пять сумматоров, блок перемножения, блок нелинейности, пять элементов памяти, интегратор, два таймера, блок деления, пять элементов задержки, два триггера, элемент ИЛИ, два компаратора, пять ключей. Оно позволяет определять оптимальный по критерию минимума коэффициента простоя период технического обслуживания и соответствующие ему значения коэффициента простоя, времени вынужденного простоя изделия, вызванного его техническим обслуживанием. Недостатком устройства являются ограниченные функциональные и информативные его возможности.

Целью предлагаемого технического решения является расширение функциональных и информационных возможностей устройства. Цель достигается путем определения и выдачи в качестве выходных данных значений коэффициента готовности и времени работоспособного состояния изделия постоянного применения при оптимальном периоде его технического обслуживания, а также интервала времени, в течение которого оперативная готовность изделия к применению будет не менее заданной.

Процесс обслуживания технических средств имеет циклический характер. Средняя продолжительность цикла обслуживания определяется следующим соотношением

τ ¯ Ц = τ + τ ¯ К + τ ¯ П Р ( τ ) + τ ¯ В [ 1 Р ( τ ) ] и л и ( 1 ) τ ¯ Ц = τ + τ ¯ К + τ ¯ В + ( τ ¯ П τ ¯ В ) Р ( τ ) ,

где τ - период обслуживания изделия;

τ ¯ К - среднее время контроля работоспособности;

τ ¯ П - среднее время проведения планово-предупредительной профилактики;

τ ¯ В - среднее время аварийно-восстановительных работ;

Р(τ) - вероятность безотказной работы изделия за время τ.

Продолжительность технического обслуживания на интервале τЦ составляет

τ ¯ о б с л = τ ¯ К + τ ¯ В + ( τ ¯ П τ ¯ В ) P ( τ ) .                                                 ( 2 )

Контроль технического состояния изделия осуществляется в плановые сеансы с периодом τ. В связи с этим на интервале времени между сеансами контроля изделие может находиться не только в работоспособном состоянии, но и в состоянии скрытого отказа. Поэтому имеет место соотношение

τ = τ ¯ Ф + τ ¯ О ,                                                                              ( 3 )

где - среднее время работоспособного состояния изделия, а τ ¯ О - среднее время пребывания его в отказе на периоде τ.

Значение τ ¯ Ф определяется на формуле

τ ¯ Ф = 0 τ P ( t ) d t .                                                                            ( 4 )

Если результаты контроля покажут, что изделие работоспособно, то проводится плановая предупредительная профилактика. Если же оно окажется в неработоспособном состоянии, то будут проведены аварийно-восстановительные работы, в результате которых работоспособность будет восстановлена. На интервале времени τ ¯ о б с л , а также при нахождении в состоянии отказа изделие не может применяться по назначению.

Важными эксплуатационно-техническими характеристиками изделия являются коэффициент готовности и коэффициент оперативной готовности. Коэффициент готовности выражается следующим соотношение:

К Г ( τ ) = τ ¯ Ф τ ¯ Ц = 0 τ P ( t ) d t τ + τ ¯ К + τ ¯ В + ( τ ¯ П τ ¯ В ) P ( τ ) .                                ( 5 )

Для многих изделий характерным является преобладание внезапных отказов и применим экспоненциальный закон распределения времени их возникновения. В связи с этим вероятность безотказной работы P(t) выражается так:

P ( t ) = exp { λ t } ,                                                                        ( 6 )

где λ - интенсивность отказов.

Значение коэффициента оперативной готовности для текущего момента времени ξ определяется следующим образом:

К О Г ( τ , ξ ) = К Г ( τ ) Р ( ξ ) .                                                               ( 7 )

Из (5) видно, что коэффициент готовности существенно зависит от периода обслуживания изделия τ. Как показывают исследования функции, КГ(τ) при некотором (оптимальном) значении периода τ* имеет глобальный экстремум.

В связи с изложенным задачу определения оптимального периода технического обслуживания запишем в следующем виде:

τ * = arg   max τ 0 τ P ( t ) d t τ + τ ¯ К + τ ¯ В + ( τ ¯ П τ ¯ В ) P ( τ ) .                                ( 8 )

В ряде случаев (например, при планировании испытаний каких-то средств, в ходе которых должно быть задействовано данное изделие) существует необходимость определения длительности интервала времени ξ<τ* после завершения очередного цикла технического обслуживания, когда оперативная готовность изделия будет не менее требуемой (заданной), т.е.

ξ = arg  К ОГ ( τ * , ξ ) К О Г з а д .                                                          ( 9 )

Для планирования применения изделия по назначению, а также работ по его техническому обслуживанию необходимо знать расчетные значения величин τ ф * и τобс.

Заявляемое устройство позволяет определять их, реализуя соответственно соотношения (4) и (2), но при τ=τ*.

Предложенная математическая модель может быть реализована аппаратурно с помощью заявляемого устройства, схема которого показана на рисунке 1.

Устройство содержит блок памяти 1; сумматоры 3, 7; блоки перемножения 4, 22; вентили (эквивалентны ключам прототипа) 5, 12, 15, 23, 27, 28, 29, 30, 31; блок нелинейности 6; элементы задержки 10, 13, 19, 20, 21, 25; элемент ИЛИ 9; триггеры 2, 11; интегратор 14; таймеры 8, 16; блок деления 18; компараторы 17, 26; элемент памяти 24.

Отметим, что не использованные элементы памяти прототипа не могут рассматриваться в качестве эквивалентов блока памяти заявляемого устройства.

Перед началом работы устройства исходные данные τ ¯ К + τ ¯ В , τ ¯ П τ ¯ В , λ, К О Г з а д вводятся в блок памяти 1 через его входы с 1 по 4 соответственно.

Устройство работает следующим образом. По сигналу «Пуск», поступающему с пятого входа устройства, первый триггер 1 переключается в единичное состояние, обеспечивая поступление на выходы блока памяти 1 значений хранимых данных, и запускает в работу первый таймер 8. В исходном состоянии вентили 5 и 15 открыты, а все другие вентили закрыты.

Таймер 8 с шагом ∆τ задает в порядке нарастания последовательность значений τi периода технического обслуживания изделия τii-1+Δτ, где i=1, 2, 3,…. Сигнал τi с выхода таймера 8 передается непосредственно в четвертый элемент задержки 20, на второй вход второго сумматора 7 и на первый вход интегратора 14, а через соединенные последовательно третий вентиль 15 и элемент ИЛИ 9 поступает на второй вход блока нелинейности 6, на первый вход которого с третьего выхода блока памяти 1 передается параметр λ изделия. В блоке нелинейности 6 реализуется функция Р(τi)=ехр{-λτi} и передается через первый вентиль 5 на вторые входы первого блока перемножения 4 и интегратора 14. В интеграторе 14 функция Р(τi) интегрируется на интервале [0,τi]. Выходной сигнал интегратора 14, соответствующий согласно (4) величине τ ¯ Ф i , поступает на второй вход блока деления 18 и в третий элемент задержки 19. В первом блоке перемножения 4 реализуется произведение величины Р(τi) и разности τ ¯ П τ ¯ В , поступающей в него со второго выхода блока памяти 1. Результирующий сигнал, соответствующий величине ( τ ¯ П τ ¯ В ) P ( τ i ) , с выхода первого блока перемножения 4 передается в первый сумматор 3, где осуществляется сложение с сигналом τКВ, поступающим на первый вход сумматора 3 с первого выхода блока памяти 1. Выходной сигнал τ ¯ о б с = τ ¯ К + τ ¯ В + ( τ ¯ П τ ¯ В ) P ( τ i ) первого сумматора 3, полученный в соответствии с (2), передается во второй элемент задержки 13 и на первый вход второго сумматора 7. В сумматоре 7 формируется согласно (1) значение длительности цикла обслуживания изделия τ ¯ Ц i и передается на первый вход блока деления 18. В блоке деления 18 вычисляется значение коэффициента готовности в соответствии с (5), т.е. К Г i = τ ¯ Ф i τ ¯ Ц i . Полученный результат КГi с выхода блока деления 18 подается непосредственно на первый вход и через пятый элемент задержки 21 на второй вход первого компаратора 26.

В компараторе 26 сравниваются между собой текущие КГi и предшествующие КГi-1 вычисленные значения коэффициента готовности. Если окажется, что КГi≥КГi-1, то управляющий сигнал появится на первом выходе компаратора 26 и поступит на второй вход первого таймера 8. В результате этого таймер 8 выдаст новое τi+1 значение периода технического обслуживания и весь цикл вычислений величины КГ повторится, но уже при новом значении τi+1 периода. Если же окажется, что КГiГi-1, то управляющий сигнал появится на втором выходе компаратора 26 и поступит на управляющие входы первого 5, третьего 15, четвертого 23, пятого 27, шестого 28 и седьмого 29 вентилей, а также на первый вход второго триггера 11. При этом вентили 5 и 15 закрываются, вентили 23, 27, 28 и 29 открываются, а второй триггер 11 переводится в единичное состояние. Таким образом, на данном этапе работы устройства определены оптимальное значение τ*=τi-1 периода технического обслуживания и соответствующие ему значения величин КГ, τобс и τФ. В результате на первый, второй, третий и четвертый выходы устройства поступят соответственно вычисленные значения величин:

τобс - от второго элемента задержки 13 через седьмой вентиль 29;

К Г ( τ * ) = max τ К Г ( τ ) - от пятого элемента задержки 21 через пятый вентиль 27;

τФ - от третьего элемента задержки 19 через шестой вентиль 28;

τ* - от четвертого элемента задержки 20 через четвертый вентиль 23.

Вычисленное значение КГ(τ*) передается от выхода пятого вентиля 27 в элемент памяти 24, где сохраняется, обеспечивая последующую работу устройства.

Выходной сигнал второго триггера 11 запускает второй таймер 16, открывает выход элемента памяти 24 и второй вентиль 12. Таймер 16, подобно первому таймеру 8, генерирует в порядке нарастания последовательность возможных значений интервала времени ξjj-1+Δξ, где j=1, 2, 3,…. Сигнал ξj с выхода второго таймера 16 передается непосредственно в первый элемент задержки 10 и через схему ИЛИ 9 на второй вход блока нелинейности 6, на первом входе которого продолжает оставаться значение параметра λ. В блоке нелинейности 6 реализуется функция Р(ξj)=ехр{-λξj} и передается на первый вход второго блока перемножения 22, на второй вход которого от элемента памяти 24 поступает сигнал, соответствующий значению КГ(τ*). В блоке перемножения 22 вычисляется коэффициент оперативной готовности КОГjj,τ*) согласно (7) и передается на вход шестого элемента задержки 25 и на второй вход второго компаратора 17. На первый вход компаратора 17 с четвертого выхода блока памяти 1 через второй вентиль 12 поступает заданное допустимое значение коэффициента К О Г з а д оперативной готовности. В компараторе 17 сравниваются между собой значения КОГjj,τ*) и К О Г з а д . Если окажется, что К О Г j ( ξ j , τ * ) К О Г з а д , то управляющий сигнал появится на первом выходе компаратора 17 и поступит на второй вход второго таймера 16. В результате этого таймер 16 выдаст новое ξj+1 значение времени и вычисление величины КОГ повторится. Как только окажется, что К О Г j ( ξ j , τ * ) < К О Г з а д , то управляющий сигнал появится на втором выходе компаратора 17. По этому сигналу открываются восьмой 30 и девятый 31 вентили, вследствие чего вычисленное значение КОГj-1 с выхода шестого элемента задержки 25 через восьмой вентиль 30 поступит на пятый выход устройства, а вычисленное значение ξj-1 из первого элемента задержки 10 через девятый вентиль 31 поступит на шестой выход устройства. Кроме того, выходной сигнал второго компаратора 17 обнулит элемент памяти 24, переведет первый 2 и второй 11 триггеры в нулевое состояние. В результате работа устройства прекращается.

Положительный эффект, который может быть получен от использования предлагаемого технического решения, состоит в том, что устройство позволяет определять оптимальный период технического обслуживания и соответствующие этому периоду значения характеристик готовности изделия к применению, времени работоспособного состояния изделия и продолжительности технического обслуживания.

При разработке схемы устройства использованы функциональные элементы, описанные в [7].

Источники информации

1. Гришин В.Д., Зиновьев С.В., Соколов Б.В., Майданович О.В. Патент RU №2452027, МПК G07C 3/08, 2012.

2. Соколов Б.В., Гришин В.Д., Зеленцов В.А., Цивирко Е.Г. Решение о выдаче патента от 30.08.2012 по заявке №2011146675, МПК G07C 3/08, 2011.

3. Гришин В.Д., Соколов Б.В., Петрова И.А. Патент RU №2429542, МПК G07C 3/08, G05B 23/02, 2011.

4. Гришин В.Д., Соколов Б.В., Иконникова А.В. Патент RU №2429543, МПК G07C 3/08, G06F 11/30, G06F 17/00, 2011.

5. Гришин В.Д., Мышинский Д.А., Таганов И.Ю. Патент RU №2361277, G07C 3/08, 2009.

6. Гришин В.Д., Шульгин А.Е., Петров А.А. Патент RU №2361276, МПК G07C 3/08, 2007.

7. Тетельбаум И.М., Шрейдер Ю.Р. 400 схем для АВМ. - М.: Энергия, 1978.

Устройство для определения значений эксплуатационных характеристик обслуживаемых изделий, содержащее первый блок перемножения, выход которого соединен со вторым входом первого сумматора, выход которого подключен к первому входу второго сумматора, второй вход которого связан с выходом первого таймера и с входом четвертого элемента задержки, а выход соединен с первым входом блока деления, выход которого связан непосредственно с первым входом, а через пятый элемент задержки со вторым входом первого компаратора, второй выход которого связан с первым входом второго триггера, выход которого подключен к первому входу второго таймера и ко второму входу элемента памяти, первый триггер, блок нелинейности, первый, четвертый, пятый, шестой и седьмой вентили, схему ИЛИ, первый, второй и третий элементы задержки, интегратор, второй компаратор, отличающееся тем, что в него введены блок памяти, второй и третий вентили, второй блок перемножения, шестой элемент задержки, восьмой и девятый вентили, причем входы устройства с первого по четвертый являются соответствующими входами блока памяти, пятый вход которого соединен с первым входом первого таймера и с выходом первого триггера, первый вход которого является пятым входом устройства, а второй вход связан с управляющими входами восьмого и девятого вентилей, со вторым выходом второго компаратора, с третьим входом элемента памяти и со вторым входом второго триггера, первый вход которого подключен к управляющим входам первого, третьего, четвертого, пятого, шестого и седьмого вентилей, выход седьмого вентиля является первым выходом устройства, а его информационный вход через второй элемент задержки подключен к выходу первого сумматора, первый вход которого соединен с первым выходом блока памяти, второй выход которого подключен к первому входу первого блока перемножения, второй вход которого соединен с выходом первого вентиля и со вторым входом интегратора, выход которого связан непосредственно со вторым входом блока деления и через второй элемент задержки с информационным входом шестого вентиля, выход которого является третьим выходом устройства, вторым выходом которого является выход пятого вентиля, информационный вход которого соединен со вторым входом первого компаратора, первый выход которого подключен ко второму входу первого таймера, выход которого соединен с первым входом интегратора и с информационным входом третьего вентиля, выход которого подключен к первому входу схемы ИЛИ, выход которой соединен со вторым входом блока нелинейности, а второй вход подключен к выходу второго таймера непосредственно и через первый элемент задержки к информационному входу девятого вентиля, выход которого является шестым выходом устройства, пятым выходом которого является выход восьмого вентиля, информационный вход которого через шестой элемент задержки соединен с выходом второго блока перемножения и со вторым входом второго компаратора, первый выход которого подключен ко второму входу второго таймера, а первый вход к выходу второго вентиля, разрешающий вход которого соединен с выходом второго триггера, а информационный вход с четвертым выходом блока памяти, третий выход которого является первым входом блока нелинейности, второй вход которого соединен с выходом схемы ИЛИ, а выход подключен к информационному входу первого вентиля и к первому входу второго блока умножения, второй вход которого соединен с выходом элемента памяти, информационный вход которого подключен ко второму выходу устройства, четвертым выходом которого является выход четвертого вентиля, информационный вход которого соединен с выходом четвертого элемента задержки.



 

Похожие патенты:

Изобретение относится к устройствам контроля и может использоваться для определения оптимальных значений параметров надежности изделий и вычисления соответствующих значений времени безотказной работы и продолжительности процесса обслуживания изделия.

Изобретение относится к устройству для определения оптимальных сроков контроля и технического обслуживания изделий, а также расчетных значений времени безотказной работы изделия и времени, необходимого для проведения работ по техническому обслуживанию.

Изобретение относится к области машиностроения, к авиационно-космической технике и может быть использовано при создании различного класса изделий. .

Изобретение относится к вычислительной технике, в частности к устройствам контроля, и может использоваться в научных исследованиях и практике эксплуатации для определения оптимальных сроков технического обслуживания изделий и соответствующих значений коэффициента готовности и времени безотказной работы изделия.

Изобретение относится к вычислительной технике, в частности к устройствам контроля, и может быть использовано в опытно-конструкторских работах и практике эксплуатации, где требуется определять оптимальную периодичность контроля и технического обслуживания изделий и соответствующие этой периодичности значения эксплуатационных характеристик.

Изобретение относится к вычислительной технике, в частности к устройствам контроля. .

Изобретение относится к вычислительной технике, а именно к устройствам контроля, и может быть использовано в опытно-конструкторских работах и практике эксплуатации, где требуется определять оптимальную периодичность технического обслуживания изделий и соответствующие значения показателей качества их функционирования.

Изобретение относится к области эксплуатации сложных технических систем и может быть использовано для определения периода контроля и технического обслуживания. .

Изобретение относится к вычислительной технике, в частности к устройствам контроля, и может быть использовано в научных исследованиях и практике эксплуатации технических систем для определения оптимальных программ обслуживания и показателей качества функционирования технических средств этих систем.

Изобретение относится к вычислительным распределенным системам. Технический результат заключается в повышении точности и достоверности определения уязвимых элементов в составе распределенных систем.

Изобретение относится к видеоиграм, работающим в режиме онлайн. Технический результат заключается в повышении быстродействия передачи данных при возобновлении сетевой игры.

Изобретение относится к области создания и редактирования визуальных представлений. Техническим результатом является повышение эффективности визуализации графики.

Изобретение относится к средствам автоматизированного моделирования объектов для решения задач по классификации деталей по группам обрабатываемости и предварительного подбора режущего инструмента для их обработки.

Изобретение относится к автоматике и вычислительной технике и может быть использовано в специализированных устройствах вычислительной техники для определения наилучшей стратегии управления в условиях неопределенности.

Изобретение относится к вычислительной технике и может быть использовано для количественной оценки качественного показателя, состоящего из отдельных составных частей (факторов).
Изобретение относится к области организации обмена информацией между компьютерными информационными системами. Техническим результатом является упрощение способа передачи данных между информационными системами, повышение точности и надежности передачи данных.

Изобретение относится к медицине, а именно к способам и системам субтракционной ангиографии. Способ заключается в генерации первой последовательности изображений маски субъекта, подлежащего обследованию, генерации первого контрастного изображения в первой фазе контрастности, в соответствии с чем в первом контрастном изображении часть субъекта имеет контраст, отличный от контраста первой последовательности изображений, вычитании изображения маски из первого контрастного изображения для генерации первой последовательности изображений DSA, вычитании изображения DSA первой последовательности изображений DSA из первого контрастного изображения в пределах первой фазы для генерации последовательности уточненных изображений маски.

Изобретение относится к вычислительной технике и может быть использовано для оценки предпочтительного уровня унификации технических систем (ТС) с целью минимизации затрат на проектирование и изготовление ТС при достаточном уровне их эффективности.

Изобретение относится к автоматике и вычислительной технике. Техническим результатом является увеличение быстродействия и надежности устройства, уменьшение аппаратных затрат, расширение функциональных возможностей в части возможности задания допустимого количества исходных заготовок в каждом каскаде.

Изобретение относится к вычислительной технике, в частности к устройствам контроля. Изобретение может использоваться в научных исследованиях и практике эксплуатации для определения оптимальных сроков технического обслуживания изделий циклического применения и соответствующих значений коэффициента готовности и времени безотказной работы изделия, а также допустимого интервала времени, после проведения технического обслуживания, в котором коэффициент оперативной готовности изделия к применению будет не менее заданного. Техническим результатом является расширение функциональных возможностей устройства путем определения коэффициента оперативной готовности изделия и интервала времени после проведения планового технического обслуживания, в котором оперативная готовность будет не менее требуемой. Устройство содержит блок памяти, тринадцать вентилей, мультивибратор, три триггера, два накапливающих сумматора, схему ИЛИ, пять элементов задержки, два блока нелинейности, три блока умножения, два компаратора, элемент памяти, два вычитателя, два интегратора, два сумматора, блок деления, поляризованное реле. 2 ил.
Наверх