Устройство для извлечения элементов из оксидных руд

Изобретение относится к металлургии. Устройство для извлечения элементов из оксидных руд в виде порошка содержит плазмотрон, подающий канал, реакционный канал, фильтр и емкость для сбора порошка. Кроме того, устройство снабжено емкостью для загрузки сырья в виде смеси нанопорошков угля и оксидной руды, форсункой для регулирования скорости подачи сырья из емкости в реакционный канал, расположенной в подающем канале, каналом для теплоносителя, расположенным с охватом реакционного канала и связанным с технологическим контуром, содержащим теплообменник, тепловую турбину и электрогенератор. Упомянутый технологический контур выполнен с возможностью утилизации тепловой энергии в виде разности между энергией, выделяющейся при окислении углерода, и энергией, необходимой для разложения оксидов, в электрическую энергию. Реакционный канал выполнен с расширением по диаметру от входа в него сырья и розжига сырья плазмотроном до зоны образования газов разложения оксидов и окисления углерода, а после реакционного канала установлен многосекционный фильтр. Обеспечивается извлечение элементов из оксидных руд в виде порошка, а также более полное использование разности тепловыделения при окислении углерода и разложении оксидов. 1 ил., 3 табл.

 

Изобретение относится к средствам извлечения элементов из оксидных руд.

Известны устройства для извлечения из оксидов железа (RU 2244753, опубл. 20.12.2003), алюминия (RU 2163268, опубл. 20.02.2001) и кремния (RU 2165989, опубл. 27.04.2001). В этих устройствах шихта готовится в виде измельченных рудных порошков, а восстановителем являются углеродсодержащие материалы, в том числе графитовые электроды. Недостатком этих устройств является неполное использование кислородной составляющей оксидов, необходимость ввода и подогрева окислительного газа, в основном - воздуха. Для выравнивания энергораспределения по объему восстановительного реактора, применяются перемещение шихты по высоте (RU 2317342, опубл. 27.07.2007), двухзонные реакторы с конусами, расходящимися кверху (RU 2247154, опубл. 20.12.2003), лазеры с периодическим смещением лучей в сторону зоны повышенной температуры (RU 2406766, опубл. 20.12.2010), в реакционную зону вводят расплав галогенидов, а для предотвращения науглероживания металла, стенки реактора выполняются из магнезитовых огнеупоров (RU 2133291, опубл. 20.07.1999). Недостатками вышеуказанных устройств являются высокая энергоемкость и необходимость применения дорогостоящих реагентов и материалов.

Наиболее близким аналогом является устройство для плазмохимического восстановления металлов из порошковой шихты (US 6821500 B2, опубл. 23.11.2004). Это устройство включает подающую емкость с порошком руды, плазмогенератор, реакционный канал, фильтр и емкость для сбора готового порошка. Недостатком этого устройства является его высокая энергоемкость и неполное использование энергии окисления углерода кислородом оксидов.

Задачей изобретения является снижение энергоемкости процесса извлечения элементов из любых оксидных руд.

Техническим результатом является более полное использование энергии окисления углерода кислородом оксидов.

Устройство для извлечения элементов из оксидных руд в виде порошка содержит плазмотрон, подающий канал, реакционный канал, фильтр и емкость для сбора порошка. Также устройство снабжено емкостью для загрузки сырья в виде смеси нанопорошков угля и оксидной руды в стехиометрическом соотношении, форсункой для регулирования скорости подачи сырья из емкости в реакционный канал, расположенной в подающем канале, каналом для теплоносителя, расположенным с охватом реакционного канала и связанным с технологическим контуром, содержащим теплообменник, тепловую турбину и электрогенератор и выполненным с возможностью утилизации тепловой энергии в виде разности между энергией, выделяющейся при окислении углерода, и энергией, необходимой для разложения оксидов, в электрическую энергию. Реакционный канал выполнен с расширением по диаметру от входа в него сырья и розжига сырья плазмотроном до зоны образования газов разложения оксидов и окисления углерода. После реакционного канала установлен многосекционный фильтр, обеспечивающий направление полученного порошка в емкость для сбора порошка, а газов на утилизацию или в атмосферу.

Технический результат достигается тем, что используется шихта из смеси нанопорошков оксидной руды и угля в стехиометрическом соотношении для данного вида реакции восстановления. В начале процесса, для разложения оксида на элемент и кислород, используется плазмотрон, плотность энергии «языка» которого обеспечивает полное разложение оксидов исходя из скорости подачи шихты, разность тепловыделения при окислении углерода и при разложении оксида утилизируется через теплоноситель, тепловую турбину и электрогенератор и используется в дальнейшем как в оборудовании для получения нанопорошков угля и руды, так и для обогрева производственных помещений. Плазмотрон используется лишь для «зажигания» процесса, затем необходимая энергия извлекается из окислительной реакции. Кроме того, остается избыточное тепло и электроэнергия, которые являются товарными продуктами, дополнительными к готовым порошкам элементов. В таблице 1 указаны химические реакции и тепловой баланс для основных оксидов, составляющих оксидные руды.

Таблица 1

Для случая, когда используется «чистый» оксид и «чистый» углерод (деминерализованный уголь), в таблице 2 представлены на 1 т шихты содержание углерода, выход углекислого газа и выход товарных продуктов: нанопорошков элементов, тепловой и электрической энергий.

Taблица 2
Оксид С, кг кВт·ч Гкал Элемент, кг CO2, кг
Al2O3 151 548 0,148 454 546
CaO 137 781 0,209 500 500
Cr2O3 81 374 0,105 701 299
СuО 82 653 0,176 699 301
FeO 96 554 0,151 649 351
Fe2O3 73 415 0,116 731 269
K2O 63 510 0,140 769 231
MgO 190 1129 0,297 304 696
MnO 100 587 0,159 635 365
Na2О 119 992 0,262 563 437
NiO 90 605 0,164 671 329
P2O5 151 1075 0,283 446 554
PbO 12 42 0,021 956 44
SiO2 197 478 0,132 278 722
TiO2 146 348 0,099 466 534
WO2 28 32 0,018 899 101
ZnO 81 638 0,172 703 297
ZrO2 136 176 0,055 499 501
H2O 268 1394 0,365 16 984

Подготовить чистые оксиды и деминерализованный уголь можно с помощью устройства сухого обогащения минерального сырья (RU 2472593, опубл. 20.01.2013). Подготовку нанопорошков для шихты можно сделать с использованием коллайдерных измельчителей с неподвижным опорным валом (RU 2397021, опубл. 20.08.2010), использующих синхронизатор воздушно-пылевых потоков (RU 2450861, опубл. 20.05.2012) и диски встречного вращения с байпасными полостями (RU 2457033, опубл. 27.07.2012). Такие измельчители обеспечивают разрушающую способность до 250 кДж/кг, что вполне достаточно для разрыва межмолекулярных связей в любых оксидах и углях и получения исходных порошков для шихты дисперсностью 20÷40 нм.

Практически более важным и экономически выгодным является непосредственное использование для приготовления шихты оксидных руд и товарного угля. В таблице 3 приведены данные по выходу товарных продуктов при использовании угля Кузбасского бассейна с зольностью 13%, апатита ОАО «Апатит», Североонежских бокситов, Криворожской железной руды и красной глины пос. Тетюши, Татарстан.

Таблица 3
Оксид Апатит Боксит Жел. руда Глина
Содержание оксидов в рудах, %
SiO2 25,8 16,2 10,7 31,8
Al2O3 14,9 59,0 1,1 10,6
Fe2O3 5,1 11,4 86,6 3,5
CaO 25,6 1,2 од 25,3
MgO 0,9 0,3 0,2 1,4
P2O5 13,8 0,1 0,1 0
Na2O 7,2 0,1 0 0,4
K2O 3,5 0,2 0,1 1,9
TiO2 1,8 3,4 0 0,5
MnO 0,2 0,1 0,1 0,1
H2O 1,2 8,0 1,1 24,5
Содержание угля в 1 т пульпы, кг
уголь 151 158 90 187
Выход товарной электрической и тепловой энергий на 1 т пульпы
кВт·ч 698 493 437 796
Гкал 0,187 0,159 0,122 0,213
Выход углекислоты на 1 т пульпы, кг
CO2 554 577 330 683
Выходы элементов на 1 т пульпы, кг
Si 72 30 30 88
Аl 68 268 5,0 48
Fe 37 83 633 26
Са 128 6,0 0,5 127
Mg 2,7 0,9 0,6 4,3
Р 62 0,4 0,4 0
Na 41 0,6 0 2,3
К 27 1,5 0,8 15
Ti 8,4 16 0 2,3
Mn 1,3 0,6 0,6 0,6

Сущность изобретения поясняется чертежом. Из емкости 1 шихта с помощью форсунки 2 по каналу диаметром D1 поступает в реакционный канал 3. Скорость подачи шихты определяется соотношением:

W - скорость подачи шихты, кг/с;

s - площадь сечения сечения подающего канала, м2;

ΔP - разрежение в подающем канале, создаваемое форсункой 2, Па;

ρ - объемная плотность шихты в подающем канале, кг/м3;

k - безразмерный аэродинамический коэффициент (k≈0,3).

Например, для дюймового канала, при значении объемной плотности шихты 200 кг/м3 и разрежении, создаваемом форсункой 0,2 бар, в реакционный объем будет подаваться 1,86 кг/с (6,7 т/час). Для гарантированного разложения такого количества оксида Fe2O3 потребуется разжигающий плазмотрон с мощностью «языка» 4,2 МВт.

Разложение оксида происходит при розжиге в зоне I реакционного канала 3 (граница зоны на чертеже обозначена вертикальной пунктирной линией), затем, после отключения плазмотрона, область разложения оксида перемешается в зону II. От входа шихты до окончания зоны разложения оксида диаметр реакционной зоны увеличивается от значения D1 до значения D2 ввиду изменения объема твердого порошка пульпы до газообразного состояния продуктов реакций разложения и окисления. Реакционный канал диаметра D2 охватывается каналом внутреннего диаметра D цепи теплоносителя 11. Длина реакционного канала и канала теплоносителя L подбирается исходя из теплового баланса химических реакций, коэффициентов теплопроводности стенок реакционного канала и канала теплоносителя, теплоемкости теплоносителя и скорости подачи пульпы. Соответствующим образом подбираются технические характеристики теплообменника 8, турбины 9 и электрогенератора 10. В расчетных данных, содержащихся в таблицах 2 и 3, приняты характеристики Сургутской ГРЭС-2 по реальному КПД использования свободного тепла реакционного канала при производстве товарных тепловой и электрической энергий (33% для электроэнергии и 10% от электрической энергии по теплу, которое можно реально использовать для внешних потребителей).

Газопылевая смесь из реакционного канала попадает во внутреннее пространство многосекционного фильтра 4. Секции с более крупными ячейками располагаются ближе к центру, а секции с более мелкими секциями - ближе к периферии. Технические характеристики фильтра позволяют пропустить газы, выводимые на утилизацию или в атмосферу через отверстие 5, задержать и охладить порошки элементов, которые попадают в приемную емкость готового порошка металлов 6 и через отверстие 7 направляются либо на сепарацию (при использовании в шихте многокомпонентных оксидных руд), либо на склад готовой продукции (при использовании предварительно обогащенных оксидов).

Использование описанного выше оборудования, как это видно из данных таблицы 3, принесет большой экономический эффект, т.к. доходы от реализации нанопорошков элементов, тепловой и электрической энергий в десятки, а на некоторых рудах в сотни раз выше затрат на подъем и первичное измельчение руд.

Устройство для извлечения элементов из оксидных руд в виде порошка, содержащее плазмотрон, подающий канал, реакционный канал, фильтр и емкость для сбора порошка, отличающееся тем, что оно снабжено емкостью для загрузки сырья в виде смеси нанопорошков угля и оксидной руды в стехиометрическом соотношении, форсункой для регулирования скорости подачи сырья из емкости в реакционный канал, расположенной в подающем канале, каналом для теплоносителя, расположенным с охватом реакционного канала и связанным с технологическим контуром, содержащим теплообменник, тепловую турбину и электрогенератор и выполненным с возможностью утилизации тепловой энергии в виде разности между энергией, выделяющейся при окислении углерода, и энергией, необходимой для разложения оксидов, в электрическую энергию, при этом реакционный канал выполнен с расширением по диаметру от входа в него сырья и розжига сырья плазмотроном до зоны образования газов разложения оксидов и окисления углерода, а после реакционного канала установлен многосекционный фильтр, обеспечивающий направление полученного порошка в емкость для сбора порошка, а газов на утилизацию или в атмосферу.



 

Похожие патенты:
Изобретение относится области порошковой металлургии, в частности к шихте электродного материала для электроискрового легирования деталей машин. Шихта содержит порошок карбида вольфрама и карбид титана.
Изобретение относится к получению коллоидов металлов электроконденсационным методом. Может использоваться для создания каталитических систем, модификации волокнистых и пленочных материалов, например, для изготовления экранов защиты от электромагнитного излучения.

Изобретение относится к порошковой металлургии, в частности к получению монодисперсных наноразмерных порошков с заданными структурами и составом. Может использоваться в фармацевтической, пищевой, текстильной промышленности и других областях науки.

Изобретение относится к плазменной технике и технологии. .

Изобретение относится к области нанотехнологий и может быть использовано при нанесении высокоэффективных каталитических нанопокрытий. .

Изобретение относится к порошковой металлургии, а именно к способам получения металлических гранул. .

Изобретение относится к порошковой металлургии, в частности к производству металлических порошков. .

Изобретение относится к порошковой металлургии, в частности к получению порошковых материалов с частицами менее 0,2 мкм, в частности, используемых в качестве материалов для синтеза люминофоров.

Изобретение относится к способам получения наночастиц в вакуумном дуговом разряде. .

Изобретение относится к порошковой металлургии, в частности к устройствам для получения нанодисперсных порошков из любых токопроводящих материалов, в том числе и их отходов, методом электроэрозионного диспергирования для последующего их использования в технологических процессах изготовления, восстановления и упрочнения деталей машин, инструмента.

Изобретение относится к плазменно-дуговой технологии синтеза наноструктурированных композиционных материалов, в частности полых наночастиц γ-Al2O3. Способ синтеза полых наночастиц γ-Al2O3 реализуют в две стадии, причем на первой проводят плазменно-дуговой синтез алюминий-углеродного материала, включающий откачивание вакуумной камеры, наполнение ее инертным газом, зажигание электрической дуги постоянного тока между графитовым электродом и металл-углеродным композитным электродом и распыление композитного электрода, выполненого в виде графитового стержня с полостью, в которой установлена алюминиевая проволока при весовом соотношении C:Al 15:1, а на второй - отжиг синтезированного материала, в кислородсодержащей среде при атмосферном давлении и температуре 400-950°C в течение одного часа. Технический результат - получение при синтезе 100% пригодного для использования в каталитических приложениях и материаловедении нанодисперсного порошка оксида алюминия γ-Al2O3, частицы которого представляют собой полые сферы диаметром 6-14 нм. 1 з.п. ф-лы, 5 ил.

Изобретение относится к получению металлических порошков. Устройство содержит водоохлаждаемую рабочую камеру с контролируемой атмосферой, установленный в верхней части рабочей камеры плазмотрон для формирования плазменного потока, одно или несколько устройств для подачи пруткового материала в плазменный поток и сборник порошка, установленный в нижней части рабочей камеры. Рабочая камера выполнена с параллельно ей установленной рабочей ветвью, соединенной с ней при помощи верхнего и нижнего перепускных патрубков, с возможностью обеспечения циркуляции газового потока навстречу движению потока частиц порошка за счет установки вентилятора в нижнем перепускном патрубке. Верхний перепускной патрубок расположен ниже точки пересечения плазменного потока с прутковым материалом. Параллельная рабочая ветвь имеет расположенный в нижней её части дополнительный сборник порошка. Обеспечивается получение порошков сферической формы при отсутствии слипания частиц. 2 ил., 1 пр.

Изобретение относится к композиционным материалам. Способ получения стеклометаллических микрошариков включает помол стекла и рассев его на ситах с получением гранул заданного зернового состава, плазменное распыление стеклометаллического материала с улавливанием стеклометаллических микрошариков. Гранулы стекла заданного зернового состава покрывают связующим из жидкого стекла и порошком металла при соотношении гранулы стекла : порошок металла : жидкое стекло, равном 10:1:1, с получением стеклометаллического материала. Плазменное распыление стеклометаллического материала ведут при скорости его подачи по объему в плазменную горелку 0,5 см3/с и мощности плазмотрона 6 кВт. Обеспечивается ускорение технологического процесса получения микрошариков, а также возможность регулирования их зернового состава. 3 табл., 1 пр.
Изобретение относится к порошковой металлургии, в частности к получению ультрадисперсных металлических порошков. Может использоваться для производства металлических порошков, применяемых в электронной промышленности, приборостроении, машиностроении, ракетной технике, авиастроении и других отраслях промышленности. Способ получения фракционированных ультрадисперсных металлических порошков с размерами частиц 5-500 нм, включающий подачу исходного металлического порошка со средним размером частиц 100-150 мкм потоком инертного плазмообразующего газа в реактор газоразрядной плазмы, испарение исходного металлического порошка, охлаждение продуктов испарения охлаждающим инертным газом и конденсацию полученного металлического порошка в водоохлаждаемых приемных бункерах. Разделение на фракции потока конденсированных металлических частиц регулируется силой тока в электромагните постоянного тока. Магнит расположен с внешней стороны зоны охлаждения реактора так, что полюсы создаваемого электромагнитного поля находятся в горизонтальной плоскости по оси, перпендикулярной оси плазменной струи. Обеспечивается возможность разделения ультрадисперсных порошков металлов на заданные фракции без необходимости зарядки частиц. 5 з.п. ф-лы, 14 пр.

Изобретение относится к порошковой металлургии. Устройство содержит реактор из диэлектрического материала с сетчатым дном, выполненным съемным, и пластинчатыми электродами, подключенными к электрической системе с генератором электрических импульсов, накопительную емкость из диэлектрика для просыпавшегося через сетчатое дно порошка. При этом устройство также содержит дополнительное сетчатое дно в виде решетки с отверстиями меньшего диаметра, чем у сетчатого дна, выполненного съемным, установленное в реакторе для предотвращения засорения порошка крупными остатками неизмельченного материала, рубашку охлаждения накопительной емкости, выполненную из оцинкованного железа и облицованную теплоизоляционным материалом с низким коэффициентом теплопроводности, и колебательную систему, обеспечивающую вибрацию диспергируемого материала. Устройство выполнено с возможностью контроля уровня жидкой инертной среды в реакторе, вибрации колебательной системы и частоты и длины импульсов напряжения и силы тока в электрической системе посредством числового программного управления. Обеспечивается повышение стабильности работы установки, снижение процентного содержания оксидов в порошке и получение порошка с чистотой 99,99%. 2 ил.

Изобретение относится к порошковой металлургии. Способ получения наноразмерных частиц включает электроплазменную обработку поверхности электролита в виде солевого раствора, содержащего индуцированные ионы металлов или полупроводников с формированием из них частиц заданного размера. Электроплазменную обработку поверхности электролита проводят с использованием зарядного устройства с напряжением до 30 кВ, питающего конденсаторную батарею с емкостью (1,02…75)·10-10 Ф, анода, выполненного в виде кольца и размещенного с зазором 2-4 мм над поверхностью электролита, и катода, размещенного в середине упомянутого кольца без погружения в электролит. Обработку ведут с обеспечением веерного перемещения искрового разряда по поверхности электролита, восстановлением индуцированных ионов до нейтрального состояния атомов и агломерацией их в наноразмерные частицы металлов или полупроводников, изменение размера которых задают изменением параметров емкости конденсаторной батареи и концентрации солевого раствора электролита. Обеспечивается получение наночастиц металла с допуском 10%. 4 ил.

Изобретение может быть использовано в неорганической химии, биологии и медицине. Способ изготовления коллоидного раствора серебра включает пропускание импульсных электрических разрядов между серебряными электродами в жидкости и получение коллоидного раствора с заданной концентрацией наночастиц металла. При этом периодически уменьшают частоту следования разрядных импульсов и скорость генерации наночастиц путем увеличения зазора между электродами на 10 мкм за 5 минут в процессе пропускания разрядов и последующего сближения электродов до полного их касания. При достижении показателем экстинкции раствора значения не менее 0,75 м-1 в спектральном диапазоне с длиной волны от 195 до 205 нм останавливают процесс пропускания импульсных электрических разрядов. Полученный коллоидный раствор охлаждают до кристаллизации жидкости, выдерживают и подвергают тепловому воздействию до полного разрушения кристаллов. Изобретение позволяет повысить биологическую активность коллоидного раствора серебра. 1 ил.

Изобретение относится к получению титановых гранул. Осуществляют вращение цилиндрической заготовки вокруг горизонтальной оси, оплавляют торец заготовки плазменной струей дугового плазмотрона с обеспечением распыления расплавленных частиц под действием центробежных сил и затвердевания частиц при полете в среде рабочих газов. Горячую смесь рабочих газов забирают из камеры распыления, далее направляют в фильтр первичной очистки, далее направляют в фильтр сверхтонкой очистки, после чего очищенную смесь рабочих газов направляют через теплообменник в компрессор, оттуда ее направляют в ресивер, после чего смесь рабочих газов направляют в охладитель смеси рабочих газов, после охлажденную смесь рабочих газов подают в формирователь охлаждающего потока смеси рабочих газов и далее формируют поток смеси охлажденных рабочих газов путем направления его через формирователь охлаждающего потока смеси рабочих газов в камеру распыления с обеспечением охлаждения расплавленных частиц потоком охлажденной смеси рабочих газов, после чего предварительно охлажденные частицы гранул ссыпают в приемный бункер. Обеспечивается снижение температуры в камере распыления, увеличение скорости охлаждения гранул, улучшение теплоотвода с внутренних поверхностей приемной трубы и приемного бункера. 1 ил.
Изобретение относится к получению гранул пенометаллов. Способ включает смешивание порошка металла с порофором, прессование полученной смеси с получением компактного образца в виде стержня или прутка, диспергирование полученного образца путем пропускания короткого импульса электрического тока с заданными амплитудой и длительностью. Используют порофор, температура разложения которого меньше температуры плавления металла. Обеспечивается получение гранул любых металлических материалов с заданной пористостью. 5 пр.

Изобретение может быть использовано в биологии и медицине. Способ изготовления коллоидного раствора серебра включает проведение электроразрядов в жидкой среде и определение концентрации раствора серебра. Электроразряды в жидкой среде проводят в виде затухающих разрядных импульсов длительностью 1-2 мкс с частотой 0,2-0,5 кГц до достижения показателем экстинкции раствора значения не менее 0,75 м-1 в спектральном интервале с длиной волны 195-205 нм. Изобретение позволяет повысить биологическую активность коллоидного раствора. 1 ил.
Наверх