Реагент для обработки бурового раствора

Изобретение относится к области бурения нефтяных скважин, а именно к полимерным реагентам, входящим в состав буровых растворов. Реагент для обработки бурового раствора, полученный модификацией карбоксиметилцеллюлозы КМЦ в растворителе путем обработки суспензии КМЦ агентом-модификатором, выдерживания реакционной массы при нагревании, отделения продукта с помощью фильтра-пресса и сушки, где суспендируют КМЦ размером не более 200 мкм в хлороформе, в качестве агента-модификатора используют 1.1.5-тригидроперфторпентилхлорсульфит в виде раствора в хлороформе, а указанную обработку осуществляют в присутствии диметилформамида при температуре -10 - (-5)°С. Технический результат - обеспечение буровому раствору повышенных кольматирующих свойств. 3 пр., 1 табл.

 

Изобретение относится к области бурения нефтяных скважин, а именно к полимерным реагентам, входящим в состав буровых растворов.

Известен поли/дисперсный торфяной реагент для буровых растворов и жидкостей глушения, который основан на просеивании торфа до фракции 0,1-10,0 мм, сушке до остаточной влажности 18-25%, обеспечивая ее постоянство, нагревании торфа со скоростью 2°C в минуту до 75-85°C, термостатировании при этих температурах в течение 1 часа и охлаждения до 50°C и далее обрабатывании кальцинированной содой в соотношении мас.ч. 1:0,15-0,20 соответственно, а затем полимером акриламида с молярной долей карбоксилатных групп 10-30 в соотношении мас.ч. торфощелочная смесь - указанный полимер 1:0,03-0,04 соответственно [Патент РФ №2330055, МПК7 C09K 8/42, 2006 г.].

Недостатком данного реагента является высокая энергозатратность приготовления, плохие кольматирующие свойства в буровом растворе.

Известен способ приготовления реагента для обработки глинистых растворов "Кемфор-Мем", который получают перемешиванием ингредиентов эфиров целлюлозы или крахмала и сырого сульфатного мыла с остаточной влажностью до 30% до гомогенного пастообразного состояния, выдерживанием полученной смеси в течение 24-48 ч, ее гранулированием, высушиванием в потоке разогретого воздуха при температуре 50-70°C и удаление воды в пределах 25-30 мас.% [Патент РФ №2187530, МПК6 C09K 07/02, 2000 г.].

Недостатком данного способа является длительность процесса получения конечного продукта.

Известен реагент для бурового раствора, который получают обработкой лигносульфоната серной кислотой и бихроматом щелочного металла до pH 1-1,5 с последующей частичной нейтрализацией гидроксидом натрия до pH 4-5, высушиванием. При указанной обработке вводят сульфидно-щелочной сток-отход - отход нефтехимических производств, содержащий 6-8 г/л сульфидной серы, в количестве 25-30 мас.ч. [Патент РФ №2443747, МПК7 С09К 08/10, 2010 г.].

Данный реагент получают с использованием опасных кислотных реагентов.

Наиболее близким аналогом является реагент для обработки высокоминерализованного бурового раствора, полученный модификацией карбоксиметилцеллюлозы КМЦ путем перемешивания КМЦ, щелочи, агента-модификатора - эпихлоргидрина, причем в химическом реакторе сначала получают КМЦ путем этерификации мерсеризованной целлюлозы монохлорацетатом натрия в среде водно-органической жидкости состава, мас.%: бензол, толуол 45-65, этанол, изопропанол 30-50, вода 4-5, модифицирование КМЦ производят в том же реакторе, в той же среде и отделяют реагент от реакционной среды с помощью центрифуги или фильтр-пресса [Патент РФ №2213122, МПК6 С09К 7/02, 2001 г.].

Недостатками данного способа являются многостадийность получения и большое количество вспомогательных компонентов.

Задачей предлагаемого изобретения является разработка технологичного способа модификации карбоксиметилцеллюлозы.

Техническим результатом изобретения является создание полимерного реагента для бурового раствора, придающего буровому раствору повышенные кольматирующие свойства.

Технический результат достигается в реагент для обработки бурового раствора, полученном модификацией карбоксиметилцеллюлозы КМЦ в растворителе, путем обработки суспензии КМЦ агентом-модификатором, выдерживания реакционной массы при нагревании, отделения продукта с помощью фильтра-пресса и сушки, при этом суспендируют КМЦ размером не более 200 мкм в хлороформе, в качестве агента модификатора используют 1.1.5-тригидроперфторпентилхлорсульфит в виде раствора в хлороформе, а указанную обработку осуществляют в присутствии диметилформамида при температуре -10-(-5)°С.

Сущность изобретения заключается в приготовлении частиц карбоксиметилцеллюлозы размером 100-200 мкм и суспендировании их в хлороформе при комнатной температуре. Далее полученный раствор охлаждают до -10-(-5)°С и затем в присутствии катализатора диметилформамида смешивают его с раствором 1.1.5-тригидроперфторпентилхлорсульфит в хлороформе. При нагревании до 45-50°С реакционную массу выдерживают в течение 1 ч. Далее модифицированная карбоксиметилцеллюлоза отделяется фильтрованием с помощью фильтр-пресса, промывается свежей порцией хлороформа и сушится при комнатной температуре.

В результате модификации происходит полифторалкилхлорсульфирование по НО-группам моноглюкозидных звеньев, реакция НО-алкилирования, идет на поверхности частиц карбоксиметилцеллюлозы. Эта реакция приводит к образованию сложных эфиров.

Реагент, полученный в результате модификации карбоксиметилцеллюлозы КМЦ усиливает свойства буровых растворов, способствует получению технологичных буровых растворов, а именно повышает кольматирующие свойства, улучшает водоотдачу.

Для характеристики кольматации, исследуются такие показатели как водоотдача и проницаемость пласта (проницаемость пласта зависит от кольматирующих свойств буровых растворов). Значения показателей водоотдачи и проницаемости пласта для идентичных буровых растворах с использованием КМЦ и полифторалкилированной карбоксиметилцеллюлозы (ФКМЦ) приведены в таблице. Состав раствора: бетонит - 30 кг/м3, NaOH - 0,5 кг/м3, ФКМЦ (КМЦ) - 3 кг/м3, вода - остальное.

Таблица
Показатель ФКМЦ КМЦ
1120 560 400 1120 560 400
Водоотдача за 30 мин, см3 7 8 11 8 10 13
Проницаемость пласта, мкм2 0,429 0,441 0,465 0,437 0,453 0,493

Как видно из таблицы, при использовании одинаковых загрузок компонентов, полифторалкилированная карбоксиметилцеллюлоза в составе буровых растворов, позволяет обеспечить лучшие водоотдачу и кольматацию (их абсолютные значения становятся меньше), следовательно, при использовании ФКМЦ повышаются кольматирующие свойства буровых растворов.

Основным преимуществам предложенного реагента бурового раствора являются технологичность производства. Реакция модификации идет в мягких температурных условиях.

Предлагаемые варианты модификации карбоксиметилцеллюлозы рассмотрены ниже.

Пример 1.

Карбоксиметилцеллюлозу, молекулярной массой 560 г/моль, в количестве 1 г измельчают до размера 200 мкм, суспендируют в 20 мл хлороформа при комнатной температуре, добавляют 0.2 г диметилформамида (ДМФА), охлаждают до -10°С и при перемешивании дозируют раствор 0.2 г 1.1.5-тригидроперфторпентилхлорсульфита в 10 мл хлороформа. Затем реакционную смесь медленно нагревают до 45-50°С и выдерживают 1 ч. Продукт фильтруют. Полученный остаток промывают хлороформом, сушат на воздухе. Содержание фтора 6,67%. Выход 94%.

Пример 2.

Карбоксиметилцеллюлозу, молекулярной массой 1120 г/моль, в количестве 1 г измельчают до размера 175 мкм, суспендируют в 20 мл хлороформа при комнатной температуре, добавляют 0.2 г диметилформамида (ДМФА), охлаждают до -7°С и при перемешивании дозируют раствор 0.1 г 1.1.5-тригидроперфторпентилхлорсульфита в 10 мл хлороформа. Затем реакционную смесь медленно нагревают до 45-50°С и выдерживают 1 ч. Продукт фильтруют. Полученный остаток промывают хлороформом, сушат на воздухе. Содержание фтора 3,5%. Выход 96%.

Пример 3.

Карбоксиметилцеллюлозу, молекулярной массой 400 г/моль, в количестве 1 г измельчают до размера не более 150 мкм, суспендируют в 20 мл хлороформа при комнатной температуре, добавляют 0.2 г диметилформамида (ДМФА), охлаждают до -5°С и при перемешивании дозируют раствор 0.07 г 1.1.5-тригидроперфторпентилхлорсульфита в 10 мл хлороформа. Затем реакционную смесь медленно нагревают до 45-50°С и выдерживают 1 ч. Продукт фильтруют. Полученный остаток промывают хлороформом, сушат на воздухе. Содержание фтора 2,2%. Выход 96%.

Реагент для обработки бурового раствора, полученный модификацией карбоксиметилцеллюлозы КМЦ в растворителе, путем обработки суспензии КМЦ агентом-модификатором, выдерживания реакционной массы при нагревании, отделения продукта с помощью фильтра-пресса и сушки, отличающийся тем, что суспендируют КМЦ размером не более 200 мкм в хлороформе, в качестве агента модификатора используют 1.1.5-тригидроперфторпентилхлорсульфит в виде раствора в хлороформе, а указанную обработку осуществляют в присутствии диметилформамида при температуре -10 - (-5)°С.



 

Похожие патенты:
Изобретение относится к области бурения нефтяных скважин. Технический результат - создание бурового раствора для использования в условиях многолетней мерзлоты.

Изобретение относится к горной и нефтегазодобывающей промышленности и может быть использовано для проведения изоляционных работ при строительстве скважины. Способ изоляции водопроявляющих пластов при строительстве скважины включает вскрытие бурением водопроявляющих пластов.
Изобретение относится к нефтегазодобывающей промышленности, в частности к составам для изоляции водопритока в скважине. Состав для изоляции водопритока в скважине включает 17-59 мас.% реагента «Витам», 20-40 мас.% силиката натрия, 1-3 мас.% древесной муки и 20-40 мас.% 10%-ного раствора полиалюминия хлорида.
Изобретение относится к нефтяной и газовой промышленности и конкретно к области получения специальных цементов, а именно тампонажных материалов для крепления нефтяных и газовых скважин.
Изобретение относится к реагентам для химической обработки высокоминерализованных утяжеленных буровых растворов на водной основе, используемых при бурении высококоллоидальных глинистых пород и зон аномально высокого пластового давления АВПД.

Изобретение относится к области нефтедобычи, в частности к строительству и ремонту скважин, пробуренных на инвертно-эмульсионном буровом растворе (ИЭР), и может быть использовано при установке мостов.
Изобретение относится к нефтедобывающей промышленности и может быть использовано для кислотной обработки призабойной зоны пласта, представленного неоднородными по проницаемости карбонатными или терригенными коллекторами.

Изобретение относится к нефтяной и газодобывающей промышленности. Технический результат - повышение эффективности обработки и безопасности процесса.

Изобретение относится к нефтегазовой промышленности, в частности к области ремонта и ликвидации скважин в условиях соленосных отложений с присутствием сероводорода, а именно при креплении обсадных колонн, установки отсекающих мостов и создании флюидоупорных изоляционных покрышек.

Изобретение относится к строительству нефтяных и газовых скважин, в частности к тампонажным смесям, предназначенным для крепления обсадных колонн, разобщения водоносных, нефтегазоносных пластов и изоляции зон интенсивного (полного) поглощения в скважинах с высоким содержанием сероводорода.

Изобретение относится к нефтедобывающей промышленности, в частности к составам для повышения нефтеотдачи нефтяных месторождений путем регулирования разработки неоднородных пластов. Состав для регулирования разработки неоднородного нефтяного пласта включает стабилизированный латекс, производное кремниевой кислоты и воду. В качестве производного кремниевой кислоты он содержит кремнезоль, представляющий собой высокодисперсную систему на основе двуокиси кремня с силикатным модулем 100. В качестве воды он содержит электрохимически активированную воду с pH 5,4 при электропроводности 3,7 мСм. Состав содержит компоненты в следующем соотношении, мас.%: стабилизированный латекс (в пересчете на сухое вещество) 2-5, кремнезоль с силикатным модулем 100 в количестве 2-5, указанная электрохимически активированная вода - остальное. Технический результат: увеличение коэффициента нефтевытеснения до 4,8%. 2 ил., 1 табл.

Изобретение относится к жидкостям для технического обслуживания ствола скважин. Способ включает: введение в ствол скважины жидкости для технического обслуживания ствола скважины, содержащей катионный полимер, минерализованный раствор и твердое вещество, причем указанный катионный полимер имеет молекулярную массу от 300000 дальтон до 10000000 дальтон, минерализованный раствор присутствует в указанной жидкости в количестве от 95 об.% до 99,8 об.% относительно ее общего объема, а твердое вещество представляет собой утяжелитель, выбранный из карбоната железа, карбоната магния, карбоната кальция или комбинаций барита, гематита, ильменита и карбоната железа, карбоната магния и карбоната кальция, причем указанная жидкость демонстрирует снижение вязкости при сдвиге при скорости сдвига от 3 сек-1 до 300 сек-1 и температуре от 24°С (75°F) до 260°С (500°F). Состав жидкости для технического обслуживания ствола скважины содержит катионный полимер, минерализованный раствор и твердое вещество, причем указанный катионный полимер имеет молекулярную массу от примерно 300000 дальтон до примерно 10000000 дальтон, минерализованный раствор присутствует в указанной жидкости в количестве от 95 об.% до 99,8 об.% относительно общего ее объема, а твердое вещество представляет собой утяжелитель, выбранный из карбоната железа, карбоната магния, карбоната кальция или комбинаций барита, гематита, ильменита, карбоната железа, карбоната магния и карбоната кальция, причем указанная жидкость демонстрирует снижение вязкости при сдвиге при скорости сдвига от 3 сек-1 до 300 сек-1 и температуре от 24°С (75°F) до 260°С (500°F). Изобретение развито в зависимых пунктах формулы. Технический результат - улучшение жидкости технического обслуживания скважин. 2 н. и 18 з. п. ф-лы, 9 пр., 9 табл., 10 ил.

Изобретение относится к нефтегазодобывающей промышленности. Технический результат - повышение эффективности освоения нефтяных и газовых скважин и увеличение их продуктивности. В способе освоения нефтяных и газовых скважин, включающем обработку призабойной зоны скважины путем закачки в скважину кислотной эмульсии и проведения технологической выдержки, последовательно закачивают в скважину, оборудованную колонной лифтовых труб, продавочную жидкость, высоковязкую разделительную жидкость и кислотную эмульсию, в качестве кислотной эмульсии используют кислотную пену, которую приготавливают путем газирования расчетного объема пенообразующей эмульсии, равного объему скважины в интервале вскрытия продуктивного пласта. Пенообразующая эмульсия содержит, мас.%: дизельное топливо 25,0; соль КСl 10,0; поверхностно-активное вещество неонол АФ 9-12 1,0-1,5; соляную кислоту НСl 10,0, воду остальное. Степень газирования пенообразующей эмульсии регулируют, исходя из максимально допустимой депрессии на глубине кровли продуктивного пласта. Закачку кислотной пены осуществляют через межтрубное пространство скважины в интервал вскрытия продуктивного пласта, затем кислотную пену продавливают в продуктивный пласт продавочной жидкостью, причем между продавочной жидкостью и кислотной пеной вводят высоковязкую разделительную жидкость с условной вязкостью не менее 120 с, после чего в межтрубном пространстве скважины и лифтовых трубах создают посредством продавочной жидкости избыточное давление на призабойную зону пласта с периодичностью, обеспечивающей создание чередующихся, по меньшей мере, трех циклов депрессии и репрессии на пласт, при этом проводят технологическую выдержку скважины не менее трех часов в каждом из циклов депрессии и репрессии до получения притока пластового флюида в цикле депрессии. 4 табл., 1 ил.

Изобретение относится к нефтедобывающей промышленности, может быть использовано для повышения нефтеотдачи пластов при разработке залежи углеводородов, характеризующейся неоднородностью. Осадкообразующий реагент для выравнивания профиля приемистости скважин, содержащий натриевую соль нафтеновых кислот и воду, дополнительно содержит соапсток, омыленный натриевой щелочью, оксиалкилированный алкилфенол и метанол при следующем соотношении компонентов, мас.%: соапсток, омыленный натриевой щелочью 35-40, натриевая соль нафтеновых кислот 10-15, оксиалкилированный алкилфенол 5, метанол 20, вода 20-25. Технический результат - повышение осадкообразующих нефтеотмывающих свойств и отмывающих и диспергирующих свойств по отношению к АСПО. 3 пр., 1 табл.
Изобретение относится к нефтяной и газовой промышленности и может быть использовано для ликвидации межпластовых перетоков флюидов, ограничения водопритоков и поглощений как при строительстве, так и эксплуатации скважин. Состав содержит 20-25 мас.% бентонитовой глины, 55-60 мас.% углеводородной фракции, 5-10 мас.% соды кальцинированной и 5-15 мас.% портландцемента. Техническим результатом является повышение эффективности ликвидации перетоков флюидов за эксплуатационными колоннами в нефтегазовых скважинах и увеличение продолжительности их межремонтного периода. 2 пр.

Настоящее изобретение относится к полимерному материалу для проппанта, представляющему собой метатезис-радикально сшитую смесь олигоциклопентадиенов и эфиров метилкарбоксинорборнена. Также описан способ получения такого материала, включающий получение смеси олигоциклопентадиенов и эфиров метилкарбоксинорборнена путем смешивания дициклопентадиена с метакриловыми эфирами и полимерными стабилизаторами, представленными в п.2 формулы изобретения, нагрева этой смеси до температуры 150-220°C и выдержки при данной температуре в течение 15-360 мин с последующим охлаждением до 20-50°С. В полученную смесь олигоциклопентадиенов и эфиров метилкарбоксинорборнена последовательно вводят радикальный инициатор и катализатор, представленные в п.2 формулы изобретения. Далее в полученную полимерную матрицу нагревают до температуры 50-340°С и выдерживают при данной температуре в течение 1-360 мин, после чего охлаждают до комнатной температуры. Технический результат заключается в повышении термопрочности материала проппанта, обеспечивающего прочность на сжатие не менее 150 МПа при температуре не ниже 100°С. 2 н. и 2 з.п. ф-лы, 36 пр.

Изобретение относится к нефтедобывающей промышленности, в частности к составам, используемым для изоляции притока воды в добывающие нефтяные скважины. Состав для изоляции притока воды в добывающие нефтяные скважины включает амиды жирных кислот и пресную воду. При этом в качестве амидов жирных кислот состав содержит 40-50 мас.% этаноламидов жирных кислот с 12-18 углеродными атомами, в который дополнительно включены 10-20 мас.% вторичных и 10-20 мас.% многоатомных спиртов. Техническим результатом является повышение эффективности проведения водоизоляционных работ в добывающих скважинах за счет использования гомогенного состава селективного действия к водонасыщенным участкам терригенных и карбонатных коллекторов. 1 пр., 1 табл., 4 ил.
Изобретение относится к усовершенствованному способу добычи нефти. Способ добычи нефти вторичным методом в нефтеносном пласте, имеющем зоны высокой проницаемости, образующие предпочтительные проходы для нагнетаемой жидкости, содержащий следующие стадии: а) блокирование предпочтительных проходов посредством нагнетания в пласт водного раствора, основанного на водорастворимых полимерах с концентрацией, обеспечивающей большую вязкость водного раствора по сравнению с вязкостью нефти, б) по завершении стадии а) нагнетание водного раствора, имеющего состав, идентичный составу, использованному на стадии а), с более низкой концентрацией полимера. Изобретение развито в зависимых пунктах формулы изобретения. Технический результат - повышение эффективности при снижении расхода полимера в отношении добытой нефти. 10 з.п. ф-лы, 1 пр.

Изобретение относится к извлечению нефти и к методу повышенного извлечения нефти. Способ извлечения нефти из подземного пласта включает закачивание в этот пласт водной композиции, содержащей в качестве поверхностно-активного вещества алкил- или алкенилолигогликозида указанной общей формулы и дополнительное поверхностно-активное вещество - ПАВ, где в качестве дополнительного ПАВ водная композиция содержит анионные ПАВ, выбранные из алкоксилированных алк(ен)илсульфатов, при этом содержание алкил- или алкенилолигогликозида составляет 0,01-6% масс., весовое соотношение алкил- или алкенилолигогликозида формулы (I) и указанного дополнительного ПАВ равно от 10:90 до 90:10, а вода в указанной водной композиции имеет полный уровень растворенных солей вплоть до около 200000 ч./млн. Изобретение развито в зависимых пунктах формулы. Технический результат - повышение эффективности при воздействии высоких температур, засоленности, давлений и концентрации двухвалентных ионов. 4 з.п. ф-лы, 4 табл., 18 пр.

В настоящем изобретении предложены способы обработки углеводородных текучих сред с целью уменьшения кажущейся вязкости углеводородных текучих сред, встречающихся в операциях с нефтью, уменьшения количества отложений в затрубном пространстве скважины или в трубопроводе. Способ уменьшения кажущейся вязкости углеводородной текучей среды, встречающейся в операциях с нефтью, включает: приведение в контакт углеводородной текучей среды с эффективным эмульгирующим количеством композиции, содержащей, по меньшей мере, один гидрофобно-модифицированный неионогенный полимер, имеющий приведенную общую формулу. Способ уменьшения количества отложений в затрубном пространстве скважины или в трубопроводе включает: приведение в контакт углеводородной текучей среды, встречающейся в операциях с нефтью, внутри затрубного пространства или трубопровода с эффективным эмульгирующим количеством композиции, содержащей, по меньшей мере, один гидрофобно-модифицированный неионогенный полимер, имеющий приведенную общую формулу. Изобретение развито в зависимых пунктах формулы. Технический результат - повышение производительности и эффективности выделения нефти после транспортировки. 2 н. и 1 3 з.п. ф-лы, 4 табл., 7 пр., 3 ил.
Наверх