Способ получения наночастиц серебра

Изобретение может быть использовано в области химии, медицины и нанотехнологии. Способ получения наночастиц серебра включает приготовление водных растворов нитрата серебра концентрации 0,001÷0,02 М/л и L-цистеина концентрации 0,00125÷0,04 М/л. Полученные растворы смешивают при мольном соотношении нитрата серебра и L-цистеина в диапазоне 1,25÷2,00 и выдерживают при температуре 15÷55°C в течение 0,34÷48 часов в защищенном от света месте с получением раствора супрамолекулярного полимера. Полученный раствор супрамолекулярного полимера разбавляют водой в объемном соотношении 1:1. Готовят водный раствора борогидрида натрия концентрации 0,003÷0,010 М/л и добавляют в раствор супрамолекулярного полимера при постоянном перемешивании. Изобретение позволяет получить наночастицы серебра со средним гидродинамическим радиусом 20 нм. 4 ил., 1 пр.

 

Изобретение относится к области получения наноразмерных структур из серебра, полученных в результате химического восстановления борогидридом натрия ионов серебра, включенных в супрамолекулярный полимер. Способ позволяет получать стабильные наночастицы серебра со специфическими свойствами, используя только биосовместимые реагенты. Наночастицы серебра могут быть применены в разработке антибактериальных материалов и нанотехнологиях.

Способ получения наночастиц серебра (НЧС) на основе супрамолекулярного полимера открывает широкие возможности управления их свойствами. Супрамолекулярные полимеры - это полимероподобные макромолекулярные структуры, полученные в результате ассоциации ионов, удерживаемых вместе межмолекулярными силами.

Технический результат настоящего изобретения заключается в получении наночастиц серебра со средним гидродинамическим радиусом 20 нм.

Технический результат достигается в два этапа.

Первый этап - смешение водного раствора нитрата серебра с концентрацией его в исходной смеси от 0,001М до 0,02М с водным раствором L-цистеина, таким образом, чтобы мольное соотношение серебра и L-цистеина находилось в диапазоне 1,25÷2,00. При этом образуется мутный раствор, который оставляют созревать в защищенном от света месте при температуре от 15 до 55°C до визуальной прозрачности. Созревание происходит в течение от 20 минут до двух суток (от 0,35 часа до 48,00 часов), в зависимости от концентрации исходных компонентов, их мольного соотношения и температуры. В результате получают прозрачный вязкий раствор супрамолекулярного геля светло-желтого цвета. Методика его синтеза соответствует патенту РФ №2423384 от 10.07.2011.

В ультрафиолетовом спектре полученного раствора наблюдается появление двух слабых полос поглощения: в области 305 нм и 389 нм (Фиг.1).

Относительная вязкость полученного раствора находится в пределах от 1,1 до 2,5, в зависимости от концентрации исходных компонентов, их мольного соотношения и времени созревания раствора. Установлено, что для достижения результата необходим только L-цистеин высокой степени чистоты (не менее 99%).

Второй этап предполагает смешение водного раствора супрамолекулярного полимера на основе нитрата серебра и L-цистеина с водным раствором борогидрида натрия при постоянном перемешивании. Мольное соотношение серебра и борогидрида натрия должно составлять 0,4. При этом образуется красно-коричневый раствор с низкой вязкостью.

В ультрафиолетовом спектре полученного раствора имеются полосы поглощения в диапазоне от 390 до 500 нм, соответствующие явлению плазмонного резонанса на металлических наночастицах серебра или их агрегатах (Фиг.2).

Исследованием уровня техники установлено, что способов получения наночастиц серебра химическим восстановлением борогидридом натрия из водного раствора супрамолекулярного полимера на основе нитрата серебра и L-цистеина не обнаруживается.

Сущность изобретения заключается в следующем.

Водный раствор супрамолекулярного полимера (L-цистеин серебряный раствор) на основе L-цистеина и нитрата серебра представляет собой раствор полимероподобного супрамолекулярного соединения, построенного из молекул меркаптида серебра и ионов серебра, с формированием линейных цепочек со связями серебро-сера: -Ag-S-Ag-S-Ag-S-.

Авторами впервые было установлено, что указанный раствор может использоваться как исходный реагент для синтеза седиментационно и частично агрегативно устойчивых наночастиц серебра со специфическими свойствами. Ионы серебра, включенные в супрамолекулярный полимер, восстанавливаются борогидридом натрия до металлического серебра. Размер синтезируемых наночастиц серебра детерминируется размером супрамолекул, их концентрацией, температурой проведения процесса и другими факторами. Молекулы цистеина, входившие в состав супрамолекулярного полимера, связываются с поверхностью получаемых наночастиц по тиольной группе. Тем самым наночастицам придается седиментационная и частично-агрегативная устойчивость. Срок хранения растворов наночастиц, полученных данным способом, без значительного изменения их свойств, - около 6 месяцев.

Образование фракций наночастиц размером от 10 до 50 нм в растворе установлено методом динамического светорассеяния. Измерение интенсивности ДСР выполнено на анализаторе Zetasizer ZS (Malvern Instruments Ltd., Великобритания) с He-Ne - лазером (λ=633 нм) мощностью 4 мВт. Все измерения осуществлялись при 25°C. На Фиг.3 представлены данные динамического светорассеяния, которые свидетельствуют о наличии в данном растворе наночастиц со средним гидродинамическим радиусом порядка 20 нм. Фракция наночастиц с большим размером представлена обратимыми агрегатами из первой фракции.

Методом просвечивающей электронной микроскопии установлено присутствие в растворе наночастиц размером от 10 до 50 нм, рефлексы которых на электронограмме образца соответствуют присутствию металлического серебра.

На Фиг.4 представлены электронно-микроскопический снимок и электронограмма высушенного на подложке из формвара образца раствора наночастиц серебра, полученные на просвечивающем электронном микроскопе «LEO 912 АВ OMEGA» (Carl Zeiss, Германия).

В предложенном способе получения наночастиц используется биологически активное супрамолекулярное соединение на основе биосовместимой аминокислоты L-цистеина и нитрата серебра. Наночастицы серебра являются стабильным биологически активным продуктом, совместимым с полимерами медицинского назначения.

Антибактериальное действие катионов серебра объясняется тремя механизмами: вмешательством в перенос электронов, связыванием ДНК и взаимодействием с мембраной клетки. Наночастицы металлического серебра обладают антибактериальным действием благодаря их медленному окислению и высвобождению в окружающую среду катионов серебра. Этот фактор играет решающую роль в ряде случаев медицинского применения. Ионное серебро в высоких концентрациях обладает токсическим воздействием не только на прокариотические клетки бактерий, но и на эукариотические клетки организма пациента. Это вызывает определенные трудности с разовой дозировкой препарата. При использовании наночастиц серебра достижение минимально ингибирующих концентраций происходит постепенно (по мере окисления развитой поверхности наночастиц), и токсического действия на организм не наблюдается. Кроме того, существуют данные о большей чувствительности патогенных и условно патогенных грибков (например, Candida) именно к наночастицам серебра, которые разрушают клеточные мембраны и угнетают рост грибковых клеток. Таким образом, наночастицы серебра могут использоваться в тех случаях, когда нельзя по каким-то причинам повышать содержание ионов серебра. В предлагаемом нами способе получения наночастиц серебра существует возможность получения наночастиц с заранее заданным размером.

Изобретение поясняется графическими материалами (Фиг.1÷4).

Фиг.1. УФ спектры L-цистеин-серебряного раствора при разном его разбавлении: 1 - без разбавления, 2 - разбавление в 2 раза, 3 - разбавление в 8 раз (концентрации компонентов в неразбавленном растворе: CAgNO3=0,0038М, Ccys=0,0030М; толщина слоя 1 см).

Фиг.2. УФ спектры растворов наночастиц серебра, полученных при разном разбавлении исходного ЦСР: 1 - без разбавления, 2 - разбавление в 2 раза, 3 - разбавление в 8 раз (концентрации компонентов в неразбавленном растворе: CAgNO3=0,0038М, Ccys=0,0030М; толщина слоя 1 мм).

Фиг.3. Распределение НЧС по размерам в образце, полученном при разбавлении исходного раствора супрамолекулярного полимера в 8 раз (концентрации компонентов в неразбавленном растворе: CAgNO3=0,0038М, Ccys=0,0030М).

Фиг.4. ПЭМ-изображение (а) и электронограмма (б) образца наночастиц полученного при разбавлении исходного раствора супрамолекулярного полимера в 2 раза (концентрации компонентов в неразбавленном растворе: CAgNO3=0,0038M, Ccys=0, 0030М).

Пример получения наночастиц серебра:

1. Растворяют 127,5 мг нитрата серебра в 25 мл дистиллированной воды.

2. Растворяют 90,8 мг L-цистеина в 25 мл дистиллированной воды.

3. К 25 мл раствора нитрата серебра приливают 155 мл дистиллированной воды и 20 мл раствора L-цистеина, смесь энергично перемешивают. Смесь оставляют созревать в защищенном от света месте на 10 часов при комнатной температуре.

4. К 50 мл полученного раствора приливают 50 мл дистиллированной воды и смесь энергично перемешивают. Получают разбавленный раствор супрамолекулярного полимера.

5. Растворяют 37,0 мг борогидрида натрия в 10 мл дистиллированной воды

6. К 100 мл разбавленного раствора супрамолекулярного полимера при перемешивании приливают по каплям (со скоростью 1 капля в секунду) 10 мл раствора борогидрида натрия. Перемешивание продолжают до прекращения заметного выделения пузырьков газа.

Таким образом заявляется способ получения наночастиц серебра, включающий приготовление водных растворов нитрата серебра концентрации 0,001÷0,02 М/л и L-цистеина концентрации 0,00125-10,04 М/л, смешивание полученных растворов при мольном соотношении нитрата серебра и L-цистеина в диапазоне 1,25÷2,00, выстаивание смеси при температуре 15÷55°C в течение 0,34÷48,00 часов в защищенном от света месте с получением раствора супрамолекулярного полимера, разбавление смеси водой в объемном соотношении 1:1, приготовление водного раствора борогидрида натрия концентрации 0,003÷0,010 М/л и добавление водного раствора борогидрида натрия в раствор сумолекулярного полимера при постоянном перемешивании.

Использование предлагаемого способа получения наночастиц серебра в областях, отличных от медицины, дает возможность стабилизировать коллоидные растворы металлического серебра с определенным, заранее заданным размером дисперсной фазы. Хотя непосредственный способ применения наночастиц серебра в таких областях не является объектом данного патентования, стоит отметить, что это могут быть такие приложения, как электронные и оптоэлектронные приборы и устройства, композитные материалы различного назначения, электропроводящие клеи, пленки.

Использование наночастиц серебра в качестве гетерогенных катализаторов применяется во многих процессах органического синтеза (например, в производстве формальдегида). При этом размер частиц определяет эффективность катализа: чем больше поверхность катализатора, тем активнее протекает каталитический процесс. Использование заявляемого способа получения наночастиц серебра позволит получать катализаторы двумя способами: получение наночастиц in situ (непосредственно в матрице носителя) и пропитка носителя коллоидным раствором наночастиц.

Способ получения наночастиц серебра, содержащий приготовление водных растворов нитрата серебра концентрации 0,001÷0,02 М/л и L-цистеина концентрации 0,00125÷0,04 М/л, смешивание полученных растворов при мольном соотношении нитрата серебра и L-цистеина в диапазоне 1,25÷2,00, выстаивание смеси при температуре 15÷55°C в течение 0,34÷48,00 часов в защищенном от света месте с получением раствора супрамолекулярного полимера, разбавление смеси водой в объемном соотношении 1:1, приготовление водного раствора борогидрида натрия концентрации 0,003÷0,010 М/л и добавление водного раствора борогидрида натрия в раствор сумолекулярного полимера при постоянном перемешивании.



 

Похожие патенты:
Изобретение относится к способу стабилизации наночастиц биогенных элементов ферментами. Способ включает в себя проведение синтеза наночастиц посредством окислительно-восстановительной реакции с введением стабилизатора-фермента, образующихся наночастиц непосредственно в реакцию.
Изобретение относится к химической промышленности и охране окружающей среды. Серебро из воды извлекают с использованием композиционного сорбента в количестве 50-200 мг/дм3 воды.

Изобретение относится к способу получения композиций наночастиц серебра на основе водорастворимых синтетических сополимеров. .

Изобретение относится к способу получения раствора ионного серебра. .

Изобретение относится к технике и технологии подготовки углеводородного газа и может быть использовано в газовой, нефтяной и других отраслях промышленности на существующих и вновь проектируемых установках подготовки и переработки углеводородных газов.
Изобретение относится к способу получения водных медно-серебряных композиций, который включает стадии растворения оксида серебра в дистиллированной воде из расчета 13·10 -3 грамм на литр воды, охлаждения или подогрева полученного раствора до температуры 20°С, отстаивания и фильтрования раствора.
Изобретение относится к способам получения концентрата оксидов серебра и может быть использовано при производстве высокоэффективных препаратов для медицины и ветеринарии.
Изобретение относится к области получения наночастиц серебра, распределенных в воде, содержащей органические и неорганические стабилизаторы, и может быть использовано в производстве медицинских, ветеринарных и косметических препаратов.
Изобретение относится к технологии синтеза наночастиц металлов в полимерных матрицах и может быть использовано для получения агрегативно устойчивых композитных материалов наночастицы серебра-ионообменник, применяемых в качестве катализаторов химических и электрохимических реакций, электродных датчиков и материалов с бактерицидным действием для очистки питьевой воды.
Изобретение относится к способам получения бактерицидных композиций, содержащих ионы серебра, и может быть использовано при производстве высокоэффективных препаратов для медицины и ветеринарии, имеющих низкую токсичность и аллергенность, а также надежную воспроизводимость физико-химических характеристик.

Сканирующий зондовый микроскоп включает в себя первый и второй зонды для сканирования образца при поддержании расстояния до поверхности образца, кварцевые резонаторы, удерживающие каждый из первого и второго зондов, и модулирующий генератор для обеспечения вибрации определенной частоты первого зонда, которая отличается от резонансной частоты каждого кварцевого резонатора.

Изобретение относится к области газового анализа, в частности к детектирующим устройствам для регистрации и измерения содержания микропримесей оксида углерода. Датчик микропримесей оксида углерода содержит полупроводниковое основание и подложку.

Изобретение относится к контрастному агенту на основе наночастицы, где наночастицы содержат ядро, поверхность которого не содержит диоксид кремния, и оболочку, которая присоединена к поверхности ядра и содержит силан-функционализированную цвиттер-ионную группировку.

Изобретение относится к травяному составу на основе наноэмульсии местного применения для лечения связанных с акне кожных расстройств. Указанный состав включает содержащую лекарственное средство водную фазу, включающую розовую воду и/или лимонный сок, масляную фазу, содержащую эфирное масло, неионное поверхностно-активное вещество и дополнительное поверхностно-активное вещество.
Изобретение относится к технологии получения полупроводниковых наноматериалов. Способ включает подготовку кремниевой пластины путем нанесения на ее поверхность нанодисперсных частиц катализатора с последующим помещением в ростовую печь, нагревом и осаждением кристаллизуемого вещества из газовой фазы по схеме пар→капельная жидкость→кристалл, при этом перед нанесением частиц катализатора и помещением подложки в ростовую печь пластину кремния легируют фосфором до удельного сопротивления 0,008-0,018 Ом·см и анодируют длительностью не более 5 мин с подсветкой галогенной лампы в смеси 48%-ного раствора HF и C2H5OH (96%) в соотношении 1:1, причем плотность тока анодизации поддерживают на уровне не менее 10 мА/см2, а наночастицы катализатора наносят электронно-лучевым напылением пленки металла толщиной не более 2 нм.
Изобретение относится к области металлургии, в частности к высокопрочным сплавам на основе никеля для получения износостойких покрытий на металлические конструктивные элементы.

Изобретение относится к способу получения нановискерных структур оксидных вольфрамовых бронз на угольном материале, в котором электролиз ведут в импульсном потенциостатическом режиме при перенапряжении 300 мВ в расплаве, содержащем 30 мол.

Изобретение относится к области технической керамики, в частности к износостойкому композиционному керамическому наноструктурированному материалу на основе оксида алюминия, который может быть использован для изготовления режущего инструмента и износостойких деталей для машиностроения.

Изобретение относится к биохимии и может быть использовано для управления биохимическими реакциями in vitro и in vivo. Управление осуществляется посредством воздействия на магнитную наносуспензию, содержащую биоактивную макромолекулу, прикрепленную непосредственно или через лиганд к однодоменным магнитным наночастицам, внешним низкоинтенсивным низкочастотным переменным магнитным полем, обеспечивающим деформацию и/или изменение конформации участвующих в реакции биоактивных макромолекул.

Группа изобретений относится к области технологии оптической оксидной керамики на основе алюмомагниевой шпинели MgAl2O4 для использования в оптическом приборостроении.

Изобретение относится к технологии создания сложных структур с помощью потока ускоренных частиц и может быть использовано в нанотехнологии, микроэлектронике для создания сверхминиатюрных приборов, интегральных схем и запоминающих устройств.
Наверх