Способ электромагнитного контроля полой детали типа лопатки газотурбинного двигателя

Предложение относится к неразрушающему контролю и может быть использовано для дефектоскопии и измерения толщины стенки полых деталей типа лопаток газотурбинных двигателей, выполненных как из металла, так и полностью или частично выполненных из керамики. Способ электромагнитного контроля полой детали типа лопатки 1 газотурбинного двигателя заключается в том, что на поверхность лопатки устанавливают электромагнитный преобразователь 2, заполняют внутренние полости 7 лопатки 1 средой 9, содержащей равномерно распределенные ферромагнитные частицы, например магнитной жидкостью, перемещают электромагнитный преобразователь 2 по поверхности лопатки 1, регистрируют с помощью электронного блока 3 изменяющиеся в процессе перемещения выходные сигналы электромагнитного преобразователя 2 и по ним судят о наличии дефектов со стороны внутренней поверхности полостей 7 и о толщине оболочки. 5 з.п. ф-лы, 5 ил.

 

Предложение относится к неразрушающему контролю и может быть использовано для дефектоскопии и измерения толщины стенки полых деталей, типа лопаток газотурбинных двигателей, выполненных как из металла, так и полностью или частично выполненных из керамики.

Лопатки газотурбинных двигателей и турбомашин выполняют из жаропрочного немагнитного металла. В последнее время все более широкое применение находят лопатки с применением оболочек и других элементов, выполненных из керамики. Лопатки работают при высоких температурах и охлаждаются воздухом, пропускаемым через имеющиеся в них полости. В процессе эксплуатации, под действием высокой температуры и механических нагрузок, происходят локальные изменения толщины стенок лопаток и развиваются дефекты как на внешней поверхности лопатки, так и со стороны внутренней полости.

Особенность конструкции лопаток газотурбинных двигателей заключается в наличии внутренних перегородок, формирующих движение охлаждающего воздуха и придающих необходимую жесткость. Имеющиеся перегородки не влияют на результаты дефектоскопии внешней поверхности лопаток электромагнитным методом при выборе высокой рабочей частоты (порядка 50 МГц), обеспечивающей затухание вихревых токов в слое металла, существенно меньшем толщины стенки лопаток. Однако эти перегородки создают неприемлемо сильные помехи при проведении электромагнитного контроля, с целью измерения толщины стенок и/или выявления дефектов, развивающихся со стороны внутренней полости. Это связано с тем, что расстояния между перегородками и их ширина сопоставимы с минимально возможным пятном контроля, а ширина и высота перегородок изменяются по нерегулярному закону. При уменьшении пятна контроля не удается обеспечить необходимую для решения поставленной задачи глубину проникновения вихревых токов. Из уровня техники известны несколько неразрушающих способов измерения, пригодных для выполнения измерения толщины в данной области техники. Однако некоторые из них, такие как рентгеновская томография [1], при которой с помощью набора детекторов выполняют ряд последовательных снимков окружности объекта, подлежащего измерению, являются слишком сложными в осуществлении. Измерения с помощью ультразвука не пригодны для некоторых материалов, в частности для анизотропных материалов. Кроме того ни один из известных методов не позволяет надежно выявлять дефекты типа трещин, развивающихся со стороны внутренней полости, и не может быть реализован без демонтажа лопатки.

Известен способ измерения толщины стенки полой лопатки, заключающийся в том, что используют электромагнитный преобразователь с П-образным сердечником, содержащим две расположенные на его полюсах и последовательно соединенные катушки, устанавливают электромагнитный преобразователь на поверхности лопатки параллельно имеющимся в ней перегородкам, перемещают электромагнитный преобразователь по стенке перпендикулярно перегородкам, регистрируют выходное напряжения электромагнитного преобразователя и определяют величины толщины стенки в соответствии с предварительными калибровками по значению сигнала.

Все эти операции осуществляют на основе измерений, выполненных на образцовых стенках, имеющих заданные радиусы кривизны и заданные значения толщины, находящиеся в требуемых интервалах и содержащих перегородки. Выполненные таким образом калибровки используются для построения нейронной сети, используемой при интерпретации измеренных сигналов [2].

Известный способ не обеспечивает выявления дефектов типа трещин, развивающихся со стороны внутренней полости, и может быть реализован только после демонтажа лопатки, так как для его реализации необходимо сканирование по строго определенному закону, обеспечиваемому только с помощью специальных средств. Кроме того, известный метод не может быть использован для контроля качества неметаллических, в частности керамических, лопаток.

Наиболее близок к предложенному, принятый за прототип способ оценки толщины стенки полой детали, имеющей искривленную поверхность, типа лопатки газотурбинного двигателя, по меньшей мере, в одной точке, имеющей некоторый радиус кривизны и определенную толщину в этой точке, заключающийся в том, что определяют величины импеданса электрической цепи, образованной датчиком токов Фуко, наложенным на стенку, вводят эти величины на вход блока цифровой обработки типа нейронной сети, параметры нейронной сети определяют предварительно путем отладки на калиброванных плитках, имеющих радиусы кривизны в интервале радиусов кривизны упомянутой поверхности, и заданные значения толщины [3].

Однако и этот способ не обеспечивает выявления дефектов типа трещин, развивающихся со стороны внутренней полости, требует демонтажа лопаток и большой подготовительной работы. Он также не может быть использован для контроля качества неметаллических, в частности керамических, лопаток.

Цель изобретения - расширение области применения за счет обеспечения возможности контроля качества неметаллических полых деталей, повышение селективной чувствительности к дефектам, расположенным со стороны внутренней полости, и к толщине оболочки.

Поставленная цель в способе электромагнитного контроля полой детали типа лопатки газотурбинного двигателя, заключающемся в том, что сканируют электромагнитным преобразователем внешнюю поверхность полой детали, регистрируют изменяющиеся в процессе сканирования выходные сигналы электромагнитного преобразователя и по ним судят о параметрах полой детали, достигается благодаря тому, что предварительно внутренние полости детали заполняют средой, содержащей равномерно распределенные ферромагнитные частицы.

Дополнительно, поставленная цель достигается благодаря тому, что в качестве среды, содержащей равномерно распределенные ферромагнитные частицы, используют магнитную жидкость.

Дополнительно, поставленная цель достигается благодаря тому, что перед заполнением полости детали средой с ферромагнитными частицами в полости создают пониженное давление, заполняют полость детали средой с ферромагнитными частицами под давлением и поддерживают его в процессе сканирования.

Дополнительно, поставленная цель достигается благодаря тому, что рабочую частоту f электромагнитного преобразователя выбирают из условия 0,5/(R2×π×σ×µ0)<f<1/(R2×π×σ×µ0), где R - эквивалентный радиус электромагнитного преобразователя, σ - удельная электрическая проводимость металла лопатки, µ0=4π×10-7 Гн/м.

Дополнительно, поставленная цель достигается благодаря тому, что на ферромагнитные частицы в полостях детали воздействуют магнитным полем со стороны сканируемой поверхности.

Дополнительно, поставленная цель достигается благодаря тому, что перед сканированием удаляют среду с магнитными свойствами из полостей детали.

Реализация предложенного способа показана на примере электромагнитного контроля лопатки с воздушным охлаждением газотурбинного двигателя.

На фиг.1 приведена схема контроля для реализации заявляемого способа.

На фиг.2 показано поперечное сечение сканируемой электромагнитным преобразователем лопатки с полостями, заполненными магнитной жидкостью.

На фиг.3 приведена диаграммы сигнала, полученная при сканировании поверхности лопатки с полостями, заполненными магнитной жидкостью, при рабочей частоте 30 кГц.

На фиг.4 - диаграмма сигналов, полученная при сканировании поверхности лопатки с полостями, заполненными магнитной жидкостью, при рабочей частоте 4 кГц.

На фиг.5 приведена диаграммы сигналов, полученные при сканировании поверхности лопатки с ферромагнитными частицами, оставшимися только в полостях дефектов, после слива магнитной жидкости.

Предложенный способ реализуется с помощью схемы контроля, приведенной на фиг.1. На ней показана лопатка 1, соединенные между собой электромагнитный преобразователь 2 и электронный блок 3, многофункциональный компрессор 4 для поочередной подачи и создания давления магнитной жидкости и воздуха в полостях лопатки 1 через ее входные отверстия 5.1 и выходные отверстия 5.2. В схему контроля входит также источник 6 постоянного магнитного поля. Источник 6 может быть выполнен в виде электромагнита, питаемого постоянным током, или постоянного магнита.

Для реализации заявленного способа выполняют следующие действия. Заполняют внутренние полости 7 лопатки, образованные перегородками 8, средой 9, содержащей равномерно распределенные ферромагнитные частицы. В качестве среды 9 может быть использована магнитная эмульсия, воздушная взвесь ферромагнитных частиц или магнитная жидкость. Рекомендуется использовать магнитную жидкость, представляющую собой, как известно, коллоидные растворы высокодисперсных магнитных частиц размером от 5 до 50 нм. Магнитные жидкости обладают способностью силового взаимодействия с магнитным полем, сохраняя при этом текучесть. Они имеют начальную относительную магнитную проницаемость µмж≈7. Среда 9 заполняет полости 7 лопатки, а также полости дефектов 10 при их наличии. Заполнение полостей дефектов 7 средой 9 в виде магнитной жидкости происходит под влиянием капиллярного эффекта.

Для повышения проникающей способности магнитной жидкости в полость дефектов 7 целесообразно предпринять следующие действия:

- выбрать среду 9 с магнитными частицами возможно меньшего размера;

- создать пониженное давление в полости лопатки перед ее заполнением магнитной жидкостью, что обеспечит удаление воздуха из полостей возможных дефектов;

- создать давление в полостях 7 с магнитной жидкостью и поддерживать его в процессе сканирования;

- воздействовать на магнитную жидкость постоянным магнитным полем, направленным со стороны сканируемой поверхности.

С уменьшением размера магнитных частиц и ростом давления проникающая способность среды 9 в полости дефектов 10 однозначно увеличивается. Воздействие же на контролируемый участок магнитным полем, с одной стороны, затягивает ферромагнитные частицы в полость дефекта, но, с другой стороны, уменьшает магнитную проницаемость среды 6. Известно [4], что уменьшение магнитной проницаемости магнитной жидкости незначительно (менее 10%) при напряженности воздействующего на нее магнитного поля менее 1 кА/м. Эта величина может быть рекомендована как оптимальная, если сканирование происходит при одновременном воздействии постоянного магнитного поля.

Воздействие магнитного поля приводит и к некоторому возрастанию концентрации магнитных частиц в полостях дефектов, что дополнительно повышает чувствительность к ним заявляемого способа.

После заполнения полостей 7 средой 9 в виде магнитной жидкости, создания давления с помощью компрессора 4 воздействуют со стороны, предназначенной для сканирования поверхности лопатки 1, на ферромагнитные частицы среды 9 постоянным магнитным полем, создаваемым источником 6 постоянного магнитного поля. Воздействие может проводиться сразу на всю поверхность или поочередно, путем сканирования. Ферромагнитные частицы среды 9 под действием магнитного поля источника 1 получают дополнительное воздействие, способствующее заполнению ими полостей возможных дефектов 10.

Рабочую частоту f электромагнитного преобразователя выбирают из условия 0,5/(R2×π×σ×µ0)<f<1/(R2×π×σ×µ0). При этом влияние немагнитного металла, по сравнению с влиянием магнитной среды с относительной магнитной проницаемостью µ>5 оказывается почти в 100 раз меньшим [5, С.60, рис.4.8]. При выбранной в соответствии с заданным условием частоте влияние перегородок 8 на сигнал электромагнитного преобразователя 2 пренебрежимо мало [5, С.64, рис.4.10].

Эквивалентный радиус R электромагнитного преобразователя рекомендуется выбирать сопоставимым с толщиной Т стенки контролируемой лопатки. В этом случае достигаются близкая к оптимальной чувствительность и разрешающая способность к положению магнитных частиц, несущих информацию о толщине внешней оболочки лопатки и наличии дефектов.

Например, при толщине Т=2 мм целесообразно выбрать R=2 мм. При этом рабочая частота f для типичных значений удельной электрической проводимости металла лопаток должна находиться в диапазоне 4 кГц <f<8 кГц. Наличие оптимума по частоте связано с тем, что при ее уменьшении снижается абсолютная чувствительность к магнитной среде, а при увеличении растет чувствительность к немагнитному металлу лопатки.

На фиг.3 показана развертка части внешней оболочки лопатки 1 с прилегающими к ней перегородками 8. Над разверткой приведены диаграмма, соответствующая сканированию поверхности лопатки 1 с заполненными магнитной жидкостью полостями 7 при частоте 30 кГц.

Из приведенной на фиг.3 диаграммы видно, что при данной рабочей частоте электромагнитного взаимодействия с магнитной жидкостью практически не происходит. Это связано с экранирующим действием вихревых токов, возбужденных в металле лопатки.

На фиг.4 показана развертка части внешней оболочки лопатки 1 с прилегающими к ней перегородками 8. Над разверткой приведены диаграмма, соответствующая сканированию поверхности лопатки 1 с заполненными магнитной жидкостью полостями 7 при частоте 30 кГц. Из приведенной на фиг.4 диаграммы видно, что при наличии дефекта 10, заполненного средой 9, формируется импульс, позволяющий однозначно выявить данный дефект. Минимумы сигналов формируются над перегородками 8, а локальные максимумы - над центрами соответствующих полостей. При неравномерной толщине металла лопатки между перегородками соответствующий локальный максимум может смещаться, а его величина при уменьшении толщины металла увеличивается.

На фиг.5 показана развертка части внешней оболочки лопатки 1 с прилегающими к ней перегородками 8. Над разверткой приведены диаграмма, соответствующая сканированию поверхности лопатки 1 при сканировании поверхности лопатки 1 с ферромагнитными частицами только в полости дефекта 10.

Из приведенных диаграмм видно, что для более надежного выявления дефектов целесообразно проводить сканирование, сохранив ферромагнитные частицы только в полостях возможных дефектов 10.

Для удаления среды 9 с ферромагнитными частицами из полостей 7 лопатки подают под создаваемым компрессором 4 давлением газ. При этом ферромагнитные частицы, заполняющие полости возможных дефектов, будут удерживаться там под действием капиллярных сил и давлением поступающего газа. Для более эффективного удаления частиц из полостей 7 рекомендуется промыть полости жидкостью, не имеющей магнитных свойств.

Анализ диаграмм показывает, что после удаления ферромагнитных частиц из полостей 7 дефекты выявляются более надежно. В то же время, для оценки толщины оболочки необходимо проводить анализ при магнитной жидкости во всем объеме полостей. Здесь при уменьшении толщины стенки уменьшается расстояние до поверхности, образованной ферромагнитными частицами в соответствующей полости 7. Это приводит к увеличению максимального значения регистрируемого сигнала на соответствующем интервале. Для количественной оценки измеряемой толщины достаточно провести предварительную калибровку. При этом образцовые пластины могут быть изготовлены из диэлектрика, в полости которых помещается соответствующая среда 9, например магнитная жидкость.

Чувствительность к измеряемой толщине оболочки в предложенном способе существенно выше, чем в известных, за счет того, что по существу происходит измерение расстояния от рабочего торца электромагнитного преобразователя до поверхности магнитной среды. Сопоставление чувствительностей электромагнитного преобразователя к изменению толщины Т немагнитной электропроводящей пластины (при оптимальной для этого рабочей частоте) и к изменению равного ей расстояния Т до поверхности магнитной среды (при рекомендуемой рабочей частоте) показывает, что заявляемый способ обеспечивает чувствительность на порядок выше.

При перемещении над дефектом 10 магнитная связь ферромагнитных частиц с электромагнитным преобразователем 2 резко возрастает, что приводит к появлению соответствующего импульса. Параметры импульса зависят от объема ферромагнитных частиц в полости дефекта 9, а также от их близости к рабочему торцу электромагнитного преобразователя 2.

При контроле лопаток частично или полностью выполненных из немагнитного и неэлектропроводного материала, в частности керамики, физика описанных процессов и отмеченные закономерности сохраняются.

Таким образом, предложенное техническое решение в совокупности заявленных признаков позволяет расширить область применения за счет обеспечения возможности контроля качества неметаллических полых деталей, например металлокерамических лопаток газотурбинных двигателей. Одновременно достигается повышение селективной чувствительности к дефектам, развивающимся со стороны внутренней полости, и к толщине оболочки. Дефектоскопия лопаток заявляемым способом, в принципе, может быть реализована без демонтажа лопатки при обеспечении возможности подачи магнитной жидкости в полости лопатки по каналам ее охлаждения. Это связано с тем, что для выявления дефектов не требуется высокой точности позиционирования электромагнитного преобразователя.

Источники информации

1. Вайнберг И.А., Вайнберг Э.И. Компьютерные томографы для неразрушающего контроля и количественной диагностики изделий аэрокосмической промышленности. // Двигатель. - 2008. - №2. - С.19-23.

2. Патент РФ №2263878, МПК7 G01B 7/06, G01N 27/90 // Способ измерения толщины стенки полой лопатки. - Опубл. 27.11.2003 (https://findpatent.ru/patent/226/2263878.htmn).

3. Патент РФ №2418963, МПК7 F02C 9/00, G01B 7/06 // Измерение толщины стенки, в частности стенки лопатки, при помощи токов Фуко. - Опубл. 20.05.2011. (прототип) http://www.freepatent.ru/patents/2418963

4. Диканский Ю.И., Закинян А.Р., Константинова Н.Ю. О магнитной проницаемости магнитодиэлектрической эмульсии // ЖТФ. - 2008 - том 28 - вып.7 - С.22.

5. Федосенко Ю.К., Шкатов П.Н., Ефимов А.Г. Вихретоковый контроль / под общ. ред. В.В. Клюева. М.: Издательский дом «Спектр». - 2011-224 с.

1. Способ электромагнитного контроля полой детали типа лопатки газотурбинного двигателя, заключающийся в том, что сканируют электромагнитным преобразователем внешнюю поверхность полой детали, регистрируют изменяющиеся в процессе перемещения выходные сигналы электромагнитного преобразователя и по ним судят о параметрах лопатки, отличающийся тем, что предварительно внутренние полости лопатки заполняют средой, содержащей равномерно распределенные ферромагнитные частицы.

2. Способ по п.1, отличающийся тем, что в качестве среды, содержащей равномерно распределенные ферромагнитные частицы, используют магнитную жидкость.

3. Способ по п.1, отличающийся тем, что перед заполнением полости детали средой с ферромагнитными частицами в полости создают пониженное давление, заполняют полость детали средой с ферромагнитными частицами под давлением и поддерживают его в процессе сканирования.

4. Способ по п.1, отличающийся тем, что рабочую частоту f электромагнитного преобразователя выбирают из условия 0,5(R2×π×σ×µ0)<f<1/(R2×π×σ×µ0), где R - эквивалентный радиус электромагнитного преобразователя, σ - удельная электрическая проводимость металла лопатки, µ0=4π×10-7 Гн/м.

5. Способ по п.1, отличающийся тем, что на ферромагнитные частицы в полостях детали воздействуют магнитным полем со стороны сканируемой поверхности.

6. Способ по п.1, отличающийся тем, что перед сканированием удаляют среду с ферромагнитными частицами из полостей детали.



 

Похожие патенты:

Изобретение относится к измерительной технике. Сущность: устройство обнаружения дальнего поля вихревых токов вводится в цилиндрические трубы и перемещается по ним.

Использование: для неразрушающего контроля изделий посредством вихревых токов. Сущность изобретения заключается в том, что установка для неразрушающего контроля дефектов в проверяемом изделии посредством вихревых токов содержит катушку возбуждения (14), на которую может подаваться сигнал (SE) возбуждения для воздействия на проверяемое изделие (16) переменным электромагнитным полем, аналого-цифровой преобразователь (21), фильтрующее устройство (22), вход которого соединен с аналого-цифровым преобразователем (21) и которое выполнено с возможностью осуществления полосовой фильтрации, демодулятор (27), вход которого соединен с выходом указанного фильтрующего устройства (22), приемную катушку (17), предназначенную для формирования сигнала (SP) катушки, зависящего от дефекта в проверяемом изделии (16), причем вход аналого-цифрового преобразователя (21) соединен с приемной катушкой (17), причем фильтрующее устройство (22) выполнено с возможностью уменьшения частоты сканирования.

Использование: для обнаружения трещин на деталях вращения. Сущность изобретения заключается в том, что наличие трещины на контролируемом изделии определяют при получении порогового сигнала вихретокового преобразователя, при этом деталь вращают, а вихретоковый преобразователь скользит по поверхности детали в окружном направлении, получают пороговый сигнал о наличии трещины, при условии, что сигналы от конструктивных концентраторов напряжений при данном расположении вихретокового преобразователя не достигают порогового сигнала, определяют частоту вращения детали, обеспечивающую выявление трещины, строят зависимость минимально-выявляемой длины трещины от частоты вращения детали, перед вращением контролируемого изделия, на котором вблизи концентратора напряжений установлен вихретоковый преобразователь, выбирают по полученной зависимости частоту вращения контролируемого изделия, которая обеспечивает выявление трещины установленной минимальной длины, при вращении контролируемого изделия, по поверхности которого скользит вихретоковый преобразователь в окружном направлении, с выбранной частотой вращения по сигналу вихретокового преобразователя определяют наличие трещины в концентраторе напряжений, если сигнал достигает порогового сигнала, по выявленной зависимости определяют по частоте вращения контролируемого изделия длину трещины, размер которой больше или равен минимально-выявляемой величине, и контролируемое изделие снимают с эксплуатации, если сигнал вихретокового преобразователя не достигает порогового сигнала, то контролируемое изделие допускается к очередному этапу эксплуатации до следующего контроля.

Использование: для дефектоскопии технологических трубопроводов. Сущность изобретения заключается в том, что комплекс дефектоскопии технологических трубопроводов состоит из: подвижного модуля, бортовой электронной аппаратуры, бортового компьютера; датчиков дефектов; одометров; троса; наземной лебедки с барабаном для троса; бортового источника электропитания; наземного компьютера; при этом в него ведены: первый и второй направляющие конусы, несколько опорно-ходовых манжет, несколько групп ходовых пружинных узлов (ХПУ), несколько групп прижимных пружинных узлов (ППУ), несколько групп ультразвуковых датчиков системы неразрушающего контроля (УДСНК), несколько групп толкателей, несколько ультразвуковых эхолокаторов, несколько контроллеров управления прижимными пружинными узлами, несколько контроллеров управления ходовыми пружинными узлами, первый радиомодем, второй радиомодем, несколько контроллеров управления ультразвуковыми датчиками системы неразрушающего контроля (КУУДСНК).

Использование: для диагностики устройств контроля схода подвижного состава (УКСПС). Сущность изобретения заключается в том, что контроль производят методом магнитной памяти металла (МПМ) и вихретоковым методом (ВТМ), о непригодности элементов судят при обнаружении дефектов в элементе одним из методов, при этом дефектом при контроле методом МПМ является наличие локальных зон с измененной структурой материала, имеющих высокие механические напряжения, градиент напряженности собственных магнитных полей рассеяния которых не превышает эталонное значение 5*104 А/м2 на разрушаемых элементах цилиндрической формы, а на элементах плоской формы - 13*104 А/м2, а дефектом при контроле ВТМ является наличие микротрещин в разрушаемом элементе с раскрытием более 0,05 мм.

Изобретение относится к области неразрушающего контроля и может быть использовано при диагностике неразъемных соединений, в частности для контроля качества паяных соединений камер сгорания и сопел жидкостных ракетных двигателей.

Изобретение относится к области контроля технического состояния обсадных колонн, насосно-компрессорных труб и других колонн нефтяных и газовых скважин. Техническим результатом является повышение точности и достоверности выявления наличия и местоположения поперечных и продольных дефектов конструкции скважины и подземного оборудования как в магнитных, так и в немагнитных первом, втором и последующих металлических барьерах.

Настоящее изобретение относится к датчику (6) для мониторинга с помощью вихревых токов поверхности круговой канавки (2), сформированной в диске (1) турбореактивного двигателя.

Изобретение относится к геофизическим исследованиям в скважине и может быть применено при электромагнитной дефектоскопии многоколонных конструкций стальных труб.

Изобретение относится к способу определения и оценки трещин в испытываемом объекте из электропроводного материала. Способ включает: нагружение испытываемого объекта электромагнитным переменным полем с предварительно определенной постоянной или переменной частотой (f), определение вихревых токов, индуцированных в испытываемом объекте, вдоль предварительно определенных параллельных измерительных путей на участке (10) поверхности испытываемого объекта, обеспечение сигналов вихревых токов, причем каждый сигнал вихревых токов соответствует измерительному пути, преобразование (14) сигналов вихревых токов и предоставление преобразованных измеренных величин как функции измерительного пути, частоты (f) и положения (s) вдоль измерительного пути, интерпретация (16) преобразованных измеренных величин с применением преобразованных измеренных величин, по меньшей мере, одного соседнего измерительного пути, и предоставление сигналов трещин со скорректированной амплитудой и/или положением пути по отношению к преобразованным измеренным величинам.

Изобретение относится к устройству для регистрации дефектов (23) в контролируемом образце (13), перемещаемом относительно предлагаемого устройства, при неразрушающем и бесконтактном контроле, причем передающие катушки (18) намагничивают образец периодическими переменными электромагнитными полями, улавливающие катушки (15) регистрируют периодический электрический сигнал, содержащий несущее колебание, при этом, когда дефект регистрируется улавливающими катушками, наличие этого дефекта в контролируемом образце способствует формированию характерной амплитуды и/или фазы сигнала, каскад аналого-цифровых преобразователей преобразует сигнал улавливающей катушки в цифровую форму, блок (17, 19, 35, 37, 52, 60, 68, 74, 76, 78, 80, 88, 90, 94) обработки сигналов создает полезный сигнал из сигнала улавливающей катушки, преобразованного в цифровую форму, блок (60, 50, 64) обработки результатов обрабатывает полезный сигнал с целью обнаружения дефекта в контролируемом образце. В соответствии с изобретением посредством блока обработки сигналов путем осуществления контроля формы кривой преобразованного в цифровую форму сигнала улавливающей катушки определяют перемодуляцию каскада аналого-цифровых преобразователей сигналом улавливающей катушки, а затем путем математической аппроксимации преобразованного в цифровую форму сигнала улавливающей катушки восстанавливают часть сигнала, срезанную каскадом аналого-цифровых преобразователей. Технический результат - расширение диапазона измерений, увеличение вероятности быстрой локализации ошибки. 2 н. и 12 з.п. ф-лы, 5 ил.

Изобретение относится к устройству для регистрации дефектов в контролируемом образце, перемещаемом относительно предлагаемого устройства, при неразрушающем и бесконтактном контроле, которое имеет блок передающих катушек, содержащий по меньшей мере одну передающую катушку, предназначенную для намагничивания контролируемого образца периодическими переменными электромагнитными полями, блок улавливающих катушек, содержащий по меньшей мере одну улавливающую катушку, предназначенную для регистрации периодического электрического сигнала, содержащего несущее колебание, при этом когда дефект регистрируется улавливающими катушками, наличие дефекта в контролируемом образце способствует формированию характерной амплитуды и/или фазы сигнала, блок обработки сигналов, предназначенный для формирования полезного сигнала из сигнала улавливающей катушки, и блок обработки результатов, предназначенный для обработки полезного сигнала с целью обнаружения дефектов в контролируемом образце. В устройстве предусмотрен блок самотестирования, предназначенный для осуществления автоматически или по внешнему запросу систематического количественного контроля функций обработки сигналов блока обработки сигналов и/или систематического количественного контроля передающих катушек и/или улавливающих катушек и/или для осуществления по внешнему запросу калибровки блока обработки сигналов посредством калибровочного эталона, устанавливаемого вместо передающих и/или улавливающих катушек. Изобретение обеспечивает высокую надежность результатов проверки, так как обеспечена возможность точного выявления неисправностей в отдельных электронных компонентах устройства. 2 н. и 16 з.п. ф-лы, 5 ил.

Изобретение относится к области неразрушающего контроля методом вихревых токов. Способ заключается в том, что измерителем возбуждают в изделии электромагнитное поле гармоническим сигналом u1(ωt), получают сигнал u2(ωt), пропорциональный электромагнитному полю вихревых токов, наведенному в изделии, оценивают фазовый сдвиг Δφ сигнала u2(ωt) относительно u1(ωt), по которому судят о толщине покрытия. При изготовлении измерителя градуируют его, для чего измеряют фазовые сдвиги Δφ на мерных образцах с известной толщиной покрытия Тп и определенным типом стального основания, сохраняют градуировочную характеристику Δφ1(Тп). Перед измерениями калибруют прибор, для чего измеряют кажущуюся толщину покрытия изделия без покрытия на другом стальном основании. Рассчитывают градуировочную характеристику Δφ2(Тп) для изделий на таком основании и используют ее при измерениях. Измерительный комплекс состоит из вихретокового преобразователя, содержащего сердечник с обмотками возбуждения, фазового детектора, схемы балансировки, контролируемого изделия и компьютера, выполненного в виде микроконтроллера. Технический результат - повышение точности. 2 ил.

Изобретение относится к неразрушающему контролю качества материалов и изделий и может быть использовано для измерения толщины немагнитных металлических покрытий на диэлектрической основе или на немагнитной основе с другой удельной электрической проводимостью. Технический результат заключается в повышении чувствительности и точности измерения толщины электропроводных покрытий. Устройство содержит генератор возбуждающего сигнала, вихретоковый трансформаторный преобразователь с ферритовым сердечником, обмоткой возбуждения и встречно включенными измерительной и компенсационной обмотками, средняя точка которых соединена с нулевой цепью, первый и второй усилители, фазовый детектор, фильтр низкой частоты, амплитудный детектор и микроконтроллер с аналого-цифровым преобразователем. Указанный технический результат достигается применением двух конденсаторов в компенсирующей и измерительной обмотках для обеспечения резонансного режима работы вихретокового трансформаторного преобразователя, а также двухканального аналогового переключателя с коммутатором напряжения для переключения измерительных каналов с вычислением разности результатов измерений за два такта преобразования. 1 ил.

Изобретение относится к измерительной техники, конкретно к способам неразрушающего контроля, и позволяет повысить точность определения параметров дефектов. Снимают годографы влияния зазора между преобразователем и объектом контроля на сигнал на бездефектном участке настроечного образца и на участке этого образца с калибровочным дефектом известной величины. Годографы представлены на комплексной плоскости вносимых напряжений Im (Uвн) и Re (Uвн). Кривая 1 - годограф влияния зазора над бездефектным участком настроечного образца. Точка А соответствует положению преобразователя непосредственно на настроечном образце, а точка Н - на расстоянии, где влиянием настроечного образца можно пренебречь. Кривая 2 - годограф влияния зазора на участке настроечного образца с калибровочным дефектом известной величины. Снимают годограф влияния зазора на сигнал на бездефектном участке объекта контроля, показанный кривой 3. Если между направлениями годографов 1 и 3 угол составляет величину Ф, то изменяют фазу тока возбуждения на этот угол Ф так, чтобы годографы влияния зазора на бездефектных участках настроечного образца и объекта контроля совпали и потом осуществляют контроль объекта. 1 ил.

Изобретение относится к устройствам контроля вихревыми токами для определения дефектов на поверхности или на малой глубине детали, в частности лопасти вентилятора авиационного двигателя. Устройство содержит зонд (20), в котором размещен датчик (21), при этом зонд установлен с возможностью поворота на конце рукоятки (27), а направляющая (29) имеет базовую поверхность (31) и средства контролируемого регулирования положения направляющей параллельно оси трубки. При этом упомянутая направляющая (29) имеет форму муфты, коаксиальной упомянутой рукоятке (27), из которой выступает упомянутый зонд, при этом один из концов муфты имеет кольцевую поверхность, образующую упомянутую базовую поверхность (31). Технический результат - создание устройства, являющегося простым при манипулировании и легко адаптируемым для неразрушающего контроля деталей, имеющих сложную форму. Кольцевая базовая поверхность может быть приспособлена к любым поверхностям, и устройство имеет возможность поворота относительно его продольной оси. 7 з.п. ф-лы, 5 ил.

Настоящее изобретение относится к устройству производимого без демонтажа неразрушающего контроля конструктивных элементов двигателя, в частности турбомашины. Устройство (10) производимого без демонтажа неразрушающего контроля конструктивных элементов двигателя турбомашины, содержащее трубку (12), на дистальном конце которой установлен палец (14), который удерживает на одном из своих концов пластинку (16) поддержки инструмента контроля (18), а на своем противоположном конце лапку (20) поддержки и (или) зацепления на конструктивном элементе двигателя; причем эта лапка перемещается в направлении (30), параллельном продольной оси пальца. Технический результат - разработка устройства неразрушающего контроля, позволяющего осуществлять контроль конструктивных элементов независимо от их положения в турбомашине и доступности и твердо удерживать инструмент или датчик контроля на этапе контроля. 11 з.п. ф-лы, 8 ил.

Использование: для проверки длинномерных изделий с помощью вихревых токов. Сущность изобретения заключается в том, что узел проходной катушки (100) для применения в устройстве проверки длинномерных изделий непрерывным способом с помощью вихревых токов включает узел катушки возбуждения с катушкой возбуждения (122), окружающей проходное отверстие (112) для пропуска длинномерного изделия (190) в направлении прохода (192), и расположенный вокруг проходного отверстия узел приемной катушки. Узел приемной катушки включает два или несколько распределенных по периферии проходного отверстия (112) сегментных узлов катушек (142-1÷142-8), при этом каждый сегментный узел катушек имеет зону приема, покрывающую лишь часть периферии поверхности длинномерного изделия. Сегментные узлы катушек (142-1÷142-8) распределены по меньшей мере по двум окружающим проходное отверстие оболочкам (S1, S2), находящимся на различных расстояниях (А1, А2) от базовой оси (114) узла проходной катушки. При этом первые сегментные узлы катушек (142-1÷142-4) без взаимного перекрытия расположены в первой оболочке (S1), а вторые сегментные узлы катушек (142-5÷142-8) без взаимного перекрытия расположены во второй оболочке (S2). Первые и вторые сегментные узлы катушек расположены с таким сдвигом по периферии относительно друг друга, что вторые сегментные узлы катушек промеряют участки периферии, не покрытые первыми сегментными узлами катушек. Технический результат: обеспечение возможности создания высокопрочного узла проходной катушки, позволяющего получать достоверные и содержательные результаты контроля на наличие дефектов и других неоднородностей в проверяемом объекте. 3 н. и 12 з.п. ф-лы, 7 ил.

Изобретение относится к устройству для регистрации электропроводных частиц (20) в жидкости (16), текущей в трубе (10) со скоростью (v), причем передающие катушки (18) подвергают жидкость воздействию периодических переменных электромагнитных полей для наведения в частицах вихревых токов, улавливающие катушки (15) регистрируют периодический электрический сигнал, соответствующий вихревым токам и содержащий несущее колебание, при этом, когда частицы попадают в эффективную ширину зоны чувствительности улавливающих катушек, наличие частицы способствует формированию амплитуды и/или фазы сигнала, каскад аналого-цифровых преобразователей преобразует сигнал улавливающей катушки в цифровую форму, блок (17, 19, 35, 37, 52, 60, 68, 74, 76, 78, 80, 88, 90, 94) обработки сигналов создает полезный сигнал из сигнала улавливающей катушки, преобразованного в цифровую форму, и блок (50, 60, 64) обработки данных обрабатывает полезный сигнал, чтобы зарегистрировать прохождение в трубе электропроводных частиц. В соответствии с изобретением посредством блока обработки сигналов путем осуществления контроля формы кривой преобразованного в цифровую форму сигнала улавливающей катушки определяют перемодуляцию каскада аналого-цифровых преобразователей сигналом улавливающей катушки, а затем путем математической аппроксимации преобразованного в цифровую форму сигнала улавливающей катушки восстанавливают часть сигнала, срезанную каскадом аналого-цифровых преобразователей. Технический результат - расширение диапазона измерений, увеличение вероятности быстрой локализации ошибки. 2 н. и 9 з.п. ф-лы, 5 ил.

Изобретение относится к области неразрушающего контроля и может быть использовано для обнаружения коррозии в лопатках газотурбинной установки. Сущность: датчик содержит детекторную головку, форма которой согласована с геометрией поверхности переходной секции лопатки газовой турбины. Детекторная головка выполнена с возможностью перемещения вдоль осевого направления переходной секции для обнаружения питтинговой коррозии. По меньшей мере одно индукционное устройство, расположенное внутри детекторной головки, создает первое магнитное поле в области переходной секции, входящей в контакт с детекторной головкой. Приемное устройство обеспечивает обнаружение сигнала, соответствующего второму магнитному полю, принимаемому из области переходной секции, на которую воздействует первое магнитное поле. Второе магнитное поле генерируется посредством токов, созданных в данной области первым магнитным полем. Затем обрабатывающее сигнал устройство обрабатывает обнаруженный сигнал для корреляции соответствующей амплитуды обнаруженного сигнала с наличием питтинговой коррозии в данной области, так что наличие питтинговой коррозии определяют без какого-либо демонтажа корпуса газотурбинной установки. 8 н. и 15 з.п. ф-лы, 8 ил.
Наверх